• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 34
  • 31
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 133
  • 75
  • 17
  • 15
  • 15
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Bound states and resistive edge transport in two-dimensional topological phases

Kimme, Lukas 02 November 2016 (has links) (PDF)
The subject of the present thesis are some aspects of impurities affecting mesoscopic systems with regard to their topological properties and related effects like Majorana fermions and quantized conductance. A focus is on two-dimensional systems including both topological insulators and superconductors. First, the question of whether individual nonmagnetic impurities can induce zero-energy states in time-reversal invariant superconductors from Altland-Zirnbauer (AZ) symmetry class DIII is addressed, and a class of symmetries which guarantee the existence of such states for a specific value of the impurity strength is defined. These general results are applied to the time-reversal invariant p-wave phase of the doped Kitaev-Heisenberg model, where it is also demonstrated how a lattice of impurities can drive a topologically trivial system into the nontrivial phase. Second, the result about the existence of zero-energy impurity states is generalized to all AZ symmetry classes. This is achieved by considering, for general Hamiltonians H from the respective symmetry classes, the “generalized roots of det H”, which subsequently are used to further explore the opportunities that lattices of nonmagnetic impurities provide for the realization of topologically nontrivial phases. The 1d Kitaev chain model, the 2d px + ipy superconductor, and the 2d Chern insulator are considered to show that impurity lattices generically enable topological phase transitions and, in the case of the 2d models, even provide access to a number of phases with large Chern numbers. Third, elastic backscattering in helical edge modes caused by a magnetic impurity with spin S and random Rashba spin-orbit coupling is investigated. In a finite bias steady state, the impurity induced resistance is found to slightly increase with decreasing temperature for S > 1/2. Since the underlying backscattering mechanism is elastic, interference between different scatterers can explain reproducible conductance fluctuations. Thus, the model is in agreement with central experimental results on edge transport in 2d topological insulators.
52

Echanges d'intervalles. Equations cohomologiques et distributions invariantes

Hmili, Hadda 04 June 2012 (has links)
Dans cette thèse, on étudie deux thèmes, a priori différents mais qui rentrent dans le cadre des systèmes dynamiques : les échanges d’intervalles, la résolution d’équations cohomologiques et la description explicite des distributions invariantes par certains difféomorphismes d’un groupe de Lie compact.1 - On établit un critère d'existence de fonctions propres continues non constantes pour les échangesd'intervalles, c'est-à-dire de non mélange faible topologique. On construit pour tout entier m > 3des échanges de m intervalles de rang 2 uniquement ergodiques et non topologiquement faiblementmélangeants. Nous répondons aussi à une question de Ferenczi et Zamboni. On construit aussi pourtout entier pair m ≥ 4 des échanges de m intervalles possédant des valeurs propres irrationnelles et desvaleurs propres rationnelles (avec fonctions propres associées continues par morceaux) et qui sont soituniquement ergodiques, soit non minimaux.2 - On montre qu’un échange d’intervalles affine, dont les pentes sont des puissances d’un mêmeentier n, et dont les coupures et leurs images sont des rationnels , a une dynamique très simple : toutesses orbites sont propres et il possède une orbite périodique ou un cycle périodique.3 - On traite deux questions d’analyse sur un groupe de Lie connexe compact G. i) Soient a ∈ Get γ le difféomorphisme de G donné par γ(x) = ax (translation `a gauche par a). On donne lesconditions nécessaires et suffisantes pour que l’équation cohomologique f − f ◦ γ = g admette dessolutions dans l’espace de Fréchet C∞(G) des fonctions complexes C∞ sur G. ii) Lorsque G est le toreTn, on détermine explicitement les distributions sur Tn invariantes par un automorphisme affine γ i.e.γ(x) = Ax + a avec A ∈ GL(n, Z) et a ∈ Tn.4 - On donne des résultats obtenus dans 3) une application aux déformations infinitésimales d’unfeuilletage obtenu par suspension d’une translation d’un groupe de Lie compact. / In this thesis, we study two subjects, which are priori different but are within the scopeof dynamical systems: interval exchange, the resolution of cohomological equationsand the explicit description of invariant distributions by a diffeomorphism on a compactLie group.1. We prove a criterion for the existence of continuous non constant eigenfunc-tions for interval exchange transformations which are non topologically weakly mixing.We first construct, for any m > 3, uniquely ergodic interval exchange transforma-tions of Q-rank 2 with irrational eigenvalues associated to continuous eigenfunctionswhich are not topologically weakly mixing; this answers a question of Ferenczi andZamboni [5]. Moreover we construct, for any even integer m ≥ 4, interval exchangetransformations of Q-rank 2 with both irrational eigenvalues (associated to continuouseigenfunctions) and non trivial rational eigenvalues (associated to piecewise continu-ous eigenfunctions); these examples can be chosen to be either uniquely ergodic ornon minimal.2. We prove that an affine interval exchange, whose slopes are integer powers ofthe same integer n, and whose cuts and their images are rational, has a very simpledynamic: all its orbits are proper and it has a periodic orbit or a periodic cycle.3. A third section deals with two analytic questions on a connected compact Liegroup G. i) Let a ∈ G and denote by γ the diffeomorphism of G given by γ(x) = ax(left translation by a). We give necessary and sufficient conditions for the existenceof solutions of the cohomological equation f − f ◦ γ = g on the Fr´echet space C∞(G)of complex C∞ functions on G. ii) When G is the torus Tn, we compute explicitly thedistributions on Tn invariant by an affine automorphism γ, that is, γ(x) = Ax+a withA ∈ GL(n, Z) and a ∈ Tn.4. We apply the results of the preceding section to describe the infinitesimaldeformations of a foliation obtained by suspension of a translation associated to anelement on a compact Lie group.
53

Top-degree solvability for hypocomplex structures and the cohomology of left-invariant involutive structures on compact Lie groups / Resolubilidade em grau máximo para estruturas hipocomplexas e a cohomologia de estruturas involutivas invariantes à esquerda em grupos de Lie compactos

Jahnke, Max Reinhold 21 December 2018 (has links)
We use the theory of dual of Fréchet-Schwartz (DFS) spaces to establish a sufficient condition for top-degree solvability for the differential complex associated to a hypocomplex locally integrable structure. As an application, we show that the top-degree cohomology of left-invariant hypocomplex structures on a compact Lie group can be computed only by using left-invariant forms, thus reducing the computation to a purely algebraic one. In the case of left-invariant elliptic involutive structures on compact Lie groups, under certain reasonable conditions, we prove that the cohomology associated to the involutive structure can be computed only by using left-invariant forms. / Usamos a teoria da espaços duais de Fréchet-Schwartz (DFS) para estabelecer uma condição suficiente para resolubilidade em grau máximo para o complexo associado a estrutuas localmente integráveis hipocomplexas. Como aplicação, provamos que a cohomologia de estruturas hipocomplexas invariantes à esquerda podem ser calculadas usando apenas formas invariantes à esquerda, assim reduzindo o cálculo a um método puramente algébrico. No caso de estruturas invariantes à esquerda, sob certas condições razoáveis, provamos que a cohomologia associada à estrutura pode ser calculada usando apenas formas invariantes à esquerda.
54

[en] TRADE CREDIT: INVARIANT INTEREST RATE. WHY? / [pt] MERCADO DE CRÉDITO COMERCIAL: TAXAS INVARIANTES. POR QUÊ?

KLENIO DE SOUZA BARBOSA 03 July 2003 (has links)
[pt] Há evidência - Petersen e Rajan (1997) - que fornecedores têm uma vantagem informacional sobre o risco de seus clientes. Entretanto, Elliehausen e Wolken (1993) reportam que taxas de crédito comercial são freqüentemente padronizadas. Por que os fornecedores não usam sua vantagem informacional para adequar taxas de juros a risco? Este trabalho demonstra que se a demanda por insumos for suficientemente inelástica, a competição com os bancos faz com que a taxa de crédito comercial seja invariante e cole na taxa bancária. Se, ao contrário, a demanda for suficientemente elástica, a taxa invariante de crédito comercial é zero, como usualmente acontece nos E.U.A. em créditos de fornecedor até 10 dias. / [en] There is evidence - Petersen and Rajan (1997) - that suppliers have superior information on their clients capacity of repayment. However, Elliehausen and Wolken (1993) report that trade credit rates are frequently standardized. Why do not suppliers use their informational advantage to make the interest rate reflect the risk? This work shows that, if the demand for imputs is sufficiently inelastic, competition among banks leads the trade credit rate to be invariant and very close to banking rate. On the contrary, if the demand is sufficiently elastic, the trade credit rate is invariant and equal to zero, as usually occurs with suppliers credit with maturity until 10 days in USA.
55

Sur les toupies et les p-sphères de contact

Zessin, Mathias 10 December 2004 (has links) (PDF)
Ma thèse consiste en une étude des cercles de contact et plus généralement des p-sphères de contact sous différents points de vue, topologique, géométrique et algébrique. Une p-sphère de contact est l'ensemble des combinaisons linéaires normalisées de p+1 formes de contact si toutes ces formes sont de contact.<br />Dans la première partie nous étudions des p-sphères de contact invariantes sur des fibrés principaux en cercles. Nous classifions les fibrés principaux de dimension 3 qui admettent des p-sphères de contact invariantes et nous construisons des exemples.<br />Dans la partie géométrique nous étudions l'ensemble des structures de contact associées aux éléments d'un cercle de contact. Nous définissons la notion de faisceau de contact et de toupie de contact (sur une variété riemannienne). Nous classifions les variétés de dimension 3 qui admettent des toupies de contact et nous caractérisons les métriques pour lesquelles il peut y avoir des toupies de contact sur une variété donnée.<br />Dans la partie algébrique, nous étudions les groupes de Lie de dimensions 3 et 7 qui admettent des p-sphères de contact invariantes à gauche. Nous obtenons des résultats de classification, ainsi qu'un certain nombre d'exemples. <br />Nous montrons également qu'il n'existe pas de p-sphère de contact sur les variétés de dimension 4n+1 (pour p 1) et que sur les (4n-1)-sphères il existe toujours une ( (4n)-1)-sphère de contact, où est le nombre d'Adams.
56

Sur les courbes invariantes par un difféomorphisme C1-générique symplectique d'une surface

Girard, Marie Anne 18 December 2009 (has links) (PDF)
Au début du XXème siècle, Poincaré puis Birkhoff ont été amenés, lors de leur recherche sur le problème restreint des trois corps, à étudier les courbes invariantes par une transformation d'une surface préservant l'aire. Cinquante ans plus tard, les théorèmes KAM démontrent la persistance de courbes invariantes après perturbation en topologie de classe k plus grande ou égale à trois. On peut alors se demander ce que devient ce résultat en topologie de classe moins élevée. Par ailleurs, l'étude des dynamiques C1-génériques connaît de nombreux développements, grâce notamment au Connecting Lemma. Par exemple, Bonatti et Crovisier on démontré qu'un difféomorphisme C1-générique d'une telle surface possède un ensemble dense de points dont l'orbite sort de tout compact. Ces deux résultats permettent de penser qu'un difféomorphisme C1-générique d'une surface n'admet pas de courbes fermées simples invariantes. C'est ce que nous démontrons dans ce travail. On obtient assez facilement, en utilisant le Connecting Lemma ainsi que les propriétés topologiques de l'anneau, qu'un difféomorphisme C1-générique de l'anneau possède des points périodiques sur toute courbe fermée simple invariante. Cela se généralise à une surface quelconque en utilisant une famille dénombrable d'anneau constituant une base de voisinages d'une courbe fermée simple quelconque. La construction d'une telle famille d'anneaux est le principal résultat du premier chapitre. Il s'agit alors de supprimer les points périodiques sur les courbes invariantes. Dans un premier temps, nous nous inspirerons d'un argument qu'Herman utilise dans le cadre de courbes invariantes par les twists de l'anneau pour montrer que tous les points périodiques ne peuvent être hyperboliques. Ensuite, nous définissons une propriété, la propriété Γ, qui si elle est vérifiée par un difféomorphisme symplectique et l'un de ses points périodiques elliptiques, empêche que ce point périodique appartienne à une courbe invariante. En montrant que cette propriété est vérifiée par un difféomorphisme C1-générique et tous ses points périodiques elliptiques, nous obtenons le résultat souhaité. Dans le quatrième chapitre, nous nous employons à définir de façon rigoureuse la notion de fonction génératrice qui est l'outil classique pour perturber des difféomorphismes symplectiques
57

Approximation récursive du régime stationnaire d'une Equation Differentielle Stochastique avec sauts

Panloup, Fabien 13 December 2006 (has links) (PDF)
La thématique principale de cette thèse est la construction et l'étude de méthodes implémentables par ordinateur permettant d'approcher le régime stationnaire d'un processus ergordique multidimensionnel solution d'une EDS dirigée par un processus de Lévy. S'appuyant sur une approche développée par Lamberton&Pagès puis Lemaire dans le cadre des diffusions Browniennes, nos méthodes basées sur des schémas <br />d'Euler à pas décroissant, « exacts » ou « approchés », permettent de simuler efficacement la probabilité invariante mais également la loi globale d'un tel processus en régime stationnaire. <br />Ce travail possède des applications théoriques et pratiques diverses dont certaines <br />sont développées ici (TCL p.s. pour les lois stables, théorème limite relatif aux valeurs extrêmes, pricing d'options pour des modèles à volatilité stochastique stationnaire...).
58

Echanges d'intervalles. Equations cohomologiques et distributions invariantes

Hmili, Hadda 04 June 2012 (has links) (PDF)
Dans cette thèse, on étudie deux thèmes, a priori différents mais qui rentrent dans le cadre des systèmes dynamiques : les échanges d'intervalles, la résolution d'équations cohomologiques et la description explicite des distributions invariantes par certains difféomorphismes d'un groupe de Lie compact.1 - On établit un critère d'existence de fonctions propres continues non constantes pour les échangesd'intervalles, c'est-à-dire de non mélange faible topologique. On construit pour tout entier m > 3des échanges de m intervalles de rang 2 uniquement ergodiques et non topologiquement faiblementmélangeants. Nous répondons aussi à une question de Ferenczi et Zamboni. On construit aussi pourtout entier pair m ≥ 4 des échanges de m intervalles possédant des valeurs propres irrationnelles et desvaleurs propres rationnelles (avec fonctions propres associées continues par morceaux) et qui sont soituniquement ergodiques, soit non minimaux.2 - On montre qu'un échange d'intervalles affine, dont les pentes sont des puissances d'un mêmeentier n, et dont les coupures et leurs images sont des rationnels , a une dynamique très simple : toutesses orbites sont propres et il possède une orbite périodique ou un cycle périodique.3 - On traite deux questions d'analyse sur un groupe de Lie connexe compact G. i) Soient a ∈ Get γ le difféomorphisme de G donné par γ(x) = ax (translation 'a gauche par a). On donne lesconditions nécessaires et suffisantes pour que l'équation cohomologique f − f ◦ γ = g admette dessolutions dans l'espace de Fréchet C∞(G) des fonctions complexes C∞ sur G. ii) Lorsque G est le toreTn, on détermine explicitement les distributions sur Tn invariantes par un automorphisme affine γ i.e.γ(x) = Ax + a avec A ∈ GL(n, Z) et a ∈ Tn.4 - On donne des résultats obtenus dans 3) une application aux déformations infinitésimales d'unfeuilletage obtenu par suspension d'une translation d'un groupe de Lie compact.
59

Optimisation en Rigidité et Résistance de l'Anisotropie distribuée pour Structures Stratifiées

Catapano, Anita 04 June 2013 (has links) (PDF)
Cette thèse porte sur le développement d'une nouvelle stratégie pour l'analyse et la conception optimale de structures anisotropes par rapport à la rigidité et à la résistance. Nous considérons des structures avec une géométrie donné et caractérisés par un champ de rigidité et de résistance anisotropes et variables. Le travail a été divisé en trois parties. Dans la première partie nous présentons les différents concepts et instruments utilisé pour développer la recherche. Dans la deuxième partie nous proposons une formulation invariante, à travers la méthode polaire, de différents critères de rupture polynomiaux pour matériaux orthotropes. Cette formulation invariante a été utilisée, ensuite, pour résoudre le problème de déterminer l'orientation optimale de plis orthotropes afin de maximiser leur résistance. Dans la dernière partie de la thèse nous abordons le problème de la conception optimale de structures stratifiés. Notre approche est inspiré par une stratégie à deux étapes déjà existent pour la seule maximisation de la rigidité. Dans la première étape de la stratégie nous avons déterminé (à l'aide de trois algorithmes) la distribution optimale des paramètres matériaux d'une structure ayant géométrie donnée. Dans la deuxième étape nous avons résolu le problème de déterminer un empilement qui satisfait à la distribution optimale des paramètres matériaux trouvé à l'étape précédente. Pour ce qui concerne la première étape nous avons défini un nouveau critère de rupture par invariants valable pour un stratifié modelé comme une plaque homogène équivalente. Après, conscientes d'avoir deux fonctionnels à minimiser, l'énergie complémentaire pour maximiser la rigidité et l'indice de résistance du critère développé pour maximiser la résistance, nous avons formalisé le problème d'optimisation à travers une minimisation séquentielle des deux fonctionnels. Concernant la deuxième étape, nous avons utilisé une approche polaire-génétique pour le problème de conception du stratifié avec une phase de vérification sur la rupture du premier pli.
60

Sobre a existência de integral primeira racional de campos vetoriais polinomiais planos

Antunes, Eli Érisson Pereira 13 July 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-09-20T13:36:59Z No. of bitstreams: 1 elierissonpereiraantunes.pdf: 551362 bytes, checksum: 976963305fe65fc129e3b7512ab95a66 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-10-01T19:13:43Z (GMT) No. of bitstreams: 1 elierissonpereiraantunes.pdf: 551362 bytes, checksum: 976963305fe65fc129e3b7512ab95a66 (MD5) / Made available in DSpace on 2018-10-01T19:13:43Z (GMT). No. of bitstreams: 1 elierissonpereiraantunes.pdf: 551362 bytes, checksum: 976963305fe65fc129e3b7512ab95a66 (MD5) Previous issue date: 2018-07-13 / Este trabalho é baseado em um artigo de Javier Chavarriga e Jaume Llibre, ([CL]), no qual são apresentadas condições suficientes na ordem de um campo vetorial polinomial em C2 para a existência de uma integral primeira racional. Além disso, também descreve-se o número de pontos múltiplos que uma curva algébrica de grau n, invariante por um campo polinomial em C2 de grau m, pode ter em função de m e n. / This work is based on Javier Chavarriga and Jaume Llibre’s article ([CL]), in which sufficient conditions are presented on the order of a polynomial vector field in C2 for the existence of a first rational integral. Moreover, it is also described the number of multiple points that an algebraic curve of degree n, invariant by a polynomial field of degree m in C2 , can have in function of m and n.

Page generated in 0.0644 seconds