Spelling suggestions: "subject:"integer"" "subject:"nteger""
551 |
A Disassembly Optimization ProblemBhootra, Ajay 10 January 2003 (has links)
The rapid technological advancement in the past century resulted in a decreased life cycle of a large number of products and, consequently, increased the rate of technological obsolescence. The disposal of obsolete products has resulted in rapid landfilling and now poses a major environmental threat. The governments in many countries around the world have started imposing regulations to curb uncontrolled product disposal. The consumers, too, are now aware of adverse effects of product disposal on environment and increasingly favor environmentally benign products.
In the wake of imminent stringent government regulations and the consumer awareness about ecosystem-friendly products, the manufacturers need to think about the alternatives to product disposal. One way to deal with this problem is to disassemble an obsolete product and utilize some of its components/subassemblies in the manufacturing of new products. This seems to be a promising solution because products now-a-days are made in accordance with the highest quality standards and, although an obsolete product may not be in the required functional state as a whole, it is possible that several of its components or subassemblies are still in near perfect condition.
However, product disassembly is a complex task requiring human labor as well as automated processes and, consequently, a huge amount of monetary investment. This research addresses a disassembly optimization problem, which aims at minimizing the costs associated with the disassembly process (namely, the costs of breaking the joints and the sequence dependent set-up cost associated with disassembly operations), while maximizing the benefits resulting from recovery of components/subassemblies from a product. We provide a mathematical abstraction of the disassembly optimization problem in the form of integer-programming models. One of our formulations includes a new way of modeling the subtour elimination constraints (SECs), which are usually encountered in the well-known traveling salesman problems. Based on these SECs, a new valid formulation for asymmetric traveling salesman problem (ATSP) was developed. The ATSP formulation was further extended to obtain a valid formulation for the precedence constrained ATSP. A detailed experimentation was conducted to compare the performance of the proposed formulations with that of other well-known formulations discussed in the literature. Our results indicate that in comparison to other well-known formulations, the proposed formulations are quite promising in terms of the LP relaxation bounds obtained and the number of branch and bound nodes explored to reach an optimal integer solution. These new formulations along with the results of experimentation are presented in Appendix A.
To solve the disassembly optimization problem, a three-phase iterative solution procedure was developed that can determine optimal or near optimal disassembly plans for complex assemblies. The first phase helps in obtaining an upper bound on our maximization problem through an application of a Lagrangian relaxation scheme. The second phase helps to further improve this bound through addition of a few valid inequalities in our models. In the third phase, we fix some of our decision variables based on the solutions obtained in the iterations of phases 1 and 2 and then implement a branch and bound scheme to obtain the final solution. We test our procedure on several randomly generated data sets and identify the factors that render a problem to be computationally difficult. Also, we establish the practical usefulness of our approach through case studies on the disassembly of a computer processor and a laser printer. / Master of Science
|
552 |
Two-Stage Stochastic Model to Invest in Distributed Generation Considering the Long-Term UncertaintiesAngarita-Márquez, Jorge L., Mokryani, Geev, Martínez-Crespo, J. 13 October 2021 (has links)
Yes / This paper used different risk management indicators applied to the investment optimization performed by consumers in Distributed Generation (DG). The objective function is the total cost incurred by the consumer including the energy and capacity payments, the savings, and the revenues from the installation of DG, alongside the operation and maintenance (O&M) and investment costs. Probability density function (PDF) was used to model the price volatility in the long-term. The mathematical model uses a two-stage stochastic approach: investment and operational stages. The investment decisions are included in the first stage and which do not change with the scenarios of the uncertainty. The operation variables are in the second stage and, therefore, take different values with every realization. Three risk indicators were used to assess the uncertainty risk: Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR), and Expected Value (EV). The results showed the importance of migration from deterministic models to stochastic ones and, most importantly, the understanding of the ramifications of every risk indicator.
|
553 |
Mixed-Integer Optimal Control: Computational Algorithms and ApplicationsChaoying Pei (18866287) 02 August 2024 (has links)
<p dir="ltr">This thesis presents a comprehensive exploration of advanced optimization strategies for addressing mixed-integer optimal control problems (MIOCPs) in aerospace applications, emphasizing the enhancement of convergence robustness, computational efficiency, and accuracy. The research develops a broad spectrum of optimization methodologies, including multi-phase approaches, parallel computing, reinforcement learning (RL), and distributed algorithms, to tackle complex MIOCPs characterized by highly nonlinear dynamics, intricate constraints, and discrete control variables.</p><p dir="ltr">Through discretization and reformulation, MIOCPs are transformed into general quadratically constrained quadratic programming (QCQP) problems, which are then equivalently converted into rank-one constrained semidefinite programs problems. To address these, iterative algorithms are developed specifically for solving such problems. Initially, two iterative search methods are introduced to achieve convergence: one is a hybrid alternating direction method of multipliers (ADMM) designed for large-scale QCQP problems, and the other is an iterative second-order cone programming (SOCP) algorithm developed to achieve global convergence. Moreover, to facilitate the convergence of these iterative algorithms and to enhance their solution quality, a multi-phase strategy is proposed. This strategy integrates with both the iterative ADMM and SOCP algorithms to optimize the solving of QCQP problems, improving both the convergence rate and the optimality of the solutions. To validate the effectiveness and improved computational performance of the proposed multi-phase iterative algorithms, the proposed algorithms were applied to several aerospace optimization problems, including six-degree-of-freedom (6-DoF) entry trajectory optimization, fuel-optimal powered descent, and multi-point precision landing challenges in a human-Mars mission. Theoretical analyses of convergence properties along with simulation results have been conducted, demonstrating the efficiency, robustness, and enhanced convergence rate of the optimization framework.</p><p dir="ltr">However, the iteration based multi-phase algorithms primarily guarantee only local optima for QCQP problems. This research introduces a novel approach that integrates a distributed framework with stochastic search techniques to overcome this limitation. By leveraging multiple initial guesses for collaborative communication among computation nodes, this method not only accelerates convergence but also enhances the exploration of the solution space in QCQP problems. Additionally, this strategy extends to tackle general nonlinear programming (NLP) problems, effectively steering optimization toward more globally promising directions. Numerical simulations and theoretical proofs validate these improvements, marking significant advancements in solving complex optimization challenges.</p><p dir="ltr">Following the use of multiple agents in QCQP problems, this research expand this advantage to address more general rank-constrained semidefinite programs (RCSPs). This research developed a method that decomposes matrices into smaller submatrices for parallel processing by multiple agents within a distributed framework. This approach significantly enhances computational efficiency and has been validated in applications such as image denoising, showcasing substantial improvements in both efficiency and effectiveness.</p><p dir="ltr">Moreover, to address uncertainties in applications, a learning-based algorithm for QCQPs with dynamic parameters is developed. This method creates high-performing initial guesses to enhance iterative algorithms, specifically applied to the iterative rank minimization (IRM) algorithm. Empirical evaluations show that the RL-guided IRM algorithm outperforms the original, delivering faster convergence and improved optimality, effectively managing the challenges of dynamic parameters.</p><p dir="ltr">In summary, this thesis introduces advanced optimization strategies that significantly enhance the resolution of MIOCPs and extends these methodologies to more general issues like NLP and RCSP. By integrating multi-phase approaches, parallel computing, distributed techniques, and learning methods, it improves computational efficiency, convergence, and solution quality. The effectiveness of these methods has been empirically validated and theoretically confirmed, representing substantial progress in the field of optimization.</p>
|
554 |
Mathematical Formulation and Optimization : Navigating Portfolio Complexity with Cardinality ConstraintsJohansson Swegmark, Markus, Stål, Filip January 2024 (has links)
This paper explores strategies in portfolio optimization, focusing on integrating mean-variance optimization (MVO) frameworks with cardinality constraints to enhance investment decision-making. Using a combination of quadratic programming and mixed-integer linear programming, the Gurobi optimizer handles complex constraints and achieves computational solutions. The study compares two mathematical formulations of the cardinality constraint: the Complementary Model and the Big M Model. As cardinality increased, risk decreased exponentially, converging at higher cardinalities. This behavior aligns with the theory of risk reduction through diversification. Additionally, despite initial expectations, both models performed similarly in terms of root relaxation risk and execution time due to Gurobi's presolve transformation of the Complementary Model into the Big M Model. Root relaxation risks were identical while execution times varied slightly without a consistent trend, underscoring the Big M Model's versatility and highlighting the limitations of the Complementary Model.
|
555 |
Structural optimization for control of stiffened laminated composite plates using nonlinear mixed integer programmingMesquita, Luis Clemente January 1985 (has links)
The effect of structural optimization on control of stiffened laminated composite structures is considered. The structural optimization considered here, is the maximization of structural frequencies of the structure subject to maximum weight and frequency separation constraints and an upper bound on weight. The number of plies with a given orientation and the stiffener areas form the two sets of design variables. As the number of plies is restricted to integer values, the optimization problem considered belongs to the class of nonlinear mixed integer problems (NMIP). Several efficiency measures are proposed to reduce the computational cost for solution of the optimization problem. Savings in computer time due to each of the measures is discussed. The control problem is solved using the independent modal space control technique. This technique greatly simplifies the evaluation of the sensitivity of the performance index with respect to the individual frequencies.
The effect of different optimization schemes on the control performance is considered. To reduce the probability, that conclusions drawn from numerical results, are purely coincidental, a large number of cases has been studied. It has been concluded that sufficient improvement in control performance can be achieved through structural optimization. / Ph. D.
|
556 |
Long-term scheduling in underground coal mining using mixed binary programmingWest-Hansen, Jan January 1989 (has links)
Recognizing the complexity of coal mining management, e.g., the scarcity of financial resources and the high level of uncertainty, a mixed binary programming model has been developed as an aid for generating production schedules which maximize the associated net present value.
Defining the mine layout as a precedence network, with the nodes representing mining blocks, a solution procedure is developed, based on Benders' partitioning scheme. That is, the procedure iterates between two problems, namely, the master (primal) problem, solved by a combination of heuristic and exact methods, and the subproblem (dual problem), solved partly by inspection and partly as a minimal cost network flow problem. The heuristic methods are based on improvements of existing algorithms for scheduling precedence-related jobs on m processors.
Computational experiences are presented and the procedure is demonstrated on a mining case. / Ph. D.
|
557 |
Stochastic lagrangian relaxation in power scheduling of a hydro-thermal system under uncertaintyNowak, Matthias Peter 01 December 2000 (has links)
Wir betrachten ein Kraftwerkssystem mit thermischen Blöcken und Pumpspeicherwerken und entwickeln dafür ein Modell für den kostenoptimalen Wochenbetrieb. Auf Grund der Ungewißheit des Bedarfs an elektrischer Energie ist das mathematische Modell ein mehrstufiges stochastisches Problem. Dieses Modell beinhaltet viele gemischt-ganzzahlige stochastische Entscheidungsvariablen. Die Variablen einzelner Einheiten sind aber nur durch wenige Nebenbedingungen miteinander verbunden, welches die Zerlegung in stochastische Teilprobleme erleichtert. Diese stochastischen Teilprobleme besitzen deterministische Analoga, deren Lösungsverfahren entsprechend erweitert werden können. In dieser Arbeit werden ein Abstiegsverfahren für stochastische Speicherprobleme und eine Erweiterung der dynamischen Programmierung auf stochastische Probleme betrachtet. Die Lösung des dualen Problems führt zu Schattenpreisen, die bestimmte Einsatzentscheidungen bevorteilen. Die Heuristik zur Suche von primalen zulässigen Punkten wertet eine Folge von zugeordneten Economic-Dispatch-Problemen aus. Die Kombination der Einschränkung auf dual bevorzugte Fahrweisen (Lagrangian reduction) mit der Auswertung einer Folge von Economic-Dispatch-Problemen (Facettensuche) führt zu einem effizienten Verfahren. Die numerischen Ergebnisse an Hand realistischer Daten eines deutschen Versorgungsunternehmens rechtfertigen diesen Zugang. / We consider a power generation system comprising thermal units and pumped hydro storage plants, and introduce a model for its weekly cost-optimal operation. Due to the uncertainty of the load, the mathematical model represents a dynamic (multi-stage) stochastic program. The model involves a large number of mixed-integer (stochastic) decisions but its constraints are loosely coupled across operating power units. The coupling structure is used to design a stochastic Lagrangian relaxation method, which leads to a decomposition into stochastic single unit subproblems. The stochastic subproblems have deterministic counterparts, which makes it easy to develop algorithms for the stochastic problems. In this paper, a descent method for stochastic storage problems and an extension of dynamic programming towards stochastic programs are developed. The solution of the dual problem provides multipliers leading to preferred schedules (binary primal variables). The crossover heuristics evaluates the economic dispatch problems corresponding to a sequence of such preferred schedules. The combination of the restriction on dual preferred schedules (Lagrangian reduction) with the evaluation of a sequence (facet search) leads to an efficient method. The numerical results on realistic data of a German utility justify this approach.
|
558 |
Design optimal des réseaux Fiber To The Home / Optimal design of Fiber To The Home networksAngilella, Vincent 16 June 2018 (has links)
Pour les opérateurs, les réseaux FTTH représentent à la fois la solution de référence pour répondre à la demande croissante de trafic fixe, et un investissement considérable dû à leur mise en place. Le but de ces travaux est d'assurer le déploiement de réseaux de qualité à moindre coût. Nous commençons à présenter les différents aspects de la planification de ces réseaux qui en font un problème complexe. La littérature concernée est abordée afin d'exhiber les nouveaux défis que nous relevons. Puis nous élaborons des stratégies permettant de trouver la meilleure solution dans différents contextes. Plusieurs politiques de maintenance ou d'utilisation du génie civil sont ainsi explorées. Les problèmes rencontrés sont analysés à la lumière de divers outils d'optimisation (programmation entière, inégalités valides, programmation dynamique, approximations, complexités, inapproximabilité...) que nous utilisons et développons selon nos besoins. Les solutions proposées ont été testées et validées sur des instances réelles, et ont pour but d'être utilisées par Orange / For operators, FTTH networks are the most widespread solution to the increasing traffic demand. Their layout requires a huge investment. The aim of this work is to ensure a cost effective deployment of quality networks. We start by presenting aspects of this network design problem which make it a complex problem. The related literature is reviewed to highlight the novel issues that we solve. Then, we elaborate strategies to find the best solution in different contexts. Several policies regarding maintenance or civil engineering use will be investigated. The problems encountered are tackled using several combinatorial optimization tools (integer programming, valid inequalities, dynamic programming, approximations, complexity theory, inapproximability…) which will be developed according to our needs. The proposed solutions were tested and validated on real-life instances, and are meant to be implemented in a network planning tool from Orange
|
559 |
Optimal Time-Varying Cash Allocation / Optimal tidsvarierande kapitalallokeringOlanders, David January 2020 (has links)
A payment is the most fundamental aspect of a trade that involves funds. In recent years, the development of new payment services has accelerated significantly as the world has moved further into the digital era. This transition has led to an increased demand of digital payment solutions that can handle trades across the world. As trades today can be agreed at any time wherever the payer and payee are located, the party that mediates payments must at any time to be available in order to mediate an agreed exchange. This requires the payment service provider to always have funds available in the required countries and currencies in order for trades to always be available. This thesis concerns how a payment service provider can reallocate capital in a cost efficient way in order for trades to always be available. Traditionally, the reallocation of capital is done in a rule-based manner, which discard the cost dimension and thereby only focus on the reallocation itself. This thesis concerns methods to optimally reallocate capital focusing on the cost of transferring capital within the network. Where the concerned methods has the potential of transferring capital in a far more cost efficient way. When mathematically formulating the reallocation decisions as an optimization problem, the cost function is formulated as a linear program with both Boolean and real constraints. This impose non-feasibility of locating the optimal solution using traditional methods for linear programs, why developed traditional and more advanced methods were used. The model was evaluated based on a large number of simulations in comparison with the performance of a rule-based reallocation system. The developed model provides a significant cost reduction compared to the rule-based approach and thereby outperforms the traditional reallocation system. Future work should focus on expanding the model by broadening the available transfer options, by increasing the considered uncertainty via a bayesian treatment and finally by considering all cost aspects of the network. / En betalning är den mest fundamentala aspekten av handel som involverar kapital. De senaste åren har utvecklingen av nya betalmedel ökat drastiskt då världen fortsatt att utvecklas genom digitaliseringen. Utvecklingen har lett till en ökad efterfrågan på digitala betalningslösningar som kan hantera handel över hela världen. Då handel idag kan ske när som helst oberoende av var betalaren och betalningsmottagaren befinner sig, måste systemet som genomför betalningen alltid vara tillgängligt för att kunna förmedla handel mellan olika parter. Detta kräver att betalningssystemet alltid måste ha medel tillgängligt i efterfrågade länder och valutor för att handeln ska kunna genomföras. Den här uppsatsen fokuserar på hur kapital kostnadseffektivt kan omallokeras i ett betalsystem för att säkerställa att handel alltid är tillgängligt. Traditionellt har omallokeringen av kapital gjorts på ett regelbaserat sätt, vilket inte tagit hänsyn till kostnadsdimensionen och därigenom enbart fokuserat på själva omallokeringen. Den här uppsatsen använder metoder för att optimalt omallokera kapital baserat på kostnaderna för omallokeringen. Därigenom skapas en möjlighet att flytta kapital på ett avsevärt mer kostnadseffektivt sätt. När omallokeringsbesluten formuleras matematiskt som ett optimeringsproblem är kostnadsfunktionen formulerad som ett linjärt program med både Booleska och reella begränsningar av variablerna. Detta gör att traditionella lösningsmetoder för linjära program inte är användningsbara för att finna den optimala lösningen, varför vidareutveckling av tradtionella metoder tillsammans med mer avancerade metoder använts. Modellen utvärderades baserat på ett stort antal simuleringar som jämförde dess prestanda med det regelbaserade systemet. Den utvecklade modellen presterar en signfikant kostnadsreduktion i jämförelse med det regelbaserade systemet och överträffar därigenom det traditionellt använda systemet. Framtida arbete bör fokusera på att expandera modellen genom att utöka de potentiella överföringsmöjligheterna, att ta ökad hänsyn till osäkerhet genom en bayesiansk hantering, samt slutligen att integrera samtliga kostnadsaspekter i nätverket.
|
560 |
Green hydrogen production at Igelsta CHP plant : A techno-economic assessment conducted at Söderenergi ABÖHMAN, AXEL January 2021 (has links)
The energy transition taking place in various parts of the world will have many effects on the current energy systems as an increasing amount of intermittent power supply gets installed every year. In Sweden, just as many other countries, this will cause both challenges and opportunities for today´s energy producers. Challenges that may arise along with an increasingly fluctuating electricity production include both power deficits at certain times and regions but also hours of over-production which can cause electricity prices to drop significantly. Such challenges will have to be met by both dispatchable power generation and dynamic consumption. Conversely, actors prepared to adapt to the new climate by implementing new technologies or innovative business models could benefit from the transition towards a fully renewable energy system. This thesis evaluates the techno-economic potential of green hydrogen production at a combined heat and power plant with the objective to provide decision support to a district heat and electricity producer in Sweden. It was in the company’s interest to investigate how hydrogen production could help reduce the production cost of district heat as well as contribute to the reduction of greenhouse gases. In the project, two separate business models: Power-to-gas and Power-to-power were evaluated on the basis of technical and economic performance and environmental impact. To do this, a mathematical model of the CHP plant and the hydrogen systems was developed in Python which optimizes the operation based on costs. The business models were then simulated for two different years with each year representing a distinctly different electricity market situation. The main conclusions of the study show that Power-to-gas could already be profitable at a hydrogen retail price of 40 SEK per kg, which is the projected retail price for the transportation sector. The demand today is however limited but is expected to grow fast in the near future, especially within heavy transportation. Another limiting factor for hydrogen production showed to be the availability of storage space, as hydrogen gas even at pressures up to 200 bar require large volumes. Power-to-power for frequency regulation was found to not be economically justifiable as the revenue for providing grid services could not outweigh the high investment costs for any of the simulated years. This resulted in a high levelized cost of energy at over 3000 SEK per MWh which was mostly due to the low capacity factor of the power-to-power system. Finally, green hydrogen has the potential of replacing fossil fuels in sectors that is difficult to reach with electricity, for example long-haul road transport or the shipping industry. Therefore, green hydrogen production in large scale could help decarbonize many of society’s fossil-heavy segments. By also serving as a grid-balancer, hydrogen production in a power-to-gas process has the potential of becoming an important part of a renewable energy system. / Energiomställningen som äger rum i olika delar av världen kommer att ha många effekter på de nuvarande energisystemen eftersom en ökande mängd väderberoende kraftproduktion installeras varje år. I Sverige, precis som många andra länder, kommer detta att medföra både utmaningar och möjligheter för dagens energiproducenter. Utmaningar som kan uppstå tillsammans med en alltmer fluktuerande elproduktion inkluderar både kraftunderskott vid vissa tider och regioner men också timmar av överproduktion som kan få elpriserna att sjunka avsevärt. Sådana utmaningar måste mötas av både planerbar kraftproduktion och dynamisk konsumtion. Omvänt kan aktörer som är beredda att anpassa sig till det nya klimatet genom att implementera ny teknik eller innovativa affärsmodeller dra nytta av övergången till ett helt förnybart energisystem. Denna rapport utvärderar den tekno-ekonomiska potentialen för produktion av grön vätgas vid ett kraftvärmeverk med målet att ge beslutsstöd till en fjärrvärme- och elproducent i Sverige. Det var i företagets intresse att undersöka hur vätgasproduktion kan bidra till att sänka produktionskostnaden för fjärrvärme samt bidra till att minska växthusgaser. I projektet utvärderades två separata affärsmodeller: Power-to-gas och Power-to-power baserat på teknisk och ekonomisk prestanda samt miljöpåverkan. För att kunna göra detta utvecklades en matematisk modell i Python av kraftvärmeverket och vätgassystemen som optimerar driften baserat på kostnader. Affärsmodellerna simulerades sedan för två olika års elpriser för att undersöka modellens prestanda i olika typer av elmarknader. De viktigaste slutsatserna i studien visar att Power-to-gas redan kan vara lönsamt till ett vätgaspris på 40 SEK per kg, vilket är det förväntade marknadspriset på grön vätgas for transportsektorn. Efterfrågan är idag begränsad men förväntas växa snabbt inom en snar framtid, särskilt inom tung transport. En annan begränsande faktor för vätgasproduktion visade sig vara tillgången på lagringsutrymme, eftersom vätgas även vid tryck upp till 200 bar kräver stora volymer. Power-to-power för frekvensreglering visade sig inte vara ekonomiskt försvarbart, eftersom intäkterna för att tillhandahålla nättjänster inte kunde uppväga de höga investeringskostnaderna under några av de simulerade åren. Detta resulterade i en hög LCOE på över 3000 SEK per MWh, vilket främst berodde på Power-to-power-systemets låga utnyttjandegrad. Slutligen kan det sägas att grön vätgas har stor potential att ersätta fossila bränslen i sektorer som är svåra att elektrifiera, exempelvis tunga vägtransporter eller sjöfart. Därför kan storskalig grön vätgasproduktion hjälpa till att dekarbonisera många av samhällets fossiltunga segment. Genom att dessutom fungera som balansering har väteproduktion i en Power-to-gas-process potential att bli en viktig del av ett system med stor andel förnybar energi.
|
Page generated in 0.3211 seconds