• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 369
  • 168
  • Tagged with
  • 537
  • 535
  • 535
  • 520
  • 518
  • 516
  • 516
  • 43
  • 27
  • 26
  • 26
  • 24
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Är genterapi medierad av adenoassocierat virus en effektiv och säker behandling mot hemofili A och B ur ett långsiktigt perspektiv? : En systematisk litteraturstudie / Is adeno-associated virus-mediated gene therapy a durable, effective and safe treatment for hemophilia A and B? : A systematic literature study

Landin, Linnéa January 2020 (has links)
Bakgrund - Hemofili A och B är X-kromosombundna blödarsjukdomar, som beror på genetiska avvikelser i de gener som kodar för koagulationsfaktor VIII respektive IX. I dagsläget förlitar sig hemofilipatienter på kontinuerliga intravenösa injektioner med faktorkoncentrat, för att förhindra att potentiellt livshotande blödningar uppstår. Genterapi med rekombinanta adeno-associerade virus (AAV) skulle kunna erbjuda ett kurativt behandlingsalternativ, genom införandet av friska arvsanlag i hepatocyter. Syfte - Syftet med den här litteraturstudien var att undersöka huruvida genterapi medierad av AAV-vektorer är en effektiv och säker behandling mot hemofili A och B ur ett långsiktigt perspektiv. Metod - Studien är genomförd som en systematisk litteraturstudie och är baserad på sex originalartiklar framsökta via databasen PubMed, med sökorden "hemophilia AND gene therapy". Specificerade sökkriterier användes för att underlätta relevansbedömning och valet av artiklar. Resultat - En ökad endogen koagulationsfaktorproduktion kunde påvisas hos majoriteten av studiedeltagarna efter genterapibehandlingarna. Sammantaget observerades också en väsentlig blödningsreducering och en minskad faktorkoncentratanvändning. Störst förbättring noterades i de kohorter som erhållit högre genterapidoser eller den muterade faktor IX Padua-genen. Ingen immunrespons mot transgenprodukten detekterades i någon studie. Däremot sågs ett humoralt immunsvar mot AAV-kapsiden hos samtliga studiedeltagare. En mycket stor variation i T-cellssvar mot AAV-kapsiden kunde noteras. Förhöjda nivåer av alaninaminotransferas (ALAT) var den vanligast förekommande incidenten, men samtliga fall kunde framgångsrikt behandlas med glukokortikoidpreparat. Slutsats - Genterapibehandling med rekombinanta AAV-vektorer mot hemofili A och B förefaller effektiv och säker. Förhöjda ALAT-nivåer återstår dock som en behandlingsproblematik. Längre uppföljningar av fler genterapibehandlade hemofilipatienter krävs, för att kunna dra några definitiva slutsatser, väga risker mot nytta, samt optimera och individanpassa doser. / Background - Hemophilia A and B are X-linked bleeding disorders, resulting from defects in the genes encoding coagulation factors VIII and IX respectively. The current treatment for hemophiliacs entails frequent intravenous injections of coagulation factor concentrates, to prevent potentially life-threatening hemorrhages. Gene therapy utilizing recombinant adeno-associated viruses (AAV) could offer a potentially curative treatment option through the introduction of healthy genes into hepatocytes. Aim - The aim of this literature study was to investigate the long-term efficacy and safety of AAV vector-mediated gene therapy for the treatment of hemophilia A and B. Methods - The study is conducted as a systematic literature study and is based on six original articles retrieved from the search engine PubMed, using the key words "hemophilia AND gene therapy". Specific search criteria were used to facilitate the relevance assessment and selection of articles. Results - An increased endogenous coagulation factor synthesis was noted in the majority of the study participants after the gene therapy. Overall, a significant reduction in bleeding episodes and the use of factor concentrates were observed. The greatest improvements were noted in the cohorts that received the higher gene therapy doses or the mutated factor IX Padua gene. None of the study participants had an immunologic response to the transgene product. A humoral immune response against the AAV capsid was seen in all participants though. Large differences in AAV capsid-specific T-cell activation were observed. The most common adverse event was an elevation in the alanine aminotransferase (ALT) level. However, these events could be controlled with glucocorticoids. Conclusions - AAV vector-mediated gene therapy for the treatment of hemophilia A and B had a positive efficacy and safety profile. Although increased ALT levels remain a concern. Monitoring of larger numbers of study participants for longer follow-up periods is necessary for any definite conclusions to be drawn, to weigh risks against benefits and to optimize individual dosing.
532

Review of magnetic bead surface markers for stem cell separation : Literature study for MAGic Bioprocessing

Holmberg, Gustav, Svensson, Adrian, Bergström, Erik, Westerberg, Leo, Wijitchakhorn, Watthachak January 2022 (has links)
Stem cell therapy and transplantation is a quickly evolving field with many clinical applications. However, several problems need to be overcome before they can be applied on an allogenic scale, and among them is ensuring of the purity of the applied differentiated stem cell culture. Separation using magnetic beads which attach to the wanted cells has proven to be an effective and easy method to separate them from a sample. An important factor with the method is the choice of specific surface antigens on the beads which determines how well the beads are attached to the cell.  This report will provide some fact of the immunotherapy and some of the most important stem cells and their differentiation to an active cell. It will be elucidated which cytokines are important for differentiation, and current clinical studies in the immunotherapeutic field of stem cells and their useful surface antigens. Furthermore, regenerative medicine using stem cells will be covered. A brief overview mesenchymal and induced pluripotent stem cells, their biological markers, and their various uses. Specific projects using regenerative medicine will be described and an overview of ever-expanding market for regenerative medicine will also be included.
533

Influence of Nrf2 Activators and Keap1 Inhibitors on Antioxidative Phenotypes of THP-1-Derived M1 and M2 macrophages: Therapeutic Potential for Systemic Lupus Erythematosus

Svahn, Leo January 2023 (has links)
POPULAR SCIENTIFIC SUMMARY Systemic lupus erythematosus (SLE) is not your average disorder. It behaves like a mischievous troublemaker, wreaking havoc throughout the body, causing inflammation that affects multiple organs. SLE presents a puzzle that keeps health care professionals worldwide intrigued, searching for answers amidst its complex of immunologic manifestations and clinical symptoms. While we’ve made progress in understanding SLE, its specific cause remains a mystery. What we do know is that SLE triggers a fascinating interplay between genetic, hormonal, and environmental factors in susceptible individuals. Macrophages, specialized white blood cells, can be likened to moody actors on a stage wearing different masks and wielding functional props. Among them are M1 macrophages, fiery troublemakers who provoke pro-inflammatory responses, and M2 macrophages, peacemakers striving for balance by generating anti-inflammatory responses. Then there is NRF2, the vigilante, normally held by its captor, KEAP1. However, when cells stress NRF2 manages to break free from KEAP1 and spring into action, embarking on a crucial journey into the cell nucleus where DNA is stored. Once inside, NRF2 binds specific regions of the DNA, promoting genes associated with protective activities, including antioxidative responses and detoxification processes, thereby shielding cells from further harm. Now, let us envision a therapeutic strategy that utilizes this; if we can deliberately unleashNRF2 on command, triggering a powerful cascade of antioxidative responses throughout the body,such a treatment would offer tremendous promise and serve as a paradigm for patients sufferingfrom chronic inflammation. But the question remains: Is it possible? In this study, we investigated the effects of certain chemicals on macrophages in a controlledlab environment. Our goal was to explore their potential for therapeutic purposes. Excitingly, wediscovered that these chemicals can indeed influence macrophages to produce a stronger antiinflammatory and antioxidant response. These findings could be promising for developing futuretreatments, especially in patients diagnosed with conditions such as SLE. / ABSTRACT Systemic lupus erythematosus (SLE) is a multifaceted, chronic autoimmune disorder that leads to inflammation and affects various organs. A wide range of immunologic manifestations and clinical symptoms characterizes SLE. While the specific cause remains unknown, it is thought to result from a combination of genetic susceptibility and the intricate interplay between environmental and hormonal factors. A significant subset of SLE patients also experience renal manifestation, lupus nephritis (LN), characterized by distinct inflammatory responses in which macrophages play a role. Macrophages exhibit different functional characteristics depending on their environment, and generally display two contrasting phenotypes; M1, which elicits proinflammatory responses, and M2, which generates anti-inflammatory responses Homeostasis is vital, yet environmental stress is inevitable. NRF2, a transcription factor known for its involvement in oxidative stress response, plays a pivotal role. Under basal conditions, NRF2 resides in the cytoplasm and is targeted for degradation by the protein KEAP1. However, during cellular stress, the NRF2-KEAP1 complex dissociates, allowing NRF2 to translocate into the nucleus where it binds specific regulatory regions of genes that promote cytoprotective activities. The NRF2 pathway has gained attention as a potential target for therapeutic strategies in inflammatory conditions, including SLE. This study aimed to assess the effects of certain chemical NRF2 activators and a KEAP1 inhibitor on an in vitro model of M1 and M2 macrophage polarization. The objective was to investigate whether these compounds could enhance antioxidative response. To evaluate this, key genes and proteins involved in antioxidative pathways were analyzed. Gene expression was assessed using quantitative real-time PCR (qPCR), and protein presence was determined through immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). The findings of this study indicate that stimulation of macrophage subgroups with the selected compounds promotes a shift towards anti-inflammatory and antioxidative response. / <p>Rektor tilldelade Leo Svahn stipendie Österby för <em>välartade obemedlade studier</em>.</p>
534

Glucose Sensing and Differentiating Systems with Organic Electrochemical Neurons : A Future Outlook for Type 2 Diabetes / Detektion och urskiljning av glukoshalter med organiska elektrokemiska neuroner

Ziske, Sophie January 2024 (has links)
In recent years great advances in the field of biomedical engineering and organic electronics have been achieved. One promising application would be the regulation of blood glucose concentration in type 2 diabetes patients. This application would eliminate medication and would improve the standard of life. To achieve this goal a system is needed which receives information about the glucose concentration and reacts upon it. This output reaction could then be used to stimulate the body's own glucose regulation mechanisms. This thesis combined a glucose sensor with an artificial neuron to take the first step towards such a system. Two different artificial neurons, the Axon-Hillock neuron and the astable multivibrator, were characterized and examined upon their usability. The Axon-Hillock, build with organic electrochemical transistors, revealed that it could be applied for both regulating high and low blood glucose concentrations. The astable multivibrator, build with silicon-based transistors, was not as functional as the Axon-Hillock neuron but with more development it could become as good. The placement of the glucose sensor in the astable multivibrator circuit is essential parameter to consider. The results demonstrate that the examined system is functional and could become a part of a larger closed-loop system. Future tests on an animal model may demonstrate its viability as a treatment for type 2 diabetes.
535

Spatial mapping of motile cilia proteins in respiratory and female reproductive tissues

Bertilsson, Filippa January 2024 (has links)
Motile cilia play critical roles in the human body, including expelling mucus from the lungs and facilitating the transport of oocytes and sperm through the fallopian tubes. Understanding the complex structure and motility of cilia, as well as the diseases associated with them, is of big importance. This study investigates the proteins expressed in ciliated cells from both respiratory and reproductive tissues using multiplex immunofluorescence. We determined the subcellular localization of 134 proteins in the fallopian tube, endometrium, cervix, nasopharynx, and bronchus, focusing on five subcellular regions: the cilia tip, transition zone, basal body, cytoplasm, and nucleus. This analysis was conducted using an automated image analysis method developed specifically for this project. Our findings revealed a high correlation in protein expression across all tissues, although several proteins exhibited distinct expression patterns between different tissues. Notably, the fallopian tube showed a higher correlation with the nasopharynx and bronchus than with the endometrium and cervix. Within these proteins, six gene clusters were identified, with the two largest clusters being strongly associated with ciliary structure. This study enhances our understanding of motile ciliary structures and ciliated cells, identifying key proteins for further research into cilia motion, function, and related diseases.
536

High-throughput screening using multicellular tumor spheroids to reveal and exploit tumor-specific vulnerabilities

Senkowski, Wojciech January 2017 (has links)
High-throughput drug screening (HTS) in live cells is often a vital part of the preclinical anticancer drug discovery process. So far, two-dimensional (2D) monolayer cell cultures have been the most prevalent model in HTS endeavors. However, 2D cell cultures often fail to recapitulate the complex microenvironments of in vivo tumors. Monolayer cultures are highly proliferative and generally do not contain quiescent cells, thought to be one of the main reasons for the anticancer therapy failure in clinic. Thus, there is a need for in vitro cellular models that would increase predictive value of preclinical research results. The utilization of more complex three-dimensional (3D) cell cultures, such as multicellular tumor spheroids (MCTS), which contain both proliferating and quiescent cells, has therefore been proposed. However, difficult handling and high costs still pose significant hurdles for application of MCTS for HTS. In this work, we aimed to develop novel assays to apply MCTS for HTS and drug evaluation. We also set out to identify cellular processes that could be targeted to selectively eradicate quiescent cancer cells. In Paper I, we developed a novel MCTS-based HTS assay and found that nutrient-deprived and hypoxic cancer cells are selectively vulnerable to treatment with inhibitors of mitochondrial oxidative phosphorylation (OXPHOS). We also identified nitazoxanide, an FDA-approved anthelmintic agent, to act as an OXPHOS inhibitor and to potentiate the effects of standard chemotherapy in vivo. Subsequently, in Paper II we applied the high-throughput gene-expression profiling method for MCTS-based drug screening. This led to discovery that quiescent cells up-regulate the mevalonate pathway upon OXPHOS inhibition and that the combination of OXPHOS inhibitors and mevalonate pathway inhibitors (statins) results in synergistic toxicity in this cell population. In Paper III, we developed a novel spheroid-based drug combination-screening platform and identified a set of molecules that synergize with nitazoxanide to eradicate quiescent cancer cells. Finally, in Paper IV, we applied our MCTS-based methods to evaluate the effects of phosphodiesterase (PDE) inhibitors in PDE3A-expressing cell lines. In summary, this work illustrates how MCTS-based HTS yields potential to reveal and exploit previously unrecognized tumor-specific vulnerabilities. It also underscores the importance of cell culture conditions in preclinical drug discovery endeavors.
537

Biomarkers for Better Understanding of the Pathophysiology and Treatment of Chronic Pain : Investigations of Human Biofluids

Lind, Anne-Li January 2017 (has links)
Chronic pain affects 20 % of the global population, causes suffering, is difficult to treat, and constitutes a large economic burden for society. So far, the characterization of molecular mechanisms of chronic pain-like behaviors in animal models has not translated into effective treatments. In this thesis, consisting of five studies, pain patient biofluids were analyzed with modern proteomic methods to identify biomarker candidates that can be used to improve our understanding of the pathophysiology chronic pain and lead to more effective treatments. Paper I is a proof of concept study, where a multiplex solid phase-proximity ligation assay (SP-PLA) was applied to cerebrospinal fluid (CSF) for the first time. CSF reference protein levels and four biomarker candidates for ALS were presented. The investigated proteins were not altered by spinal cord stimulation (SCS) treatment for neuropathic pain. In Paper II, patient CSF was explored by dimethyl and label-free mass spectrometric (MS) proteomic methods. Twelve proteins, known for their roles in neuroprotection, nociceptive signaling, immune regulation, and synaptic plasticity, were identified to be associated with SCS treatment of neuropathic pain. In Paper III, proximity extension assay (PEA) was used to analyze levels of 92 proteins in serum from patients one year after painful disc herniation. Patients with residual pain had significantly higher serum levels of 41 inflammatory proteins. In Paper IV, levels of 55 proteins were analyzed by a 100-plex antibody suspension bead array (ASBA) in CSF samples from two neuropathic pain patient cohorts, one cohort of fibromyalgia patients and two control cohorts. CSF protein profiles consisting of levels of apolipoprotein C1, ectonucleotide pyrophosphatase/phosphodiesterase family member 2, angiotensinogen, prostaglandin-H2 D-isomerase, neurexin-1, superoxide dismutases 1 and 3 were found to be associated with neuropathic pain and fibromyalgia. In Paper V, higher CSF levels of five chemokines and LAPTGF-beta-1were detected in two patient cohorts with neuropathic pain compared with healthy controls. In conclusion, we demonstrate that combining MS proteomic and multiplex antibody-based methods for analysis of patient biofluid samples is a viable approach for discovery of biomarker candidates for the pathophysiology and treatment of chronic pain. Several biomarker candidates possibly reflecting systemic inflammation, lipid metabolism, and neuroinflammation in different pain conditions were identified for further investigation. / Uppsala Berzelii Technology Centre for Neurodiagnostics

Page generated in 0.0908 seconds