• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 678
  • 143
  • 109
  • 36
  • 34
  • 26
  • 16
  • 10
  • 9
  • 8
  • 7
  • 5
  • 5
  • 5
  • 2
  • Tagged with
  • 1200
  • 1200
  • 372
  • 279
  • 276
  • 257
  • 245
  • 217
  • 207
  • 163
  • 159
  • 139
  • 137
  • 126
  • 122
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Framtidens teknikinformatör : Hur Internet of Things påverkar en arbetsroll

Skytte, André, Olsson, Victor January 2017 (has links)
Ett teknikskifte mot Internet of Things (IoT) kan medföra förändringar både för företag och konsumenter i form av förändrade arbetsroller, nya sätt att producera innehåll och nya sätt att ta del av innehållet. Fokus i denna rapport har legat på vad detta innebär för tekniska skribenter. För att belysa detta problem har en undersökning utförts på ett fallföretag som specialiserar sig på att producera teknisk dokumentation och som börjat kolla närmre på IoT. Undersökningen ledde fram till slutsatsen att rollen som teknisk skribent inom en IoT-kontext kommer se annorlunda ut gentemot en teknisk skribent som skriver traditionellt. För att skriva teknisk dokumentation för IoT ställs högre krav på teknisk kompetens i form av grundläggande programmeringskunskap och ett objektorienterat tankesätt. / A technology change towards the Internet of Things (IoT) can lead to changes for both businesses and consumers in the form of changing work roles, new ways of producing content and new ways to share content. The focus of this report has been on what this means for technical writers. To highlight this problem, an investigation has been conducted at a case company specializing in producing technical documentation and which has begun to look closer at IoT. The investigation led to the conclusion that the role of technical writer within an IoT-context looks different from a technical writer who writes traditionally. To write technical documentation for IoT, higher demands are placed on technical competence in the form of basic programming skills and object-oriented thinking.
362

Koncepce Industry 4.0, její dosavadní uplatnění a stav na trhu / Description of the Industry 4.0 concept, current application and market status

Hušek, Jiří January 2017 (has links)
This master thesis maps contemporary situation linked to the Industry 4.0 topic and sets it into connections and define its relations. The first part is dedicated to describing the beginning and nature of Industry 4.0. Next part shows main national initiatives of several countries. In the other part of thesis there is specific description of terms connected to this concept. Next part is about evaluating benefits, risks and restrictions. After that there is description of present use on market. The last part sums some predictions about Industry 4.0.
363

Distributed Intelligence-Assisted Autonomic Context-Information Management : A context-based approach to handling vast amounts of heterogeneous IoT data

Rahman, Hasibur January 2018 (has links)
As an implication of rapid growth in Internet-of-Things (IoT) data, current focus has shifted towards utilizing and analysing the data in order to make sense of the data. The aim of which is to make instantaneous, automated, and informed decisions that will drive the future IoT. This corresponds to extracting and applying knowledge from IoT data which brings both a substantial challenge and high value. Context plays an important role in reaping value from data, and is capable of countering the IoT data challenges. The management of heterogeneous contextualized data is infeasible and insufficient with the existing solutions which mandates new solutions. Research until now has mostly concentrated on providing cloud-based IoT solutions; among other issues, this promotes real-time and faster decision-making issues. In view of this, this dissertation undertakes a study of a context-based approach entitled Distributed intelligence-assisted Autonomic Context Information Management (DACIM), the purpose of which is to efficiently (i) utilize and (ii) analyse IoT data. To address the challenges and solutions with respect to enabling DACIM, the dissertation starts with proposing a logical-clustering approach for proper IoT data utilization. The environment that the number of Things immerse changes rapidly and becomes dynamic. To this end, self-organization has been supported by proposing self-* algorithms that resulted in 10 organized Things per second and high accuracy rate for Things joining. IoT contextualized data further requires scalable dissemination which has been addressed by a Publish/Subscribe model, and it has been shown that high publication rate and faster subscription matching are realisable. The dissertation ends with the proposal of a new approach which assists distribution of intelligence with regard to analysing context information to alleviate intelligence of things. The approach allows to bring few of the application of knowledge from the cloud to the edge; where edge based solution has been facilitated with intelligence that enables faster responses and reduced dependency on the rules by leveraging artificial intelligence techniques. To infer knowledge for different IoT applications closer to the Things, a multi-modal reasoner has been proposed which demonstrates faster response. The evaluations of the designed and developed DACIM gives promising results, which are distributed over seven publications; from this, it can be concluded that it is feasible to realize a distributed intelligence-assisted context-based approach that contribute towards autonomic context information management in the ever-expanding IoT realm. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 7: Submitted.</p>
364

Efficient wireless transmission supporting internet of things

Ghasemiahmadi, Mohammad 19 December 2017 (has links)
The promise of Internet of Things (IoT) and mass connectivity has brought many applications and along with them many new challenges to be solved. Recognizing sensor networks as one of the main applications of IoT, this dissertation focuses on solutions for IoT challenges in both single-hop and multi-hop communications. In single-hop communications, the new IEEE 802.11ah and its Group Synchronized Distribution Coordination Function (GS-DCF) is studied. GS-DCF categorized nodes in multiple groups to solve the channel contention issue of dense networks. An RSS-Based grouping strategy is proposed for the hidden terminal problem that can arise in infrastructure-based single hop communications. For multi-hop communications, Physical Layer Network Coding (PNC) is studied as a robust solution for multi-hop packet exchange in linear networks. Focusing on practical and implementation issues of PNC systems, different challenges have been addressed and a Software Defined Radio (SDR) PNC system based on USRP devices is proposed and implemented. Finally, extensive simulation and experimental results are presented to evaluate the performance of the proposed algorithms in comparison with currently used methods. / Graduate
365

Towards Cloud-based Vehicular Cyber-physical Systems

Alam, Kazi Masudul January 2017 (has links)
We are living in the age of information technology, where we are fully occupied with the revolutionary innovations of the last few decades such as the Internet, mobile devices, wireless communications, social networks, wearables, cloud computing, etc. While these technologies have become integral part of our daily life, we are now anxiously waiting to embrace Internet-of-Things (IoT), intelligent digital assistants, driver-less cars, drone deliveries, virtual reality, and smart city applications. Recently, research community is demonstrating increasing interests about Cyber-Physical Systems (CPS) that resides in the cross-section of embedded systems, network communications, and scalable distributed infrastructures. The main responsibility of a CPS is to collect sensory data about the physical world and to inform the computation module using communication technologies that processes the data, identifies important insights and notifies back using a feedback loop. These notifications can however be control commands to reconfigure the physical world. Such a setup is a useful method to deploy smart city applications. In this dissertation, we keep our focus onto the smart transport objective using vehicular CPS (VCPS) based systems organization. We have compiled this dissertation with our research contributions in this growing field of VCPS. One of our key contributions in this field is an architecture reference model for the cloud-based CPS, C2PS, where we analytically describe the key properties of a CPS: computation, communication and control, while integrating cloud features to it. We have identified various types of computation and interaction modes of this paradigm as well as describe Bayesian network and fuzzy logic based smart connection to select a mode at any time. It is considered that the true adoption of CPS is only possible through the deployment of the IoT systems. Thus, it is important to have IoT as a foundation in the CPS architectures. Our next contribution is to leverage existing Vehicular Adhoc Network (VANET) technologies and map them with the standard IoT-Architecture reference model to design the VCPS, Social Internet-of-Vehicles (SIoV). In this process, we have identified the social structures and system interactions among the subsystems involved in the SIoV. We also present a message structure to facilitate different types of SIoV interactions. The ability of dynamic reconfiguration in a C2PS is very appealing. We capture this feature in the VCPS by designing a model-based reconfiguration scheme for the SIoV, where we measure the data workloads of distinct subsystems involved in various types of SIoV interactions. We further use these models to design dynamic adaptation schemes for the subsystems involved in VCPS interactions. Our final contribution is an application development platform based on C2PS design technique that uses server-client based system communications. In this platform, server side is built using JAVA, client side uses Android, message communication uses JSON and every component has its own MySQL database to store the interactions. We use this platform to emulate and deploy SIoV related applications and scenarios. Such a platform is necessary to continue C2PS related research and developments in the laboratory environment.
366

Industry 4.0 with a Lean perspective - Investigating IIoT platforms' possible influences on data driven Lean

De Vasconcelos Batalha, Alex, Parli, Andri Linard January 2017 (has links)
Purpose: To investigate possible connections between an Industrial Internet of Things (IIoT) system, such as Predix, and data driven Lean practises. The aim is to examine if an IIoT platform can improve existing practises of Lean, and if so, which Lean tools are most likely influenced and how this is.Design/Methodology: The paper follows a phenomenon-based research approach. The methodology contains of a mix of primary and secondary data. The primary data was obtained through “almost unstructured” interviews with experts, while the secondary data comprises of a comprehensive review of existing literature. Moreover, a model was developed to investigate the connections between the concepts of IIoT and Lean.Findings: Findings derived from expert interviews at General Electric (GE) in Uppsala have led to the conclusion that Predix fulfils the necessary requirements to be considered an IIoT platform. However, the positive effects of the platform on the selected Lean tools could not be found. Only in one instance improved Predix the effectiveness of a Lean tool. Overall, data analytic efforts are performed and let to better in-process control. However, these efforts were independent from the Lean efforts carried out. There was no increase in data collection or analytics due to the Lean initiative and Predix is not utilised for data collection, storage, or analysis. It appears that the pharmaceutical industry is fairly slow in adapting new technologies. Firstly, the high regulatory requirements inherent within the pharmaceutical industry limit the application of cutting edge technology by demanding strict in-process control and process documentation. Secondly, the sheer size of GE itself slows down the adoption of new technology. Lastly, the pragmatic approach of the top management to align the digital strategies of the various industries and thereof resulting allocation of resources to other more technologically demanding businesses hinders the use of Predix at GE in Uppsala.
367

Comparison of Wireless Communication Technologies used in a Smart Home : Analysis of wireless sensor node based on Arduino in home automation scenario

Horyachyy, Oleh January 2017 (has links)
Context. Internet of Things (IoT) is an extension of the Internet, which now includes physical objects of the real world. The main purpose of Internet of Things is to increase a quality of people’s daily life. A smart home is one of the promising areas in the Internet of Things which increases rapidly. It allows users to control their home devices anytime from any location in the world using Internet connectivity and automate their work based on the physical environment conditions and user preferences. The main issues in deploying the architecture of IoT are the security of the communication between constrained low-power devices in the home network and device performance. Battery lifetime is a key QoS parameter of a battery-powered IoT device which limits the level of security and affects the performance of the communication. These issues have been deepened with the spread of cheap and easy to use microcontrollers which are used by electronic enthusiasts to build their own home automation projects. Objectives. In this study, we investigated wireless communication technologies used in low-power and low-bandwidth home area networks to determine which of them are most suitable for smart home applications. We also investigated the correlation between security, power consumption of constrained IoT device, and performance of wireless communication based on a model of a home automation system with a sensor node. Sensor node was implemented using Arduino Nano microcontroller and RF 433 MHz wireless communication module. Methods. To achieve the stated objectives of this research following methods were chosen: literature review to define common applications and communication technologies used in a smart home scenario and their requirements, comparison of wireless communication technologies in smart home, study of Arduino microcontroller technology, design and simulation of a part of  home automation project based on Arduino, experimental measurements  of execution time and power consumption of Arduino microcontroller with RF 433 MHz wireless module when transmitting data with different levels of security, and analysis of experimental results. Results. In this research, we presented a detailed comparison of ZigBee, WiFi, Bluetooth, Z-Wave, and ANT communication technologies used in a smart home in terms of the main characteristics. Furthermore, we considered performance, power consumption, and security. A model of a home automation system with a sensor node based on Arduino Nano was described with sleep management and performance evaluation. The results show that the battery lifetime of Arduino in a battery-powered sensor node scenario is determined by the communication speed, sleep management, and affected by encryption. Conclusions. The advanced communication strategy can be used to minimize the power consumption of the device and increase the efficiency of the communication. In that case, our security measures will reduce the productivity and lifetime of the sensor node not significantly. It’s also possible to use symmetric encryption with smaller block size.
368

Internet of Things as a new disruptive concept for future global business / Internet of Things as a new disruptive concept for future global business

Kalenda, Tomáš January 2015 (has links)
The goal of the thesis is to provide investors and established businesses insights into the evolving concept of Internet of Things in the context of a business opportunity. First, the thesis provides comprehensive overview of the IoT concept, its historical development and relevant concepts similar to IoT including its definition and explanation. Second, the thesis discusses IoT as a disruptive technology with implications for general business strategy, current business models, value chains and competitive landscape. Third, it describes overwhelming opportunities for IoT application in various business fields and processes bringing added value to its stakeholders. Visionary concepts and applicable use cases are identified. Finally, the thesis analyses IoT market perception from both customer and business perspective based on quantitative and qualitative data researched. The research is focused mainly on customer awareness and value perception of IoT products as well as major drivers and challenges of the IoT market from business players' perspective. Such analytical insights identify major patterns and dynamism of the IoT market.
369

Uma abordagem para a integração de sistemas industriais aplicando o conceito de internet das coisas e de modelos semanticos no contexto da industria 4.0 / An approach for the integration of industrial systems through the adoption of the internet of things and semantic model concepts in the industry 4.0 context

Steinmetz, Charles January 2018 (has links)
Com a chegada da era da computação ubíqua, o número de dispositivos com poder computacional vêm crescendo de forma acelerada. A conexão desses dispositivos em uma rede de comunicação traz novas possibilidades e serve como base para o conceito chamado Internet das Coisas (Internet of Things - IoT). Uma das aplicações desse conceito é no domínio industrial e está impulsionando uma nova revolução industrial, a chamada Indústria 4.0. Esta pesquisa apresenta uma abordagem de integração de componentes de forma automatizada, no contexto da Indústria 4.0, utilizando ontologias para representar os elementos do sistema e um middleware IoT para servir de meio de integração. Essa abordagem utiliza conceitos propostos em trabalhos relacionados, com características inovadoras na criação de sistemas IoT. Dentre estas está a integração automatizada a partir de modelos semânticos, que possibilita que usuários modelem sistemas em alto nível. A partir desse modelo, as interfaces de comunicação são criadas automaticamente, trazendo uma garantia de consistência sintática nas chamadas de métodos ou funções. Além disso, a pesquisa proposta traz a possibilidade de usar esse mesmo modelo semântico para apresentar as informações ao usuário final. Como resultados deste trabalho podem ser ressaltados o desenvolvimento de uma ontologia para modelar esses elementos industriais e também o de uma extensão para um middleware IoT a fim de poder-se trabalhar com esses modelos de forma automatizada. / With the advent of the ubiquitous computing era, the number of devices with computing power is growing rapidly. The connection of these devices onto a communication network brings new possibilities and serves as the basis for the concept called the Internet of Things (IoT). One of the applications of this concept is in the industrial domain where it is driving a new industrial revolution, usually designated as “Industry 4.0”. This research study presents a automated integration approach in the context of Industry 4.0, using ontologies to represent elements of the system and an IoT middleware to provide a means for its integration. This approach uses concepts proposed in related works with innovative features regarding the creation of IoT systems. Among these features, an automated integration based on semantic models is proposed, which enables users to model their systems at a high level. From this model, communication interfaces are created automatically, bringing a guarantee of syntactic consistency in calling methods or functions. Another advantage that this work brings is the possibility of using this same semantic model to present information to the end user. As result of this work, an ontology was developed to model industrial elements, and an extension for an IoT middleware was developed to enable to work with these models.
370

Design of Suction Stabilized Floats for First Responder Localization via Ultra-Wideband (UWB) and Internet of Things (IoT)

January 2020 (has links)
abstract: Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to help first responders establish a localized coordinate system to assist in rescues. The floats create a stabilized platform for each anchor module due to the inverse slack tank effect established by the inner water chamber. The design of the float has also been proven to be stable in most cases of amplitudes and frequencies ranging from 0 to 100 except for when the frequency ranges from 23 to 60 Hz for almost all values of the amplitude. The modules in the system form a coordinate grid based off the anchors that can track the location of a tag module within the range of the system using ultra-wideband communications. This method of location identification allows responders to use the system in GPS denied environments. The system can be accessed through an Android app with Bluetooth communications in close ranges or through internet of things (IoT) using a module as a listener, a Raspberry Pi and an internet source. The system has proven to identify the location of the tag in moderate ranges with an approximate accuracy of the tag location being 15 cm. / Dissertation/Thesis / Masters Thesis Engineering 2020

Page generated in 0.0809 seconds