• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 99
  • 24
  • 14
  • 10
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 297
  • 297
  • 79
  • 59
  • 50
  • 49
  • 43
  • 40
  • 35
  • 32
  • 32
  • 31
  • 31
  • 30
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cellules solaires à multijonctions par intégration monolithique de nitrures dilués sur substrats d’arséniure de gallium (GaAs) et de silicium (Si) : études des défauts. / Multijunction Solar Cells from Monolithic Integration of Dilute Nitrides on Gallium Arsenide (GaAs) and Silicon (Si) Wafers : defect studies

Baranov, Artem 26 June 2018 (has links)
Les cellules solaires à multi-jonctions de type III-V possèdent des rendements de conversion de l'énergie très élevés (46%). Cependant, les méthodes de fabrication généralement utilisées sont complexes et coûteuses, notamment pour les cellules solaires non monolithiques associées par des techniques de collage et à structure inversée. Cette thèse vise à augmenter les rendements de conversion des cellules solaires monolithiques à l'aide de méthodes prospectives. Le travail est focalisé sur l'étude des défauts électroniquement actifs dans les matériaux constituant les cellules solaires au moyen de techniques photoélectriques et capacitives, et il peut être scindé en trois parties. La première partie traite des cellules solaires à simple jonction avec des couches absorbantes non dopées d'alliages InGaAsN de 1 eV de bande interdite de différentes épaisseurs obtenues sous forme de super-réseaux (InAS / GaAsN) par épitaxie à jets moléculaires (MBE) sur des substrats de GaAs. Pour des épaisseurs inférieures à 1200 nm, la concentration de défauts est négligeable et n'affecte pas fortement les propriétés photoélectriques, tandis que que pour une épaisseur de 1600 nm, la forte concentration de défauts détectés réduit la durée de vie des porteurs photogénérés, et conduit à une baisse significative du rendement quantique externe et des performances de la cellule. La deuxième partie du travail est consacrée à l'étude de cellules solaires à une et plusieurs jonctions avec des couches actives de (In)GaP(As)N obtenues par MBE sur des substrats respectifs de GaP et de Si. Nous avons trouvé que les cellules solaires de type p-i-n avec des couches actives de GaPAsN non dopé présentaient de meilleures performances que les cellules solaires de type p-n avec des couches actives de GaPAsN dopé n. De plus, les cellules solaires avec une couche d'absorbeur en GaPAsN non dopé présentent de meilleures propriétés photoélectriques et des concentrations de défauts plus faibles que celles avec un absorbeur obtenu à partir de super-réseaux InP / GaPN. Plusieurs niveaux de défauts ont été détectés dans la bande interdite de ces matériaux et leurs paramètres ont été décrits en détail. Nous avons montré qu'un traitement de post-croissance approprié pouvait améliorer la qualité électronique des couches et des cellules solaires. Une cellule solaire à triple jonction a été fabriquée avec des couches actives d'absorbeurs de GaPAsN et de GaPN non dopées. La valeur élevée de la tension de circuit ouvert (>2,2V) atteste du fonctionnement des 3 sous-cellules, mais la performance globale est limitée par les faibles épaisseurs de couches d'absorbeurs. Enfin, la troisième partie du travail est consacrée à l'étude de couches de GaP obtenues sur des substrats de Si à des températures inférieures à 400 ° C par une méthode originale de dépôt de couches atomiques assistée par plasma (PE-ALD). En effet, celle-ci utilise un équipement de dépôt chimique en phase vapeur assisté par plasma et elle repose sur l'interaction de la surface avec les atomes de Ga et P provenant respectivement du triméthylgallium et de la phosphine qui sont injectés alternativement. Nous avons également fait croître des couches en utilisant un processus continu (fournissant simultanément les atomes P et Ga) et observé que leurs propriétés électriques et structurelles étaient moins bonnes que celles obtenues par la méthode PE-ALD proposée. Nous avons exploré l'influence des conditions de croissance sur les hétérostructures GaP / Si. Nous avons constaté qu'une faible puissance de plasma RF conduit à de meilleures propriétés photoélectriques, structurelles et à moins de défauts, grâce à une meilleure passivation du substrat de silicium. En outre, nous avons démontré que, contrairement à des résultats de la littérature utilisant des procédés MBE, la technique PE-ALD n'affecte pas ou très peu les propriétés électroniques des substrats de silicium et aucune désactivation des dopants n'a été observée. / Multi-junction solar cells based on III-V compounds have reached very high power conversion efficiencies (46%). However, the fabrication methods that are generally used are complex and expensive for non-monolithic bonded and inverted solar cells. This thesis is devoted to the study of prospective methods to increase the efficiency of monolithic solar cells. The work is focused on the study of electronically active defects in the materials constituting the solar cells by means of photoelectric and capacitance techniques (admittance spectroscopy, DLTS,…) and it can be divided into three parts. The first part deals with single-junction solar cells wherein the absorber is made of i-layers of 1 eV bandgap InGaAsN compounds with various thicknesses grown as sub-monolayer digital alloys (SDA) of InAs/GaAsN by molecular-beam epitaxy (MBE) on GaAs wafers. The cell with 900 nm thick InGaAsN exhibits the best photovoltaic performance and no defects could be evidenced from capacitance techniques. When the thickness is increased to 1200 nm, defects were detected, but their concentration is low so it did not strongly affect the photoelectric properties. Further increase to 1600 nm of the layer thickness was shown to lead to a higher defect concentration causing a change in the band diagram of the structure and lowering the lifetime of photogenerated carriers. This could explain the drastic drop of the external quantum efficiency, and the overall poor performance of the solar cell. The second part is devoted to the study of single- and multi-junction solar cells with active layers of (In)GaP(As)N grown by molecular beam epitaxy (MBE) on GaP and Si wafers, respectively. More precisely, the active layers were either quaternary alloys of GaPAsN or SDAs of InP/GaPN. We found that p-i-n type solar cells with active layers of i-GaPAsN showed better performance than p-n type solar cells with active layers of n-GaPAsN due to higher EQE values. Moreover, solar cells with an i-GaPAsN absorber layer show better photoelectric properties and lower defect concentrations, than those with an SDA InP/GaPN absorber layer. Different defect levels were detected by capacitance methods in these materials and their parameters were described in detail. We showed that a suitable post-growth treatment could improve the electronic quality of the GaPAsN layer and the solar cell properties. Also, a triple-junction solar cell was fabricated with active layers of i-GaPAsN and i-GaPN. All subcells were found to be operating, leading to a large open circuit voltage (>2.2 V), but the overall performance is limited by the low value of the quantum efficiency due to low thicknesses of i-layers that should be increased for better absorption. Finally, the third part is devoted to the study of GaP layers grown on Si wafers at temperatures below 400 °C using an original method called plasma-enhanced atomic-layer deposition (PE-ALD). Indeed, it uses a plasma-enhanced chemical vapor deposition equipment and it is based on the alternate interaction of the wafer surface with Ga and P atoms coming from injected trimethylgallium and phosphine, respectively. We also grew layers using a continuous process (providing simultaneously the P and Ga atoms) and observed that their electric and structural properties were poorer than that grown by the proposed PE-ALD method. The influence of growth conditions on the GaP/Si heterostructures was explored. We found that low RF-plasma power leads to better photoelectric, structural and defect-related properties, due to a better passivation of the silicon wafer. In addition, we demonstrated that, contrary to results reported in the literature using MBE processes, our growth process does not affect the electronic properties of phosphorous doped n-Si wafers, while slight changes were observed in boron-doped p-Si wafers containing Fe-related defects, however without deactivation of the doping nor strong degradation of the electronic properties.
22

Analyse de la structure locale et propriétés optiques de semiconducteurs nitrures pour le développement des diodes électroluminescentes efficaces au-delà du vert. / Analysis of the local structure and optical properties of nitrides semiconductors for LEDs beyond the green wavelength range

Chery, Nicolas 14 December 2018 (has links)
Les puits quantiques InGaN/GaN montrent la plus grande efficacité connue dans le bleu-UV et le défi actuel dans ce type de matériau est de pousser leur émission vers les grandes longueurs d’ondes. Ceci serait possible en augmentant la composition en indium, mais il faut alors gérer les contraintes résultantes. Ce travail a mis en œuvre la microscopie électronique en transmission et la diffraction des rayons X pour déterminer la composition chimique à l’intérieur des couches InGaN, le taux de relaxation et le type de défauts présents. Les résultats montrent qu’il n’y a pas de fluctuations de composition en indium dans les couches d’InGaN étudiées avec des taux d’indium de l’ordre de 20%. Ainsi, la différence d’émission des échantillons pourrait s’expliquer par la variation d’épaisseur des puits quantiques InGaN et laprésence de défauts. En effet, plusieurs types de défauts ont été observés et caractérisés tels que les pinholes ou des domaines de défauts plans selon leur origine. Dans les multicouches InGaN/GaN avec couches AlGaN compensatrices de contrainte,la diffraction des rayons X a montré que lorsque l’épaisseur des couches d’AlGaN augmente en gardant constante l’épaisseur entre les couches actives d’InGaN (avec une valeur d’environ 16-17 nm), les puits quantiques sont totalement contraints dans le plan de croissance et en dehors. Par microscopie électronique, nous montrons queleur relaxation se fait par formation aussi bien de défauts en domaines plans que de dislocation de type a. Ces dislocations se propagent des pits quantiques vers la surface, et la densité des défauts augmente avec l’épaisseur des couches d’AlGaN. / InGaN/GaN quantum wells show the highest known emission efficiency in UV-blue and the current challenge is to push to longer wavelengths. This would be possible by increasing the indium composition but the challenge becomes how to handle the resulting strains. This work has combined transmission electron microscopy and Xray diffraction in order to determine the relaxation rates, the local chemical composition and defects formation in these systems. The results show that there are no composition fluctuations in these InGaN layers where the indium content was around 20%. Therefore, the differences in emission may be explained by the changes in quantum wells thicknesses and/or the presence of defects. Indeed, several types of defects have been observed and characterized, such as pinholes or planar defect domains. For InGaN/GaN quantum wells with strain compensating AlGaN layers, Xray diffraction showed that, when the AlGaN layer thickness increases, keeping constant the spacing between InGaN layers (around 16-17 nm), the quantum wellsare totally strained in and out the growth plan. Using transmission electron microscopy, it is shown that the relaxation occurs through the formation of domains as well as a type dislocations. The dislocations propagate from the quantum well tothe surface and the density of the defects increases with the thickness of the AlGaN layers.
23

Electron Beam-based Techniques for the Characterization of Nanowire Solar Cells / Caractérisation des Cellules Solaires à Nanofils avec Techniques par Faisceau d’Electrons

Piazza, Valerio 13 December 2018 (has links)
Bien que les nanofils III-V soient reconnus comme des candidats prometteurs pour le développement de cellules solaires de nouvelle génération pour leurs propriétés optiques très attractives, l'amélioration des performances attendue par rapport à leurs homologues 2D n'a pas encore été démontrée. L’investigation à l’échelle nanométrique est essentielle pour comprendre l'origine de l'écart existant entre les prédictions théoriques et les démonstrations expérimentales. L’analyse des nanofils uniques devrait permettre d'élucider les facteurs limitants (liés par exemple aux propriétés électriques des jonctions p-n internes, à l'homogénéité fil-à-fil et aux éventuelles défaillances) et de proposer des solutions pour améliorer les performances des dispositifs photovoltaïques à nanofils.Cette thèse explore l’utilisation des techniques de caractérisation par faisceau d’électrons pour extraire les paramètres fondamentaux pour la conversion photovoltaïque afin d’optimiser les propriétés de nanofils III-V crus sur Si.L’étude à l’échelle nanométrique porte tout d’abord sur des nanofils de GaAs et AlGaAs avec une jonction radiale. A la suite de cette étude, la structure interne de nanofils a pu être améliorée. La caractérisation de dispositifs de taille millimétrique confirme l’amélioration des performances à l’échelle macroscopique.Des nanofils InGaP crus par une nouvelle méthode (Template Assisted Selective Epitaxy où TASE) ont aussi été étudiés et le niveau de dopage a été estimé par la microscopie EBIC. De plus, la réponse photovoltaïque de ces structures été observée pour la premier fois. Les propriétés électriques des nanofils GaAs avec une jonction axiale crus par la même technique ont aussi été caractérisées.Enfin, des nanofils avec deux jonctions InP/InGaP sont été étudiés comme première tentative pour fabriquer une cellule solaire tandem entièrement à nanofils. L’activité électrique des deux jonctions été observée et caractérisée. En revanche, le fonctionnement de la structure tandem s’est trouvé limité par la jonction tunnel qui connecte électriquement les deux jonctions. / Although III-V nanowires (NWs) are recognized as promising candidates for the development of new generation solar cells thanks to their very attractive optical properties, the expected performance improvement over their 2D counterparts has not yet been demonstrated. Nanoscale analyses by electron beam-based techniques (EBIC,CL) are expected to elucidate the limiting factors and to propose solutions for enhancing the performance of NW photovoltaic (PV) devices.This PhD thesis applies the electron beam probe techniques to get access to the key parameters governing the PV conversion at a single NW level in order to further optimize the properties of III-V NWs grown on Si.First, GaAs and AlGaAs NWs containing a radial junction are investigated at the nanoscale and their internal structure is optimized. The characterization of mm-sized devices confirms the improvement of the device performance at the macroscopic level.Then InGaP and GaAs NWs grown by a novel Template Assisted Selective Epitaxy (TASE) method containing an axial junction are studied. The doping level in the ternary alloy is estimated by EBIC and the photovoltaic response of these structures is demonstrated for the first time.Finally, InP/InGaP dual junction NWs are characterized. Although both top and bottom junctions are electrically active under excitation, the performance of the tandem structure is limited by the connecting tunnel junction
24

III-V/Si tandem solar cells : an inverted metamorphic approach using low temperature PECVD of c-Si(Ge) / Cellules solaires tandem III-V/Si : une approche inverse métamorphique par PECVD basse température de c-Si(Ge)

Hamon, Gwenaëlle 12 January 2018 (has links)
La limite théorique d’efficacité d’une cellule solaire simple jonction est de ~29 %. Afin de dépasser cette limite, une des moyens les plus prometteurs est de combiner le silicium avec des matériaux III-V. Alors que la plupart des solutions proposées dans la littérature proposent de faire croître directement le matériau III-V sur substrat silicium, ce travail présente une approche innovante de fabriquer ces cellules solaires tandem. Nous proposons une approche inverse métamorphique, où le silicium cristallin ou SiGe est cru directement sur le matériau III-V par PECVD. La faible température de dépôt (< 200 °C) diminue les problèmes de différence de dilatation thermique, et le fait de croître le matériau IV sur le matériau III-V élimine les problèmes de polarité.La réalisation de la cellule tandem finale en SiGe/AlGaAs passe par le développement et l’optimisation de plusieurs briques technologiques. Tout d’abord, nous développons l’épitaxie à 175 °C de Si(Ge) sur des substrats de Si (100) dans un réacteur de RF-PECVD industriel. La réalisation de cellules solaires à hétérojonction à partir de ce matériau Si(Ge) crû par PECVD montre que ses performances électriques s’avèrent prometteuses. Nous obtenons pour un absorbeur de 1.5 µm des Voc qui atteignent 0.57 V. L’incorporation de Ge permet d’augmenter le JSC de 15.4 % jusqu’à 16.6 A/cm2 pour Si0.72Ge0.28.En parallèle, la croissance de cellules solaires AlGaAs a été développée, ainsi que sa fabrication technologique. Nous obtenons une efficacité de 17.6 % pour une cellule simple en Al0.22Ga0.78As. Nous développons aussi des jonctions tunnel, parties essentielles d’une cellule tandem dans une configuration à deux terminaux. Nous développons notamment le dopage n du GaAs en utilisant le précurseur DIPTe, et obtenons des jonctions tunnel ayant des courants pic atteignant jusqu’à 3000 A/cm2, rejoignant ainsi les résultats de l’état de l’art.Ensuite, nous étudions l’hétéro-épitaxie de Si sur GaAs par PECVD. Le c-Si montre d’excellentes propriétés structurales. Les premiers stades de croissance sont étudiés par diffraction des rayons X avec rayonnement synchrotron. Nous trouvons un comportement inattendu : le Si est relâché dès les premiers nanomètres, mais sa maille est tétragonale. Alors que le GaAs a un paramètre de maille plus grand que le Si, le paramètre hors du plan (a⏊) du Si est plus élevé que son paramètre dans le plan (a//). Nous trouvons une forte corrélation entre cette tétragonalité et la présence d’hydrogène dans la couche de silicium. D’autre part, nous montrons que le plasma d’hydrogène présent lors du dépôt PECVD affecte les propriétés du GaAs : son dopage diminue d’environ un ordre de grandeur lorsque le GaAs est exposé au plasma H2, dû à la formation de complexes entre le H et le dopant (C, Te ou Si). Le dopage initial peut être retrouvé après un recuit à 350 °C.Enfin, nous étudions la dernière étape de fabrication de la cellule tandem : le collage. Nous avons pu reporter une cellule simple inversée en AlGaAs sur un substrat hôte (en Si), retirer le substrat GaAs et effectuer les étapes de microfabrication sur un substrat 2 pouces. Des couches épaisses de Si (>1 µm) ont été crues avec succès sur une cellule AlGaAs inversée suivie d’une jonction tunnel. Le collage de cette cellule tandem, et la processus de fabrication technologique du dispositif final sont ensuite étudiés, afin de pouvoir caractériser électriquement la première cellule solaire tandem fabriquée par croissance inverse métamorphique de Si sur III-V. / Combining Silicon with III-V materials represents a promising pathway to overcome the ≈29% efficiency limit of a single c-Si solar cell. While the standard approach is to grow III-V materials on Si, this work deals with an innovative way of fabricating tandem solar cells. We use an inverted metamorphic approach in which crystalline silicon or SiGe is directly grown on III-V materials by PECVD. The low temperature of this process (<200 °C) reduces the usual thermal expansion problems, and growing the group IV material on the III-V prevents polarity issues.The realization of the final tandem solar cell made of SiGe/AlGaAs requires the development and optimization of various building blocks. First, we develop the epitaxy at 175°C of Si(Ge) on (100) Si substrates in an industrial standard RF-PECVD reactor. We prove the promising electrical performances of such grown Si(Ge) by realizing PIN heterojunction solar cells with 1.5µm epitaxial absorber leading to a Voc up to 0.57 V. We show that the incorporation of Ge in the layer increases the Jsc from 15.4 up to 16.6 A/cm2 (SiGe28%).Meanwhile, we develop the growth of AlGaAs solar cells by MOVPE and its process flow. We reach an efficiency of 17.6 % for a single Al0.22GaAs solar cell. We then develop the tunnel junction (TJ), essential part of a tandem solar cell with 2-terminal integration. We develop the growth of n-doped GaAs with DIPTe precursor to fabricate TJs with peak tunneling currents up to 3000 A/cm2, reaching state-of-the art TJs.Then, the hetero-epitaxy of Si on GaAs by PECVD is studied. c-Si exhibits excellent structural properties, and the first stages of the growth are investigated by X-ray diffraction with synchrotron beam. We find an unexpected behavior: the grown Si is fully relaxed, but tetragonal. While the GaAs lattice parameter is higher than silicon one, we find a higher out-of-plane Si parameter (a⏊) than in-plane (a//), contradicting the common rules of hetero-epitaxy. We find a strong correlation between this tetragonal behavior and the presence of hydrogen in the Si layer. We furthermore show that hydrogen also plays a strong role in GaAs: the doping level of GaAs is decreased by one order of magnitude when exposed to a H2 plasma, due to the formation of complexes between H and the dopants (C, Te, Si). This behavior can be recovered after annealing at 350°C.Finally, the last step of device fabrication is studied: the bonding. We successfully bonded an inverted AlGaAs cell, removed it from its substrate, and processed a full 2” wafer. We succeeded in growing our first tandem solar cells by growing thick layers (>1 µm) of Si on an inverted AlGaAs solar cells followed by a TJ. The bonding and process of this final device is then performed, leading, as a next step, to the electrical measurement of the very first tandem solar cell grown by inverted metamorphic growth of Si on III-V.
25

Fabrication et caractérisation de MOSFET III-V à faible bande interdite et canal ultra mince

Ridaoui, Mohamed January 2017 (has links)
Les MOSFETs ultra-thin body UTB ont été fabriqués avec une technologie auto-alignée. Le canal conducteur est constitué d’InGaAs à 75% de taux d’indium ou d’un composite InAs/In0,53Ga0,47As. Une fine couche d'InP (3 nm) a été insérée entre le canal et l'oxyde, afin d’éloigner les défauts de l’interface oxyde-semiconducteur du canal. Enfin, une épaisseur de 4 nm d'oxyde de grille (Al2O3) a été déposée par la technique de dépôt des couches atomiques. Les contacts ohmiques impactent les performances des MOSFETs. La technologie UTB permet difficilement d’obtenir des contacts S/D de faibles résistances. De plus, l’utilisation de la technique d’implantation ionique pour les architectures UTB est incompatible avec le faible budget thermique des matériaux III-V et ne permet pas d’obtenir des contacts ohmiques de bonne qualité. Par conséquent, nous avons développé une technologie auto-alignée, basée sur la diffusion du Nickel « silicide-like » par capillarité à basse température de recuit (250°C) pour la définition des contacts de S/D. Finalement, nous avons étudié et analysé la résistance de l'alliage entre le Nickel et les III-V. A partir de cette technologie, des MOSFET In0,75Ga0,25As et InAs/In0,53Ga0,47As ont été fabriqués. On constate peu de différences sur les performances électriques de ces deux composants. Pour le MOSFET InAs/InGaAs ayant une longueur de grille LG =150 nm, un courant maximal de drain ID=730 mA/mm, et une transconductance extrinsèque maximale GM, MAX = 500 mS/mm ont été obtenu. Le dispositif fabriqué présente une fréquence de coupure fT égale à 100 GHz, et une fréquence d'oscillation maximale fmax de 60 GHz, pour la tension drain-source de 0,7 V. / Abstract : Silicon-based devices dominate the semiconductor industry because of the low cost of this material, its technology availability and maturity. However, silicon has physical limitations, in terms of mobility and saturation velocity of the carriers, which limit its use in the high frequency applications and low supply voltage i.e. power consumption, in CMOS technology. Therefore, III-V materials like InGaAs and InAs are good candidates because of the excellent electron mobility of bulk materials (from 5000 to 40.000 cm2 /V.s) and the high electron saturation velocity. We have fabricated ultra-thin body (UTB) InAs/InGaAs MOSFET with gate length of 150 nm. The frequency response and ON-current of the presented MOSFETs is measured and found to have comparable performances to the existing state of the art MOSFETs as reported by the other research groups. The UTB MOSFETs were fabricated by self-aligned method. Two thin body conduction channels were explored, In0,75Ga0,25As and a composite InAs/In0,53Ga0,47As. A thin upper barrier layer consisting of InP (3nm) is inserted between the channel and the oxide layers to realized a buried channel. Finally, the Al2O3 (4 nm) was deposited by the atomic layer deposition (ALD) technique. It is well known that the source and drain (S/D) contact resistances of InAs MOSFETs influence the devices performances. Therefore, in our ultra-thin body (UTB) InAs MOSFETs design, we have engineered the contacts to achieve good ohmic contact resistances. Indeed, for this UTB architecture the use of ion implantation technique is incompatible with a low thermal budget and cannot allow to obtain low resistive contacts. To overcome this limitation, an adapted technological approach to define ohmic contacts is presented. To that end, we chose low thermal budget (250°C) silicide-like technology based on Nickel metal. Finally, we have studied and analyzed the resistance of the alloy between Nickel and III-V (Rsheet). MOSFET with two different epilayer structures (In0,75Ga0,25As and a composite InAs/In0,53Ga0,47As) were fabricated with a gate length (LG) of 150 nm. There were few difference of electrical performance of these two devices. We obtained a maximum drain current (ION) of 730 mA/mm, and the extrinsic transconductance (GM, MAX) showed a peak value of 500 mS/mm. The devices exhibited a current gain cutoff frequency fT of 100 GHz and maximum oscillation frequency fmax of 60 GHz for drain to source voltage (VDS) of 0.7 V.
26

Ecotoxicity assessment of ionic As(III), As(V), In(III) and Ga(III) species potentially released from novel III-V semiconductor materials

Zeng, Chao, Gonzalez-Alvarez, Adrian, Orenstein, Emily, Field, Jim A., Shadman, Farhang, Sierra-Alvarez, Reyes 06 1900 (has links)
III-V materials such as indium arsenide (InAs) and gallium arsenide (GaAs) are increasingly used in electronic and photovoltaic devices. The extensive application of these materials may lead to release of III-V ionic species during semiconductor manufacturing or disposal of decommissioned devices into the environment. Although arsenic is recognized as an important contaminant due to its high toxicity, there is a lack of information about the toxic effects of indium and gallium ions. In this study, acute toxicity of As(III), As(V), In(III) and Ga(III) species was evaluated using two microbial assays testing for methanogenic activity and 02 uptake, as well as two bioassays targeting aquatic organisms, including the marine bacterium Aliivibrio fischeri (bioluminescence inhibition) and the crustacean Daphnia magna (mortality). The most noteworthy finding was that the toxicity is mostly impacted by the element tested. Secondarily, the toxicity of these species also depended on the bioassay target. In(III) and Ga(III) were not or only mildly toxic in the experiments. D. magna was the most sensitive organism for In(III) and Ga(III) with 50% lethal concentrations of 0.5 and 3.4 mM, respectively. On the other hand, As(III) and As(V) caused clear inhibitory effects, particularly in the methanogenic toxicity bioassay. The 50% inhibitory concentrations of both arsenic species towards methanogens were about 0.02 mM, which is lower than the regulated maximum allowable daily effluent discharge concentration (2.09 mg/L or 0.03 mM) for facilities manufacturing electronic components in the US. Overall, the results indicate that the ecotoxicity of In (III) and Ga(III) is much lower than that of the As species tested. This finding is important in filling the knowledge gap regarding the ecotoxicology of In and Ga.
27

Potential Environmental and Health Risks from Nanoparticles and III-V Materials Used in Semiconductor Manufacturing

Zeng, Chao, Zeng, Chao January 2017 (has links)
Nanoparticles (NPs) have unique electronic, optical and chemical properties due to the extreme small size. Engineered nanoparticles (ENPs) are intentionally produced for desired applications, with specific properties related to shape, size, surface properties and chemistry. Nano-sized silica (SiO2), alumina (Al2O3) and ceria (CeO2) are three important ENPs with large production and wide applications. One of the principal uses of these ENPs is in chemical and mechanical planarization (CMP), a key process applied to polish wafers when fabricating integrated circuits in semiconductor manufacturing, in which SiO2, Al2O3 and CeO2 NPs are used as abrasive particles in CMP slurries. CMP generates large amounts of waste effluents containing high levels of ENPs. Some ENPs have been proven to be able to cause toxicity to microorganisms and higher life forms, including humans. Therefore, there are concerns about the potential risks that ENPs may pose to the natural environment and human health. In addition, III-V materials like indium arsenide (InAs) and gallium arsenide (GaAs) are increasingly used in electronic and photovoltaic devices. Besides ENPs, the waste streams from III-V manufacturing also contain dissolved and particulate materials removed from III-V films during CMP. Arsenic is one of the most notorious contaminants that has been widely studied, while only very limited ecotoxicity information is available for gallium and indium. Finally, since ENPs have high surface area, it is very likely they will interact with the soluble species (such as arsenic ions) in CMP wastewater. Therefore, it is of great importance to understand whether the interactions between these materials could alter their fate and toxicity. The objective of this work is to investigate the potential environmental and health risks from the ENPs and III-V materials used in semiconductor manufacturing. To this end, the physical, chemical and toxicological characterization of ENPs used in CMP was performed (Chapter 3). Furthermore, the fate and transport of the most used ENP, SiO2, in porous media was studied (Chapter 4). In addition, acute toxicity of As(III), As(V), In(III) and Ga(III) species was evaluated using different bioassays (Chapter 5). Finally, the cytotoxicity of ENPs used in CMP slurries to human lung bronchial epithelial cells was evaluated using an impedance based real time cell analysis (RTCA) assay (Chapter 6). In Chapter 3, four model slurries containing ENPs including colloidal silica (c-SiO2), fumed silica (f-SiO2) cerium oxide (CeO2) and aluminum oxide (Al2O3) were characterized for their physical, chemical and toxicological properties. Ecotoxicity of these slurries to the marine bacterium, Aliivibrio fischeri, was evaluated by measuring its bioluminescence activity as a function of the ENP concentration dosed. The results showed that f-SiO2 and CeO2 were not toxic at concentrations up to 700 and 1000 mg/L, respectively. On the other hand, c-SiO2 and Al2O3 were inhibitory only at very high concentrations (>600 mg/L). At about 1300 mg/L, c-SiO2 and Al2O3 led to 37.6% and 28.4% decrease of cell activity after 30 min exposure, respectively. The inhibitory effect from c-SiO2 was related to additives in the slurry. In summary, the results indicate that these slurries are not likely to cause acute toxicity at environmentally relevant concentrations. The potential risks from ENPs are dependent on their fate and transport in the environment. In Chapter 4, the transport and abatement of SiO2 NPs was studied through laboratory scale column experiments. Synthetic fluorescent core-shell SiO2 NPs (83 nm) were used to facilitate NP traceability. Three widely used filtering materials, i.e., sand, anthracite and granular activated carbon (GAC), were used as porous media. Sand showed very poor capacity for the filtration of SiO2 NPs due to its limited surface area and high concentration of negative surface charge. In addition, the stability and transport of SiO2 NP was strongly dependent on the ionic strength of the solution. High ionic strength led to NP agglomeration and facilitated SiO2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher efficiency for SiO2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental attraction parameters. This model provided an excellent fit to the experimental data. Taken together the results obtained indicate that GAC is an interesting material for SiO2 NPs filtration. With the increasing usage of III-V materials, there are concerns about the ecological threats posed by III-V ions released during semiconductor manufacturing and from disposal of decommissioned electronic devices. In Chapter 5, the acute toxicity of As(III), As(V), In(III) and Ga(III) species was evaluated using different bioassays, including three microbial assays, testing for methanogenic activity, O2 uptake and bioluminescence inhibition of marine bacterium A. fischeri. Acute toxicity to the freshwater crustacean Daphnia magna was also tested. The results showed that In(III) and Ga(III) were generally not toxic or only mildly toxic in all assays, while both As(III) and As(V) showed strong inhibitory effects on different microbial activities (methanogenic and bioluminescence). The toxicity of these ions was strongly dependent on the bioassay target. For In(III) and Ga(III), D. magna was the most sensitive organism with 50% lethal concentrations (LC50) of 57.4 and 237.0 mg/L, respectively. On the other hand, As(III) and As(V) were particularly toxic to methanogens. The 50% inhibitory concentrations (IC50) of both species were about 1.5mg/L. Mixed aerobic heterotrophic culture was highly resistant to all four ions and O2 uptake by the aerobes was not affected in the tested concentrations. Overall, the results indicate that the ecotoxicity of In(III) and Ga(III) is much lower than that of the As species. This finding is important in filling the knowledge gap regarding the ecotoxicology of In and Ga. Besides ecotoxicity, ENPs and III-V materials in CMP effluents could also pose a threat to human health. In Chapter 6, the cytotoxicity of CMP slurries to human bronchial epithelial cells (16HBE14o-) was assessed using a novel impedance based real time cell analyzer (RTCA). Cell death and detachment was observed in assays supplied with high concentrations of c-SiO2 and f-SiO2 NPs (≥250 mg/L). On the other hand, CeO2 and Al2O3 slurries were not inhibitory at concentrations up to 1250 mg/L. In addition, since CMP wastewater generated during the planarization of III-V films contains a mixture of ENPs and soluble III-V species, it is important to understand whether the interactions between these materials could alter their fate and toxicity. As(III) toxicity to human lung cells in the presence and absence of CeO2 NPs was evaluated using the RTCA assay. Exposure to As(III) (0.5 mg/L) for 48 h resulted in 81.3% inhibition of cell viability and proliferation, while cell inhibition decreased to only 13.0% when As(III) was dosed together with sub-toxic levels of CeO2 NPs (250 mg/L). This detoxification effect was mainly due to As(III) adsorption onto CeO2 NPs. When the NPs were added, the soluble arsenic concentration was reduced significantly from 0.5 mg/L to 0.03 mg/L. This work demonstrates that adsorption of As(III) on CeO2 NPs can lower As(III) concentration in the solution and reduce its bioavailability and subsequently result in As(III) detoxification. In conclusion, this dissertation indicates that the ENPs (SiO2, CeO2 and Al2O3) used in semiconductor industry are not expected to cause acute toxicity to the natural environment and human health under environmentally relevant concentration (<1 mg/L). Among the soluble III-V species, In(III) and Ga(III) showed no or mild acute inhibitory effects in different bioassays even at comparatively high concentration. However arsenic species are highly toxic to various important microbial populations in the environment and human cells. The results showed that arsenic could induce toxic effects under current discharge limit set for semiconductor industry. Finally, we demonstrated that the adsorption of As(III) on CeO2 NPs can lower the concentration of soluble As(III) and subsequently resulted in As(III) detoxification.
28

Evolution of AlN buffer layers on Silicon and the effect on the property of the expitaxial GaN film

Zang, Keyan, Wang, Lianshan, Chua, Soo-Jin, Thompson, Carl V. 01 1900 (has links)
The morphology evolution of high-temperature grown AlN nucleation layers on (111) silicon has been studied using atomic force microscopy (AFM). The structure and morphology of subsequently grown GaN film were characterized by optical microscopy, scanning electron microscopy, x-ray diffraction, and photoluminescence measurement. It was found that a thicker AlN buffer layer resulted in a higher crystalline quality of subsequently grown GaN films. The GaN with a thicker buffer layer has a narrower PL peak. Cracks were found in the GaN film which might be due to the formation of amorphous SiNx at the AlN and Si interface. / Singapore-MIT Alliance (SMA)
29

Structural analysis of metalorganic chemical vapor deposited AlN nucleation layers on Si (111)

Zang, Keyan, Wang, Lianshan, Chua, Soo-Jin, Thompson, Carl V. 01 1900 (has links)
AlN nucleation layers are being investigated for growth of GaN on Si. The microstructures of high-temperature AlN nucleation layers grown by MOCVD on Si (111) substrates with trimethylaluminium pre-treatments have been studied using atomic force microscopy (AFM) and transmission electron microscopy (TEM). The AFM results show that with TMA pre-treatments, AlN grows in a pseudo-2-dimensional mode because the lateral growth rate of AlN is increased, and the wetting property of the AlN on silicon is improved. Also, no amorphous SiNx layer was observed at the interface with TMA pre-treatments and AlN films with good epitaxial crystalline quality were obtained. Transmission electron diffraction patterns revealed that the AlN and Si have the crystallographic orientation relationship AlN [0001]║Si[111] and AlN[11 2 0] ║Si[110]. High resolution transmission electron microscopy indicates a 5:4 lattice matching relationship for AlN and Si along the Si [110] direction. Based on this observation, a lattice matching model is proposed. / Singapore-MIT Alliance (SMA)
30

Magnetically-Assisted Statistical Assembly - a new heterogeneous integration technique

Fonstad, Clifton G. Jr. 01 1900 (has links)
This paper presents a new technique for the monolithic heterogeneous integration of compound semiconductor devices with silicon integrated circuits, and establishes the theoretical foundation for a key element of the process, tailored magnetic attraction and retention. It is shown how a patterned thin film of hard magnetic material can be used to engineer the attraction between the film and nanopills covered with a soft magnetic material. With a suitable choice of pattern, it is anticipated that it will be possible to achieve complete filling of recesses in the surface of fully-processed integrated circuit wafers, preparatory to subsequent processing to fabricate the nanopills into heterostructure devices integrated monolithically with the pre-existing electronics. / Singapore-MIT Alliance (SMA)

Page generated in 0.0194 seconds