Spelling suggestions: "subject:"bindustrial ecology."" "subject:"0industrial ecology.""
111 |
L’écologie industrielle comme processus de construction territoriale : application aux espaces portuaires / Industrial ecology, a territorial planning approach : application to port-industrial areasCerceau, Juliette 12 December 2013 (has links)
La circulation des flux de matières et d’énergie reflète aussi bien le fonctionnement de la biosphère que celui des sociétés humaines. L’écologie industrielle, dans son approche territoriale, interpelle ces interactions socioécologiques au sein d’un espace géographique et participe ainsi à la définition et à la structuration de l’espace en territoire. Par une approche expérimentale déclinée sur les espaces portuaires, nous cherchons à rendre manifeste, pour la valider et mieux l’appréhender, cette dynamique de configuration du territoire en écologie industrielle. Le territoire constitue une matrice complexe, composée de représentations et de pratiques, manifestées dans le discours des acteurs. A partir de l’étude de 21 cas portuaires d’écologie industrielle à l’échelle internationale, 9 modèles territoriaux ont été proposés pour l’observer et la décrypter. Déclinés dans l’espace portuaire de Marseille-Fos, ces modèles permettent la production et l’interprétation des discours des acteurs de la démarche d’écologie industrielle en vue d’identifier les modalités de construction territoriale à l’œuvre et de construire une configuration du territoire à l’interface des représentations et pratiques des acteurs. Cette expérimentation met en évidence un phénomène d’imbrication territoriale de l’écologie industrielle et la participation de celle-ci à une dynamique territorialité-territorialisation structurante de la construction territoriale. Elle propose ainsi une définition socioécologique du territoire, distinguant des biotopes et des niches occupés par des acteurs, dont les interactions appellent à un renouvellement de la gouvernance portuaire de l’écologie industrielle. / The circulation of material and energy flows reflects the functioning of both biosphere and human societies. Industrial ecology, in its territorial approach, questions these socioecological interactions within a geographical area. It contributes to the definition and structuration of land into territory. Through an experimental approach led upon port areas, the aim is to reveal this dynamic of territorial configuration in industrial ecology. Territory constitutes a complex matrix of representations and practices, uncovered in actors’ speeches. From the analysis of 21 industrial ecology port case studies at an international scale, 9 territorial patterns are defined in order to observe and interprete this dynamic. Implemented in Marseille-Fos port area, these patterns allow the production and the interpretation of actors’ speeches in order to identify the territorial construction modes and to build a common territorial configuration, at the interface of actors’ representations and practices. This experimentation highlights a territorial embeddedness phenomenon for industrial ecology. It reveales industrial ecology’s contribution to a “territoriality-territorialisation” dynamic, leading to territorial configuration. It thus proposes a socioecological definition of territory, identifying biotopes and niches occupied by different actors. The overlapping of these biotopes and niches questions the evolution of port governance for the implementation of industrial ecology.
|
112 |
Modèles linéaires d’optimisation pour la conception simultanée de réseaux de matière et de chaleur d'un écoparc industriel / Linear optimization models for the simultaneous design of mass and heat networks of an eco-industrial parkGhazouani, Sami 05 December 2016 (has links)
La conception des procédés industriels doit s'adapter à la raréfaction des ressources naturelles à bas prix et au durcissement des réglementations visant à limiter leur impact environnemental. Ainsi, pour améliorer leur rentabilité économique et leur soutenabilité, leurs effluents doivent être considérés comme des ressources potentielles de matière et d'énergie qui peuvent être valorisées localement ou à un plus grande échelle en les partageant avec d'autres industries voisines en formant un écoparc industriel.Cette thèse présente une nouvelle approche systémique et systématique pour concevoir des réseaux de valorisation d'énergie et de matière optimisés simultanément. Trois modèles linéaires de complexité croissante ont été développés pour concevoir ces réseaux à l'échelle locale. Le premier modèle (M1) détermine la consommation minimale nécessaire de ressources fraîches. Le second modèle (M2) introduit une nouvelle superstructure permettant l'optimisation simultanée des besoins énergétiques et matière pour atteindre le minimum de coûts de fonctionnement. Le troisième modèle (M3) conçoit les réseaux optimaux d'allocation de matière et d'échangeurs de chaleur simultanément. Sa fonction objective est le coût total annualisé incluant les coûts d'investissement et de fonctionnement.L'utilisation des unités de régénération est rendu possible dans la structure des trois modèles précédents. Tous les types d'unités peuvent être représentés par un modèle simple avec des paramètres génériques utilisant des objets déjà définis dans la formulation du modèle M3.Finalement, l'application du modèle M3 est étendue à la conception d'écoparcs industriels grâce à de nouvelles notions (sites, clusters, réseaux intermédiaires de matière et de chaleur), obtenant ainsi un nouveau modèle M4. Ce modèle inclut dans sa fonction objective les coûts d'investissements des réseaux liés à leur topologie.Des cas d'études issus de la littérature sont utilisés pour valider la pertinence et les performances des modèles présentés. / The design of industrial processes needs to be adapted as cheap natural resources are scarcer and environmental standards are more stringent to limit their environmental footprints. In order to improve their cost-effectiveness as well as their sustainability, industrial effluents must considered as potential heat and mass resources whether they are recycled locally or at a larger scale by sharing them with other industrial companies; thus forming an eco-industrial park (EIP).This thesis presents a new systemic and systematic approach to design optimal mass allocation and heat exchanger networks simultaneously. Three linear models of incremental complexity have been developed to design optimal recovery networks at a local scale. The first linear model (M1) looks for the necessary minimum fresh resource consumption. The second linear model (M2) presents a new superstructure that allows optimizing mass and heat requirements simultaneously, targeting the minimum annual operating costs. The third linear model (M3) allows designing optimal mass allocation and heat exchanger networks simultaneously. Its objective function is the total annualized cost considering operating and capital costs.The opportunity to use regeneration units is added to the structure of the three previous models. Any type of these units can be represented by a simple model with the generic parameters based on objects already existing in the previous models formulations.Finally, a M3 model applicability is extended to the design of collaborative eco-industrial parks with additional concepts (sites, clusters, indirect heat and mass networks) to obtain a new M4 model. In this model, the capital costs related to the topology of the networks are taken into account in the objective function.The relevance and performances of the proposed models are validated with several case studies taken from the literature.
|
113 |
A framework for domestic supply chain analysis of critical materials in the United States: an economic input-output-based approachMiriam Chrisandra Stevens (11272506) 13 August 2021 (has links)
The increasing demand for mineral-based resources that face supply risks calls for managing the supply chains for these resources at the regional level. Cobalt is a widely used cathode material in lithium-ion batteries, which form the major portion of batteries used for renewable energy storage - a necessary technology for electrifying mobility and overcoming the challenge of intermittency, thus making renewable energy more reliable and energy generation more sustainable. This necessitates understanding cobalt's supply risks and for the Untied States, identifying sources of cobalt available for future use via recycling or mining. These needs are addressed in this work using single and multiregional input-output (MRIO) analysis in combination with graph theory. An MRIO-based approach is developed to obtain the trade network of cobalt and offer a more expedient way to identify potential critical material sources embodied in commodities made domestically. Commodities containing cobalt were disaggregated from two input-output (IO) models and the trade structure of cobalt at the national and state level was observed and compared. The significance of identified key sectors is measured according to several criteria and differences in sectors highlighted in the national versus subnational networks suggests that analysis at the two regional aggregation levels provides alternative insights. Results from mining the IO networks for cobalt highlight the geographical distribution of its use and industries to further investigate as potential sources for secondary feedstock.
|
114 |
Sustainable design of oilseed-based biofuel supply chains : the case of Jatropha in Burkina Faso / Conception de filières durables de production de biocarburants oléagineux : le cas des filières Jatropha au Burkina FasoChapuis, Arnaud 28 March 2014 (has links)
Au Burkina Faso, les biocarburants suscitent de nombreux espoirs quant au développement de l'accès à l'énergie en zone rurale et à la substitution des carburants fossiles importés. Plusieurs initiatives de production de biocarburants à partir de Jatropha ont été lancées au cours des dernières années par des ONG et des opérateurs privés. Le gouvernement envisage de définir une politique d’accompagnement pour le développement de ce secteur. Les bénéfices potentiels issus de cette activité, en terme de contribution au développement durable, doivent donc être soigneusement étudiés afin de prendre les décisions adéquates. L’objectif de ce travail est d’évaluer les opportunités de développement des biocarburants, en définissant les possibilités techniques dans le contexte et en analysant à quelles conditions et dans quelle mesure elles peuvent contribuer au développement durable. L'approche repose sur la modélisation des procédés impliqués dans la production, couplée à des outils d'évaluation environnementale et économique. L'efficacité économique est évaluée par une analyse de la valeur ajoutée produite au sein des filières, ainsi que sa distribution sous forme de revenus, aux employés, aux agents de la filière, à l'état et aux banques. Les impacts environnementaux, notamment les émissions de GES et la consommation d'énergie fossile, sont évalués à l'aide d'une analyse de cycle de vie. Trois produits finaux différents ont été envisagés : l'huile végétale brute (HVB) ou raffinée, destinée à des applications stationnaires et le biodiesel dédié aux transports. Une analyse individuelle de chaque procédé a permis d'identifier les paramètres les plus sensibles au niveau local. Pour tous les procédés, le prix de la matière première conditionne largement le coût de production. Pour la production d’HVB, le rendement en huile et la teneur en huile des graines ont une importance capitale. Les performances économiques du raffinage et de la transestérification de l’huile sont largement influencées par la capacité de transformation des procédés en raison d’économies d'échelle, et dans une moindre mesure, par la technologie et les ressources utilisées pour la fourniture énergétique. Dans le cas de la production de biodiesel, le prix du méthanol est également un facteur crucial. La méthode d'évaluation développée a été appliquée à plusieurs scénarios de production de biocarburants à partir de graines de Jatropha produites par les petits exploitants. Les résultats montrent que la méthode permet d’apporter des informations essentielles pour la prise de décisions politiques. Sur la base d'un prix de marché des graines de 100 FCFA/kg, les trois types de biocarburants envisagés peuvent être produits de manière rentable. Dans certains cas, l’utilisation de technologies avancées pour l'approvisionnement en énergie et la valorisation des sous-produits est indispensable pour atteindre un coût de production compétitif. Cela pourrait aussi être une solution pour augmenter le prix des graines afin d’assurer des revenus plus élevés aux agriculteurs. La production d'huile raffinée pour la production d’électricité est particulièrement coûteuse et nécessite une production à grande échelle pour être rentable. Les filières impliquant une usine de biodiesel approvisionnées par plusieurs huileries décentralisées constituent une solution pour contribuer à la fois à l’amélioration de l'accès à l'énergie en zone rurale et à la substitution des combustibles fossiles. Les revenus perçus par l'Etat sont directement liés à la valeur ajoutée et aux bénéfices générés par les producteurs de biocarburants. Enfin, les impacts environnementaux de la production d’huile sont relativement faibles, en termes d'émissions de GES et de consommation d'énergie fossile, en particulier si la fourniture énergétique est basée sur une ressource renouvelable. En revanche, les impacts de la production de biodiesel sont largement affectés par l'utilisation de méthanol. / The development of biofuel production in Burkina Faso, raises high expectations regarding the development of rural energy access and the substitution of imported fossil fuels. Several initiatives for biofuel production from Jatropha oilseeds were launched in recent year by NGOs and private operators.The government is planning to define a policy framework to support the development of this sector. To this end, the potential benefits from this activity needs to be carefully investigated in regard to sustainable development objectives.The goal of this work was to investigate these opportunities by determining the technical possibilities regarding the context and in what conditions and to what extent they can contribute to sustainable development objectives. The approach was based on the modelling and simulation of production processes coupled with environmental and economic assessment tools. Specific experiments were also led whenever data were not available, as for the determination of the oil yield of a screw press. Economic efficiency was assessed using value chain analysis, which consists in calculating the value added generated by the different activities involved in a supply chain, and the distribution of this value in the form of income to the employees, the supply chain players, the state and the banking institutions. Environmental impacts, including greenhouse gas emissions and fossil energy consumption, are evaluated using a partial life-cycle assessment. The production of three different final products was investigated, i.e. straight vegetable oil (SVO), refined oil aimed to be used for stationary applications (power generation, shaft power, pumping…) and biodiesel dedicated to transportation. The analysis of individual processes allowed to identify the most sensitive parameters at a local level. As a general trend for all processes, the price of feedstock dramatically affects the production cost. For SVO production, the oil recovery and the seeds oil content are of paramount importance. The economic performances of the refining and transesterification processes are largely conditioned by the processing capacity, due to economies of scale, and to a lesser extent by the solution employed for energy supply. In the case of biodiesel production, the price of methanol is also a crucial factor. The developed assessment method was applied to several prospective biofuel supply chains, all relying on the production of Jatropha seeds by smallholders. The results have shown that the method can bring crucial information to policy makers. Based on a seed market price of 100 FCFA/kg, any type of biofuel can be produced in a cost effective way. In some cases, the implementation of advanced technologies for energy supply and by-product valorisation is needed to reach the required production cost. This could also be a solution to increase the price of seeds so as to provide higher incomes to farmers. The production of refined oil for power generation appears to be rather expensive relatively to the target, which imposes large processing scales. Supply chains involving a biodiesel plant supplied by several decentralised SVO plants constitute a solution for addressing at the same time rural energy access and the substitution of fossil fuels. Then the income perceived by the State is directly determined by the value and the profits generated by biofuel producers. Eventually, the environmental impacts related to seed processing, in terms of GHG emissions and fossil energy consumption, is relatively low especially when energy requirements are supplied from a renewable resource. By contrast, the impacts of biodiesel production are systematically impaired by the use of methanol of fossil origin in the process.
|
115 |
Industrial Ecology Approaches to Improve Metal Management : Three Modeling ExperimentsSinha, Rajib January 2014 (has links)
A linear model of consumption − produce-use-dispose − has constantly increased the pressure on the environment in recent decades. There has been a great belief that technology will solve the problem, but in many cases it is only partly contributing to the solution. For a full solution, the root causes of problems need to be identified. The drivers-pressures-state-impact-response (DPSIR) framework allows the drivers of a specific problem to be identified by structuring the causal relations between humans and the environment. A state/ impact-based approach can help identify pressures and drivers, and make what can be considered an end-of-pipe response. Rather than that mainstream approach, this thesis adopts a pressure-based driver-oriented approach, which could be considered a proactive approach to environmental resource management. In physical resource management, material flow analysis (MFA) is one of the tools used for communication and decision support for policy response on resource productivity and pollution abatement. Here, element flow analysis (EFA), a disaggre- gation of MFA for better mass balance, was applied in pollution control and resource management. The pressure-based driver-oriented approach was used to model element flows and thus identify the drivers of problems in order to improve pollution control and resource management in complex systems. In one case study, a source-storage-transport model was developed and applied in five lakes in the Stockholm region to identify the drivers of copper pollution by monitoring the state of the environment through element flow modeling linking diffuse sources and fate in the lakes. In a second case study, a system dynamics modeling approach was applied in dynamic element flow modeling of the global mobile phone product system to investigate the drivers for closing the material flow loop through a sensitivity analysis. In a third case study, causal loop diagram modeling was used for proactive resource management to identify root causes of a problem in a complex system (product systems of physical consumer goods) by qualitatively analyzing unintended environmental consequences of an improvement action. In the case study on lakes in the Stockholm region, the source-transport-storage model proved capable of predicting copper sources through monitoring the sediment copper content in the heavily copper-polluted lakes. The results also indicated how the model could help guide policy makers in controlling copper pollution. The system dynamics study proposed an eco-cycle model of the global mobile phone product system by tuning the drivers, which could lessen the pressures on resources by decreasing the resource demands for production and increasing resource recovery at product end-of- life. The causal loop diagram study showed that a broader systems approach is required to understand and identify the drivers for proactive resource management in a complex system, where improvement actions can lead to unintended consequences. / <p>QC 20150420</p>
|
116 |
Opportunities for Industrial Symbiosis BetweenCHP and Waste Treatment Facilities : (Case Study of Fortum and Ragn Sells, Brista)Arushanyan, Yevgeniya January 2011 (has links)
Pursuing the possibilities of increasing efficiency, saving costs and improving environmental performance more and more companies today are looking into the possibilities of industrial synergies between companies andprocesses. This study is considering the possibilities of industrial symbiosis between combined heat and power plant (Fortum) and a waste sorting facility (Ragn Sells). The paper shows possible scenarios of utilization heat fromCHP for the various processes within the waste treatment facility. The work includes the overview of previous research done in this area as well as theoretical analysisand estimation of the probable economic and environmental effects from the application of industrial symbiosis. The study covers several possibilities for the industrial symbiosis between CHP and waste treatment facility in form of heat application for the waste streams upgrading.The study proposes the heat application for the following processes: composting speed-up, anaerobic digestion, sludge drying, waste oil treatment and concrete upgrading. In the result of the work the conclusions are made concerning the possibility and feasibility of application of the proposed scenarios and their environmentaland economic effects. / Division Industrial Ecologywww.kth.se/itm/indecowww.ima.kth.se
|
117 |
HOUSEHOLD MANAGEMENT OF CONSUMER ELECTRONICS IN THE UNITED STATESMatthew Joseph Bih Gozun (13119435) 19 July 2022 (has links)
<p> </p>
<p>Electronic waste is one of the fastest growing waste streams, spurred by their rising market and demand. However, these devices contain an array of metals that is recyclable for economic and environmental benefit through secondary manufacturing. As the turnaround rate for newer models quickens, consumers are motivated to purchase novel devices, leaving their current ones behind. Focusing on how United States (U.S.) households manage their electronics, a top-down approach stock and flow STELLA model was created to model the lifecycle of eight common electronics. Input data for the model came from a public online survey directed to U.S. household owning adults. From the model, a metallic stock and flow analysis was conducted to quantify the trends, environmental footprint, and economic value of stored devices in U.S. households and how it compares to devices being used, disposed, and recycled. The number of stored devices in the U.S. was found to be increasing annually with a stored amount of over 757 million stored individual electronic devices, nearly half of which originate from cell phones, carrying an economic value of 32.6 billion US dollars (USD) and carbon emissions of 7.6 billion kilograms (kg) from their metallic components alone for the year 2020. Most of the pollution and economic value stems from precious metals (PMs) and in a circular economy, these stored metals can have a significant impact to the environment and economy through recycled. Also, with advancing capabilities of smartphones, the metallic composition for device components of Samsung galaxy smartphones was quantified to assess their evolving metallic content. With the growing market of electronic devices, knowing the value and importance of devices currently in U.S. households is critical. This underlies the influence of sustainable design through a circular economy to push initiatives to manufacture recyclable friendly devices, expand the metal recycling industry, and motivate citizens to properly handle their stored devices. </p>
|
118 |
Characterizing quantity and physical dimensions of consumer electronic devices: A pilot study of Indiana householdsJuliette Fernada Bermudez Camelo (12797204) 01 August 2023 (has links)
<p>To accurately estimate the potential recovery of metals from electronic devices, various tools such as mass flow analysis, dynamic models, and forecasting models have been employed. However, the reliability of the model-generated outputs hinges on the accuracy of the input data. To ensure accurate data collection, it is imperative to examine and compare different methodologies. Although surveys have conventionally been used in information and telecommunications technologies to gather consumer information, their validity is seldom contrasted with alternative methods due to the lack thereof. In response, a new mixed methodology has been developed to obtain primary consumer data through tangible information, offering new avenues for data acquisition. The methodology involves quantitative and qualitative approaches taking direct physical measurements (dimensions, weight, and quantity) of devices and including a ten question semi-structured interview to discussed consumer devices use, stock and transfer patterns, composition changes of the electronic devices, and disposal behavior. As a result, it was found new methodology measured 79% of the devices directly at laboratories and 21% of the remaining devices were self-reported by the participant. The devices on consumer stage frequently have the same type and number of components as fabric and a positive difference of about 17.99 g compared with the mass reported by fabricants or literature. The sequential steps undertaken by participants in the new methodology to acquire consumer-stage data offer distinct advantages over surveys, particularly in capturing a more comprehensive inventory of devices in storage.</p><p>Additional results indicate that the proposed methodology can provide valuable insights into the stock of electronic devices. Nevertheless, further research is required to understand the implications of surveys versus direct measurements in accurately representing mass flows during the user stage. Additionally, the relevance of external power supply or charging systems on storage will be explored as part of the supplementary findings. By improving the accuracy of metal recovery estimation and exploring more effective data collection methods, we can optimize closed-loop projects and contribute to sustainable resource management.</p>
|
119 |
Reduced Greenhouse Gas Emissions from Transport Infrastructure Construction : Reaching the Swedish Transport Administration's climate reduction targets with greenhouse gas reduction measures in the production phase of the most recurring materialsSallerström, Pontus, Falakeh, Sam January 2023 (has links)
I Sverige står byggsektorn för 25% av landets totala utsläpp av växthusgaser, där material står för mer än hälften av dessa utsläpp [1][2][3]. De största bidragsgivarna är stål och betong, men även material som aluminium och asfalt har en betydande miljöpåverkan. Sverige har satt upp ambitiösa mål för att minska CO2-utsläppen inom transportsektorn med 70% till 2030 och att uppnå nettonollutsläpp av växthusgaser till 2045 [4]. Trafikverket är en statlig myndighet med ansvar för transportinfrastruktur, som spelar en avgörande roll för att uppnå dessa mål [5]. Trafikverket står ensamt för 1,4 miljoner ton koldioxidekvivalenter (CO2e) per år, vilket är cirka 30% av de totala växthusgasutsläppen från transportsektorn i Sverige [6]. För att gradvis minska klimatpåverkan från sin verksamhet har Trafikverket satt upp etappmål baserade på de totala utsläppen av växthusgaser från år 2015 [7]. De syftar till att ställa om till 100% fossilfria bränslen till 2030 och uppnå netto-nollutsläpp till 2040. Utöver dessa åtgärder har Trafikverket utvecklat ett särskilt verktyg som kallas Klimatkalkyl, som bygger på principerna för livscykelanalys (LCA) [8]. Detta verktyg är särskilt utformat för att bedöma klimatpåverkan från transportinfrastrukturprojekt. Informationen bygger på energianvändnings- och utsläppsdata från 13 projekt från Trafikverket, i kombination med litteratur och intervjuer med personer inom områden som är relevanta för projektet. De 13 projekten delades in i tre projekttyper, väg, järnväg och bro, för att kunna göra jämförelser mellan olika kategorier och dra slutsatser baserat på analysen. Dessa slutsatser baserades på att identifiera skillnader i återkommande material och aktiviteter och deras klimatpåverkan. När de återkommande materialen hade identifierats undersöktes materialens och aktiviteternas livscykelfas för att fastställa de mest betydande växthusgasutsläppen och den största potentialen för minskning. Resultaten av denna undersökning visade att de största utsläppen och minskningspotentialen för de återkommande materialen fanns i produktionsfasen, medan bränsleförbränningen fanns i användningsfasen med tonvikt på substitution av fossila material. Litteratur och information från intervjuer kombinerades och analyserades för att identifiera potentiella åtgärder för att minska växthusgasutsläppen. De identifierade och bekräftade minskningsåtgärderna implementerades i reduktionsscenarier för vart och ett av Trafikverkets mellanliggande minskningsmål för projekten i klimatkalkyl. Slutsatsen som kunde dras från dessa scenarier var att de nuvarande möjliga reduceringsåtgärderna ger inkonsekventa resultat av de reduceringar som krävs för att uppfylla framtida mål inom transportinfrastrukturbyggande för dessa typer av projekt. Vägprojekten visade stor potential där alla mål utom ett uppnåddes, men järnvägs- och broprojekten nådde inte de flesta av målen för minskning av växthusgasutsläppen. Resultaten tyder därför på att det finns ett behov av ytterligare åtgärder, insatser och innovationer för att nå netto-nollutsläpp till 2040 för transportinfrastruktur. / In Sweden, the construction sector accounts for 25% of the country’s total greenhouse gas (GHG) emissions, with materials accounting for more than half of these emissions [1][2][3]. The main contributors are steel and concrete, but materials such as aluminium and asphalt also have a significant environmental impact. Sweden has set ambitious targets to reduce CO2 emissions in the transport sector by 70% by 2030 and to achieve net-zero GHG emissions by 2045 [4]. The SwedishTransport Administration (STA) is a government agency responsible for transport infrastructure, which plays a crucial role in achieving these goals [5]. The STA alone is responsible for 1.4 million tonnes of carbon dioxide equivalent (CO2e) emissions per year, which is about 30% of the total GHG emissions from the transport sector in Sweden [6]. To gradually reduce the climate impact of its operations, STA has set milestone targets based on total GHG emissions in 2015 [7]. They aim to switch to 100% fossil-free fuels by 2030 and achieve net-zero emissions by 2040. In addition to these measures, STA has developed a special tool called the Climate Calculation Program (CCP), which is based on the principles of Life-Cycle Assessment (LCA) [8]. This tool is specifically designed to assess the climate impact of transport infrastructure projects. The information was based on energy use and emission data from 13 projects managed by the STA, combined with literature and interviews with people in areas relevant to this project. The 13 projects were divided into three project types, road, railway and bridge, in order to make comparisons between different categories and draw conclusions based on the analysis. These conclusions were based on identifying differences in recurring materials and activities and their climate impacts. Once the recurring materials were identified, the life-cycle phase of the materials and activities was examined to determine the most significant GHG emissions and the highest potential for reduction. The results of this investigation showed that the highest emissions and reduction potential for the recurring materials were in the production phase, while fuel combustion was in the use phase with emphasis on substitution of fossil-materials. Literature and information from interviews were combined and analysed to identify potential GHG reduction measures. The identified and confirmed reduction measures were implemented in reduction scenarios for each of the STA’s intermediate reduction targets for the CCP projects. The conclusion that could be drawn from these scenarios was that the current possible reduction measures provide inconsistent results of the reductions necessary to meet future targets in transport infrastructure construction for these types of projects. Road projects showed great potential where all targets but one were achieved, however the railway and bridge projects did not reach most of the GHG emissions reduction targets. The results therefore suggests that there is a need of additional measures, actions and innovations to reach net-zero emissions by 2040 for transport infrastructure.
|
120 |
Thesis_Perspective and Dynamic life cycle assessment of critical materials_Tai-Yuan.pdfTai-Yuan Huang (13918935) 01 December 2022 (has links)
<p>Critical materials are crucial to the wide deployment of clean energy technologies and advanced technology such as electric vehicles (EVs), smartphones, high-efficiency lighting, and wind turbines. Particularly, rare earth elements (REEs) and lithium are key elements for clean energy and EVs. However, higher REEs and lithium demand for clean energy transformation, extreme supply reliance on certain area exports, and severe environmental issues during mining and processing cause uncertainty for future clean energy and transportation development. Our study aims to develop dynamic LCA with scenario analysis to simulate the future possible sustainability pathways for critical materials for stakeholders and apply life cycle assessment (LCA) to evaluate the latest REEs and lithium extraction and recycling technologies. Dynamic LCA (DLCA) integrates the temporal datasets to predict the future environmental impact of a product. The databases are mainly from Ecoinvent and Critical Materials Life Cycle Assessment Tool (CMLCAT). Python package Brightway2 and Temporalis are used to simulate the DLCA.</p>
<p>The study of DLCA on the REEs industry reveals the future predictive REEs environmental impact trend, providing a clear policy strategy to reach sustainability goals for stakeholders. The results show that shifting REEs resources from China to Australia and increasing the recycling rate are key factors in reducing environmental impact in the future. Considering the degradation of rare earths ore and storage depletion in China, such as the decreased production of heavy REEs from Ion adsorption clay in southern China, exploration, and inclusion of potential REEs production projects will be the possible sustainable way in the following decade. </p>
<p>LCA of RE recovery from room temperature ionic liquid (RTIL) electrochemical process helps us explore the benefits of recycling RE from the e-waste. Although RTIL contributes a higher impact on ozone depletion and global warming, close-loop recycling RTIL could reduce substantial environmental impact. Lithium recovery from geothermal brine provides the great source for fulfilling the domestic demand of the U.S. Compared to the conventional Li compounds production, this method is efficient and has 25-41% lower global warming potential. The government, researchers, and industry could benefit from this study for exploring advantage and drawback strategies for the future environmental footprint of NdFeB magnet production and identifying environmental hotspots of the latest recycling and extraction process of REEs and lithium.</p>
|
Page generated in 0.0701 seconds