• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Indicadores de alfabetização científica, argumentos e explicações - Análise de relatórios no contexto de uma sequência de ensino investigativo / Indicators of Scientific Literacy, Arguments and Explanations - Analysis of Reports in the Context of an Inquiry-based science teaching.

Corso, Thiago Marinho Del 12 December 2014 (has links)
Deveria ser esperado que a população fosse ciente de como a ciência, e principalmente, seus conhecimentos e aplicações, chegam até ela e, para isso, tivesse esclarecimento e discernimento suficientes para perceber, entender e julgar as novidades científico-tecnológicas a que tem acesso no que poderíamos chamar de Alfabetização Científica (AC). Sasseron (2008) define a AC como um processo de inserção dos indivíduos dentro da cultura científica. Sasseron e Carvalho (2008), a partir de eixos estruturantes da AC, propõem indicadores que servem como parâmetros que permitam identificar que a AC está em processo. Osborne e Patterson publicam, em 2011, um polêmico trabalho com o intuito de distinguir Argumentos de Explicações, alegando que a falta de distinção entre estes dois conceitos representa uma fraqueza no campo de pesquisa em ensino de Ciências. Tomando a AC como norte para o ensino de ciência, Argumentos e Explicações se valorizam, já que pertencem às práticas da ciência e podem ser um meio de atingir metas cognitivas, epistêmicas e sociais da aprendizagem em Ciências. Os objetivos deste trabalho: a) a partir de apoios da literatura, desenvolver recursos metodológicos para caracterizar e diferenciar argumentos e explicações; b) identificar e analisar argumentos e explicações presentes nas produções escritas de alunos; c) identificar e analisar indicadores de AC presentes nas produções escritas dos alunos. Nossa análise se deu sobre uma das atividades realizadas dentro do contexto de uma sequência de ensino investigativo (SEI), a qual aborda a temática \"Dinâmica Populacional\", aplicada em duas turmas do 1° ano do Ensino Médio da Escola de Aplicação da Faculdade de Educação da Universidade de São Paulo (EAFEUSP) em 2012 e 2013. Os alunos realizaram um experimento sobre a capacidade suporte de um ambiente para a população de Lemna sp (uma planta aquática de pequeno porte que apresenta alta taxa de reprodução por brotamento). Após a realização desse experimento, os alunos produziram relatórios coletivamente com conclusões individuais. Analisamos cada trecho (o qual poderia se constituir de um parágrafo, tabela, gráfico ou figura) de um conjunto de 29 relatórios em busca dos indicadores da AC e de Explicações e Argumentos. Foram encontrados 571 indicadores de AC nos relatórios e 367 nas conclusões individuais, e isso nos permite considerar que a AC está em processo. Também podemos considerar que os alunos envolveram-se com as investigações e as discussões propostas. A proposição de uma metodologia de desambiguação é tanto metodologia como resultado, e a aplicação desta nos permitiu identificar 35 Explicações e 22 Argumentos nos relatórios e respectivamente 21 e 40 nas 52 conclusões individuais que foram produzidas apenas no ano de 2013. No tocante aos objetivos desta pesquisa, acreditamos tê-los respondido na medida em que desenvolvemos uma metodologia que nos permitiu distinguir Argumentos e Explicações em produções escritas de alunos e identificamos os indicadores de Alfabetização Científica presentes nessas produções. Essa última tarefa culminou na proposição de dois novos indicadores em acréscimo aos que usamos como referência (SASSERON 2008; SASSERON e CARVALHO 2008): um deles é o próprio Argumento, e outro, a Listagem de materiais. / Should be expected that the population is aware of how science, especially their knowledge and reach, comes to her and, therefore, had sufficient enlightenment and discernment to perceive, understand and judge the scientific and technological innovations that give access to what may be called the Scientific Literacy (SL). Sasseron (2008) defines the SL as a process of integration of individuals within the scientific culture. Sasseron and Carvalho (2008) from the structural axis of SL propose indicators that serve as parameters that identify that the SL is in process. Osborne and Patterson published a controversial study in 2011 in order to distinguish Arguments from Explanations, claiming that the lack of distinction between these concepts is a weakness in the field of research in science teaching. Taking the SL as north to the teaching of science, Arguments and Explanations are valued, since they belong to the practices of science and can be a way to achieve cognitive, epistemic and social goals of learning in science. The aims of this work: a) supported from the literature, develop methodological tools to characterize and differentiate Arguments and Explanations; b) identify and analyze Arguments and Explanations present in the written production of students; c) identify and analyze indicators of SL present in the students\' written productions. Our analysis was based on one of the activities carried out within the context of a sequence of investigative teaching (SEI), which deals with the \"Population Dynamics\" theme, applied to two classes of the 1st year of high school at the Escola de Aplicação from the Faculdade de Educação from University of São Paulo (EAFEUSP) in 2012 e 2013. Students conducted an experiment on the carrying capacity of an environment for the population of Lemna sp (an aquatic plant that features small high rate of reproduction by budding). After performing this experiment, students collectively produced reports with individual conclusions. We analyzed each passage (which could be a paragraph, table, graph or diagram) of a set of 29 reports in search of indicators of the AC, the explanations and arguments. We found 571 indicators of SL in the reports and the 367 in the individual conclusions, and this allows us to consider that the SL is in progress. We can also consider that the students were involved with the investigation and the proposed discussions. The proposition of a methodology for the disambiguation is both method and result. Applying this methodology allowed us to identify 35 Explanations and 22 Arguments in the reports. We found respectively 21 and 40 in 52 individual conclusions that were produced in 2013 only. Concerning the aims of this study, we believe having them answered, as we developed a methodology that allowed us to distinguish Arguments and Explanations in written production of students, and identify indicators of Scientific Literacy on those productions. This last task culminated in the proposal of two new indicators in addition to those we used as reference (SASSERON 2008; SASSERON e CARVALHO 2008): one is the Argument itself, and another, the Listing of Materials.
2

Transitioning Science Teachers to an Inquiry-Based Approach to Develop Critical Reasoning Skills in High School Students

January 2018 (has links)
abstract: To develop critical reasoning skills potentially advances students' ability to critically consume information, make informed decisions, and actively participate in a democracy. An inquiry-based pedagogical approach to science teaching remains an effective means to develop critical reasoning skills. Participating in scientific inquiry requires students to generate arguments and test alternative hypotheses using experimental evidence. Scientific inquiry demands that students use their critical reasoning skills. Unfortunately, many teachers fail to allocate an adequate amount of time for genuine experimentation in science classes. As a result, science classes often leave students unprepared to think critically and apply their knowledge in a practical manner. The focus of this study was to investigate the extent to which an inquiry-based professional development experience, including a two-day summer workshop and 18 weeks of follow up Professional Learning Community (PLC) support, affected the attitudes and pedagogical skills regarding scientific inquiry among six high school biology teachers. A concurrent mixed methods, action research design was used to measure changes in teachers' attitudes, perceptions, and skills regarding inquiry-based pedagogy was measured throughout the 22 weeks of the study. A survey instrument, card sorting activity, classroom observations using the Reformed Teacher Observation Protocol (RTOP), individual interviews, and PLC observations were used to gather data. Results indicated the professional development was effective in transforming the participating teachers' attitudes, perceptions, and skills regarding inquiry-based pedagogy. / Dissertation/Thesis / Doctoral Dissertation Leadership and Innovation 2018
3

Indicadores de alfabetização científica, argumentos e explicações - Análise de relatórios no contexto de uma sequência de ensino investigativo / Indicators of Scientific Literacy, Arguments and Explanations - Analysis of Reports in the Context of an Inquiry-based science teaching.

Thiago Marinho Del Corso 12 December 2014 (has links)
Deveria ser esperado que a população fosse ciente de como a ciência, e principalmente, seus conhecimentos e aplicações, chegam até ela e, para isso, tivesse esclarecimento e discernimento suficientes para perceber, entender e julgar as novidades científico-tecnológicas a que tem acesso no que poderíamos chamar de Alfabetização Científica (AC). Sasseron (2008) define a AC como um processo de inserção dos indivíduos dentro da cultura científica. Sasseron e Carvalho (2008), a partir de eixos estruturantes da AC, propõem indicadores que servem como parâmetros que permitam identificar que a AC está em processo. Osborne e Patterson publicam, em 2011, um polêmico trabalho com o intuito de distinguir Argumentos de Explicações, alegando que a falta de distinção entre estes dois conceitos representa uma fraqueza no campo de pesquisa em ensino de Ciências. Tomando a AC como norte para o ensino de ciência, Argumentos e Explicações se valorizam, já que pertencem às práticas da ciência e podem ser um meio de atingir metas cognitivas, epistêmicas e sociais da aprendizagem em Ciências. Os objetivos deste trabalho: a) a partir de apoios da literatura, desenvolver recursos metodológicos para caracterizar e diferenciar argumentos e explicações; b) identificar e analisar argumentos e explicações presentes nas produções escritas de alunos; c) identificar e analisar indicadores de AC presentes nas produções escritas dos alunos. Nossa análise se deu sobre uma das atividades realizadas dentro do contexto de uma sequência de ensino investigativo (SEI), a qual aborda a temática \"Dinâmica Populacional\", aplicada em duas turmas do 1° ano do Ensino Médio da Escola de Aplicação da Faculdade de Educação da Universidade de São Paulo (EAFEUSP) em 2012 e 2013. Os alunos realizaram um experimento sobre a capacidade suporte de um ambiente para a população de Lemna sp (uma planta aquática de pequeno porte que apresenta alta taxa de reprodução por brotamento). Após a realização desse experimento, os alunos produziram relatórios coletivamente com conclusões individuais. Analisamos cada trecho (o qual poderia se constituir de um parágrafo, tabela, gráfico ou figura) de um conjunto de 29 relatórios em busca dos indicadores da AC e de Explicações e Argumentos. Foram encontrados 571 indicadores de AC nos relatórios e 367 nas conclusões individuais, e isso nos permite considerar que a AC está em processo. Também podemos considerar que os alunos envolveram-se com as investigações e as discussões propostas. A proposição de uma metodologia de desambiguação é tanto metodologia como resultado, e a aplicação desta nos permitiu identificar 35 Explicações e 22 Argumentos nos relatórios e respectivamente 21 e 40 nas 52 conclusões individuais que foram produzidas apenas no ano de 2013. No tocante aos objetivos desta pesquisa, acreditamos tê-los respondido na medida em que desenvolvemos uma metodologia que nos permitiu distinguir Argumentos e Explicações em produções escritas de alunos e identificamos os indicadores de Alfabetização Científica presentes nessas produções. Essa última tarefa culminou na proposição de dois novos indicadores em acréscimo aos que usamos como referência (SASSERON 2008; SASSERON e CARVALHO 2008): um deles é o próprio Argumento, e outro, a Listagem de materiais. / Should be expected that the population is aware of how science, especially their knowledge and reach, comes to her and, therefore, had sufficient enlightenment and discernment to perceive, understand and judge the scientific and technological innovations that give access to what may be called the Scientific Literacy (SL). Sasseron (2008) defines the SL as a process of integration of individuals within the scientific culture. Sasseron and Carvalho (2008) from the structural axis of SL propose indicators that serve as parameters that identify that the SL is in process. Osborne and Patterson published a controversial study in 2011 in order to distinguish Arguments from Explanations, claiming that the lack of distinction between these concepts is a weakness in the field of research in science teaching. Taking the SL as north to the teaching of science, Arguments and Explanations are valued, since they belong to the practices of science and can be a way to achieve cognitive, epistemic and social goals of learning in science. The aims of this work: a) supported from the literature, develop methodological tools to characterize and differentiate Arguments and Explanations; b) identify and analyze Arguments and Explanations present in the written production of students; c) identify and analyze indicators of SL present in the students\' written productions. Our analysis was based on one of the activities carried out within the context of a sequence of investigative teaching (SEI), which deals with the \"Population Dynamics\" theme, applied to two classes of the 1st year of high school at the Escola de Aplicação from the Faculdade de Educação from University of São Paulo (EAFEUSP) in 2012 e 2013. Students conducted an experiment on the carrying capacity of an environment for the population of Lemna sp (an aquatic plant that features small high rate of reproduction by budding). After performing this experiment, students collectively produced reports with individual conclusions. We analyzed each passage (which could be a paragraph, table, graph or diagram) of a set of 29 reports in search of indicators of the AC, the explanations and arguments. We found 571 indicators of SL in the reports and the 367 in the individual conclusions, and this allows us to consider that the SL is in progress. We can also consider that the students were involved with the investigation and the proposed discussions. The proposition of a methodology for the disambiguation is both method and result. Applying this methodology allowed us to identify 35 Explanations and 22 Arguments in the reports. We found respectively 21 and 40 in 52 individual conclusions that were produced in 2013 only. Concerning the aims of this study, we believe having them answered, as we developed a methodology that allowed us to distinguish Arguments and Explanations in written production of students, and identify indicators of Scientific Literacy on those productions. This last task culminated in the proposal of two new indicators in addition to those we used as reference (SASSERON 2008; SASSERON e CARVALHO 2008): one is the Argument itself, and another, the Listing of Materials.
4

Influência dos propósitos epistêmicos e das ações típicas do professor na promoção da argumentação em aula investigativa de ciências / The influence of epistemic purposes and typical actions of the teacher to promote argumentation in inquiry science class.

Oliveira, Thiago Luis Silva de 25 November 2016 (has links)
A mediação do professor é fundamental para a construção de argumentos em aulas de Ciências. Nesse sentido torna-se importante estudar as interações discursivas entre professor e alunos. O presente trabalho teve por objetivo analisar como os propósitos e as ações do professor estimulam a argumentação dos alunos em uma aula investigativa de ciências. Para caracterizar a mediação do professor foi utilizada a ferramenta analítica \"propósitos epistêmicos e ações típicas para promoção da argumentação\" de Ferraz e Sasseron (2014) e de Ferraz (2015), enquanto que o layout de Toulmin (TAP) (2006) foi utilizado para identificar os elementos do argumento construídos pelos alunos. Foram identificados dois argumentos contendo os elementos básicos do TAP construídos coletivamente ao longo da aula. Durante a construção dos argumentos, o professor utilizou os propósitos retomar, problematizar, explorar e qualificar. As ações \"retoma dado\" e \"explora ponto de vista\" contribuíram para a construção do elemento dado. A construção da garantia deveu-se as ações \"retoma conceito\", \"retoma informações\", \"explora ponto de vista\" e \"qualifica variáveis, objetos ou fenômenos\". A construção do elemento conclusão foi promovida pela ação \"propõe um problema\". As ações \"qualifica variáveis, objetos ou fenômenos\", \"qualifica explicações ou pontos de vista\", \"retoma informações\" e \"explora ponto de vista\" auxiliaram na construção do elemento refutação do TAP. A maior frequência dos propósitos explorar e qualificar deveu-se ao esforço do professor em promover a avaliação de dados e garantias que os alunos estavam utilizando para a construção de suas conclusões sobre a presença ou não de seres vivos na amostra analisada. / The mediation of the teacher is fundamental for the construction of arguments in science class. Like this it is important to study the discursive interactions between teacher and students. This study aimed to analyze how the teacher\'s purposes and actions stimulate the reasoning of students in an inquiry science class. The analytical tool \"epistemic purpose and typical actions to promote the argumentation\" (FERRAZ; SASSERON, 2014; FERRAZ, 2015) was used to characterize the mediation of the teacher while the Toulmin Argument Pattern (TAP) (2006) was used to identify argument elements built by students. Two arguments containing the basic elements of TAP collectively built along class were identified. During the construction of the arguments, the teacher used the purpose resume, problematize, explore and qualify. The actions \"given recovery\" and \"explores view\" contributed to the construction of the data element. The construction of the warrants was due to the actions \"recovery concept\", \"recovery information\", \"explores points of view\" and \"qualifies variables, objects or phenomena\". The construction element conclusion was promoted by the action \"proposes the problem\". The actions \"qualifies variables, objects or phenomena\", \"qualifies explanations or points of view\", \"recovery information\" and \"explores perspective\" helped in the construction of refutation element of TAP. The highest frequency of the purposes explore and qualify was due to the teacher\'s effort to promote the evaluation of data and warrants that students were using to build its conclusions on the presence or absence of living organisms in the sample.
5

Influência dos propósitos epistêmicos e das ações típicas do professor na promoção da argumentação em aula investigativa de ciências / The influence of epistemic purposes and typical actions of the teacher to promote argumentation in inquiry science class.

Thiago Luis Silva de Oliveira 25 November 2016 (has links)
A mediação do professor é fundamental para a construção de argumentos em aulas de Ciências. Nesse sentido torna-se importante estudar as interações discursivas entre professor e alunos. O presente trabalho teve por objetivo analisar como os propósitos e as ações do professor estimulam a argumentação dos alunos em uma aula investigativa de ciências. Para caracterizar a mediação do professor foi utilizada a ferramenta analítica \"propósitos epistêmicos e ações típicas para promoção da argumentação\" de Ferraz e Sasseron (2014) e de Ferraz (2015), enquanto que o layout de Toulmin (TAP) (2006) foi utilizado para identificar os elementos do argumento construídos pelos alunos. Foram identificados dois argumentos contendo os elementos básicos do TAP construídos coletivamente ao longo da aula. Durante a construção dos argumentos, o professor utilizou os propósitos retomar, problematizar, explorar e qualificar. As ações \"retoma dado\" e \"explora ponto de vista\" contribuíram para a construção do elemento dado. A construção da garantia deveu-se as ações \"retoma conceito\", \"retoma informações\", \"explora ponto de vista\" e \"qualifica variáveis, objetos ou fenômenos\". A construção do elemento conclusão foi promovida pela ação \"propõe um problema\". As ações \"qualifica variáveis, objetos ou fenômenos\", \"qualifica explicações ou pontos de vista\", \"retoma informações\" e \"explora ponto de vista\" auxiliaram na construção do elemento refutação do TAP. A maior frequência dos propósitos explorar e qualificar deveu-se ao esforço do professor em promover a avaliação de dados e garantias que os alunos estavam utilizando para a construção de suas conclusões sobre a presença ou não de seres vivos na amostra analisada. / The mediation of the teacher is fundamental for the construction of arguments in science class. Like this it is important to study the discursive interactions between teacher and students. This study aimed to analyze how the teacher\'s purposes and actions stimulate the reasoning of students in an inquiry science class. The analytical tool \"epistemic purpose and typical actions to promote the argumentation\" (FERRAZ; SASSERON, 2014; FERRAZ, 2015) was used to characterize the mediation of the teacher while the Toulmin Argument Pattern (TAP) (2006) was used to identify argument elements built by students. Two arguments containing the basic elements of TAP collectively built along class were identified. During the construction of the arguments, the teacher used the purpose resume, problematize, explore and qualify. The actions \"given recovery\" and \"explores view\" contributed to the construction of the data element. The construction of the warrants was due to the actions \"recovery concept\", \"recovery information\", \"explores points of view\" and \"qualifies variables, objects or phenomena\". The construction element conclusion was promoted by the action \"proposes the problem\". The actions \"qualifies variables, objects or phenomena\", \"qualifies explanations or points of view\", \"recovery information\" and \"explores perspective\" helped in the construction of refutation element of TAP. The highest frequency of the purposes explore and qualify was due to the teacher\'s effort to promote the evaluation of data and warrants that students were using to build its conclusions on the presence or absence of living organisms in the sample.
6

När läroplan och tradition möts : Om lärarfortbildning och undersökande aktiviteters syfte inom den laborativa NO-undervisningen i grundskolans senare del

Lunde, Torodd January 2014 (has links)
The Swedish curricula for compulsory school science emphasize laboratory inquiry-based science teaching (IBST) to develop pupils’ critical thinking. In contrast, several studies indicate that teachers within the Swedish teaching tradition almost solely emphasize laboratory work as a way to gain students understanding of traditional science content. In this thesis the aim is to investigate how this gap emerged in lower secondary science teaching and to investigate possible ways to bridge this gap between curricula and tradition. Two studies were carried out. In the first study, the aim was to explore how science teachers met the curricula’s expectations of involving pupils in IBST. The result is based on twelve teachers reflecting in groups about their own inquiry activities. Two strategies were identified. Hybridization (existing laboratory activities were transformed) and imitation (investigative inquiry as carried out on national tests was imitated). The way scientific practices are represented in such activities is probably limiting pupils’ potential for critical thinking in everyday life. In the second study, possibilities to bridge gaps between the laboratory tradition and IBST in curricula were explored within a teacher professional development program. Tensions between key ideas of laboratory work in Swedish teaching tradition and IBST, as discussed in international literature, were made explicit. It was then used as a point of departure to negotiate upon the purposes of involving students in laboratory work. The result was based on ten teachers divided in three groups. Eventually, two out of the three groups did explicit articulated awareness of different purposes linked to different types of laboratory activities. The third group showed limited awareness although they developed similar activities as the two other groups. This indicates that teaching tradition is an important variable when implementing new ideas and worthy taking into account and challenge. / Baksidestext Grundskolans läroplan för naturämnena betonar laborativt undersökande arbete i syftet att utveckla elevers kritiska tänkande medan undervisningstraditionen betonar laborationer i syftet att ge ökad förståelse för ämnesinnehåll. Syftet med denna avhandling var att undersöka hur detta glapp gestaltar sig i senare delen av grundskolan och hur detta glapp kan överbryggas. I delstudie ett utforskades lärares sätt att tillmötesgå förväntningar om undersökande arbete. Två strategier identifierades: hybridisering (befintliga laborationer omformades) och imitering (nationella prov härmades). Det finns risk för att dessa aktiviteter framställer naturvetenskapliga praktiker på ett sätt som ger begränsade förutsättningar för kritiskt tänkande i vardagsliv. I delstudie två utforskades möjligheten av att använda spänningar mellan läroplan och laborationstradition som utgångspunkt för att överbrygga glapp mellan läroplan och tradition. Spänningar synliggjordes och var utgångspunkt för förhandling om syften med laborationer. Resultatet visade att två utav totalt tre grupper i slutändan explicit skiljde på olika syften med olika laborativa aktiviteter. Detta indikerar att laborationstraditionen är en viktig faktor, värd att ta med i beräkningen, när undersökande arbete ska införlivas.
7

Les connaissances mobilisées par les enseignants dans l'enseignement des sciences : analyse de l'organisation de l'activité et de ses évolutions / Professional knowledge mobilized by teachers in science education : activity analysis and its evolution

Jameau, Alain 05 December 2012 (has links)
Notre travail porte sur le thème des connaissances professionnelles mobilisées par les enseignants pendant la préparation et lors de la mise en œuvre de leur enseignement. Notre étude se déroule dans le contexte de l’enseignement des sciences expérimentales. Nous y étudions les connaissances des enseignants et leurs évolutions. Notre approche théorique articule la didactique des sciences et la didactique professionnelle avec comme cadre d’analyse des connaissances des enseignants, le concept de PCK (Pedagogical Content Knowledge), les connaissances pédagogiques liées au contenu. Nous avons élaboré une méthodologie spécifique, associant le chercheur et des binômes de professeurs, afin notamment de saisir l’écart entre la préparation des enseignements et leur mise en œuvre. A partir de cet écart nous définissons des incidents critiques qui sont la base du corpus que nous analysons. Nous identifions les connaissances en jeu, et indiquons comment le concept de PCK s’articule avec celui de schème. Lorsque les enseignants traitent d’un sujet au moyen des démarches d’investigation, ils mobilisent des types de connaissances spécifiques, et mettent en place des pratiques différentes, selon qu'ils travaillent au premier ou second degré. Nous montrons qu’il y a une relation entre ces connaissances et la régulation rétroactive de l’activité qui permet à l’enseignant d’ajuster sa préparation. Nous modélisons une forme d’acquisition d’expérience. / Our work focuses on the theme of professional knowledge mobilized by teachers in their lesson preparations and implementation in class. Our study takes place in the context of the teaching of experimental sciences. We study the knowledge of teachers and the evolutions of this knowledge. Our theoretical approach articulates science education and professional didactics; it also retains, for the analysis of teachers' knowledge, the concept of PCK (Pedagogical Content Knowledge). We have developed a specific methodology, involving the researcher and teachers organized in pairs, to observe the gap between the preparation of lessons and their implementation. From this gap, we define critical incidents: they are the basis of the corpus that we analyzed. We identify the knowledge involved, and we indicate how the concept of PCK articulates with the concept of scheme. When teachers use inquiry-based science teaching (IBST), they mobilize specific knowledge and they implement different practices, depending on their work at primary or secondary school. We show that there is a relationship between knowledge and retroactive control that allows the teacher to adjust his/her preparation. We propose a theoretical model, for a form of acquisition of professional experience.
8

Les ressources au cœur des pratiques des professeurs de mathématiques : le cas de l'enseignement d'exploration MPS en seconde / Resources at the heart of the practices of mathematics teachers : The case of teaching MPS exploration in second

Tufféry-Rochdi, Chantal 17 June 2016 (has links)
Notre questionnement trouve sa source dans la mise en place, dans le cadre de la réforme du lycée de 2010, de l'enseignement d'exploration Méthodes et Pratiques Scientifiques (MPS) en Seconde. Cet enseignement pluridisciplinaire, visant à initier les élèves à la démarche scientifique dans le cadre d'un projet, a conduit les enseignants de mathématiques, à interroger et à modifier leurs pratiques. Nous proposons d'analyser ces changements sous l'angle des ressources et du travail des enseignants sur ces ressources. Nous mobilisons les cadres théoriques de la double approche didactique et ergonomique (Robert, 2010a ; Rogalski, 2010) et de l'approche documentaire du didactique (Gueudet et Trouche, 2010). Notre recherche est conduite à partir du suivi de professeurs de mathématiques impliqués en MPS et engagés dans différents collectifs disciplinaires et pluridisciplinaires. Ce suivi est complété par des entretiens avec les collègues des autres disciplines. Nous avons aussi effectué une étude sur l'offre des ressources disponibles pour l'un des thèmes proposés. Cette étude s'inscrit dans le programme de recherche ReVEA (Ressources Vivantes pour l'Enseignement et l'Apprentissage), soutenu par l'ANR. Notre thèse propose de montrer l'impact des ressources et de leur manque depuis la compréhension de la tâche prescrite jusqu'à la tâche effective, ainsi que celui des différents collectifs dans lesquels le professeur de mathématiques est impliqué. Elle questionne également les effets de ce travail sur le développement professionnel concernant en particulier la conception et la mise en œuvre de séances fondées sur des démarches d'investigation. / Our questioning emerges from the establishment of a new teaching, called Scientific Methods and Practices (MPS), as part of the French high school reform in 2010. This multidisciplinary teaching, which aims to initiate pupils to a scientific approach, leds mathematics teachers to question and to change their practices. We propose to analyze these changes in terms of resources and the way teachers work on these resources. We retain two approaches: the double approach didactic and ergonomic of the teaching practices (Robert, 2010a; Rogalski, 2010) and the documentational approach of didactics (Gueudet et Trouche, 2010). Our research is conducted from observations of mathematics teachers involved in MPS and engaged in different disciplinary and multidisciplinary collectives. These observations are supplemented by interviews with colleagues in other disciplines. We also performed a study of resources available for one of the themes proposed. This study is part of the research program ReVEA (Living Resources for Teaching and Learning), supported by the ANR. Our thesis aims to show the impact of resources and lack of resources from understanding the prescribed task to the effective task, and also the impact of the different collectives in which the mathematics teacher is involved. It questions as well the effects of this work on professional development, especially regarding the inquiry-based science teaching.
9

Biologické dovednosti žáků / Pupils's Skills in Biology

Čudová, Radka January 2015 (has links)
TITLE: Pupils's Skills in Biology AUTOR: Radka Čudová DEPARTMENT: Department of Biology and Environmental Studies SUPERVISOR: Doc. RNDr. Věra Čížková, CSc. ABSTRACT: The aim of this work is to create the structure and the categorization of primary and high school biological skills and find out the real condition of selected skills at student of particular school levels. In the theoretical part of the work, there was made a content analysis of selected world official school curricula and studies aimed at investigation the teaching of biology and the approaches to structuring of biological skills. In the practical part, there was established structured system of skills respecting inquiry-based science teaching (IBSE) based on the analysis and study of pedagogical-psychological literature. A questionnaire was made in a broader team of the project to which the thesis came under a survey which investigated the opinions and requirements of the skill level in biology of lower secondary (ISCED 2), secondary general (grammar) school teachers (ISCED 3) and academics. The results of this survey were used to create the test unit aimed at testing biological skills in four categories: A. Identification of biological problems and asking questions, B. Information searching and recording, C. Classification and process...

Page generated in 0.1173 seconds