• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 230
  • 103
  • 71
  • 21
  • 16
  • 7
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 496
  • 97
  • 93
  • 53
  • 51
  • 50
  • 46
  • 40
  • 39
  • 35
  • 33
  • 32
  • 32
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Simulation of the cavitating flow in a model oil hydraulic spool valve using different model approaches

Schümichen, Michel, Rüdiger, Frank, Fröhlich, Jochen, Weber, Jürgen 27 April 2016 (has links) (PDF)
The contribution compares results of Large Eddy Simulations of the cavitating flow in a model oil hydraulic spool valve using an Euler-Euler and a one-way coupled Euler- Lagrange model. The impact of the choice of the empirical constants in the Kunz cavitation model is demonstrated. Provided these are chosen appropriately the approach can yield reasonable agreement with the corresponding experiment. The one-way Euler-Lagrange model yields less agreement. It is demonstrated that this is due to the lack of realistic volumetric coupling, rarely accounted for in this type of method. First results of such an algorithm are presented featuring substantially more realism.
322

Analysis of the rolling motion of loaded hoops

Theron, Willem F.D. 03 1900 (has links)
Thesis (PhD (Mathematical Sciences. Applied Mathematics))--University of Stellenbosch, 2008. / This dissertation contains a detailed report on the results of a research project on the behaviour of a dynamical system consisting of a hoop to which a heavy particle is fixed at the rim. This loaded hoop rolls on a rough surface while remaining in the vertical plane. The motion of the hoop consists of various, possibly alternating, phases consisting of rolling without slipping, spinning or skidding motion and in some cases ends by hopping off the surface. A general mathematical model is developed, consisting of a system of second order ordinary differential equations, one for each of the three degrees of freedom. Analytic solutions are obtained in some cases; otherwise numerical solutions are used. Three specific applications of the general model are dealt with. In the first application the problem of massless hoops is investigated. The main emphasis is on the somewhat controversial question of what happens after the normal reaction becomes zero in a position where the particle is still moving downwards. A new result shows that the hoop can continue to move horizontally in a motion defined as skimming. The second application deals with rigid hoops and a large number of detailed results are presented. Classification schemes for the different types of behaviour are introduced and summarised in the form of phase diagrams. Some emphasis is placed on the rather amazing number of different patterns of motion that can be obtained by varying the parameters. In the third application two elastic models are analysed, with the primary purpose of explaining one aspect of the reported behaviour of experimental hoops, namely hopping while the particle is moving downwards. A chapter on experimental models rounds off the project.
323

Theoretical modeling and experimental studies of particle-laden plumesfrom wastewater discharges

Li, Chunying, Anna., 李春穎. January 2006 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
324

Energetic-lattice based optimization / L’optimization par trellis-énergetique

Kiran, Bangalore Ravi 31 October 2014 (has links)
La segmentation hiérarchique est une méthode pour produire des partitions qui représentent une même image de manière de moins en moins fine. En même temps, elle sert d'entrée à la recherche d'une partition optimale, qui combine des extraits des diverses partitions en divers endroits. Le traitement hiérarchique des images est un domaine émergent en vision par ordinateur, et en particulier dans la communauté qui étudie les images hyperspectrales et les SIG, du fait de son capacité à structurer des données hyper-dimensionnelles. Le chapitre 1 porte sur les deux concepts fondamentaux de tresse et de treillis énergétique. La tresse est une notion plus riche que celle de hiérarchie de partitions, en ce qu'elle incorpore, en plus, des partitions qui ne sont pas emboîtées les unes dans les autres, tout en s'appuyant globalement sur une hiérarchie. Le treillis énergétique est une structure mixte qui regroupe une tresse avec une énergie, et permet d'y définir des éléments maximaux et minimaux. Lorsqu'on se donne une énergie, trouver la partition formée de classes de la tresse (ou de la hiérarchie) qui minimise cette énergie est un problème insoluble, de par sa complexité combinatoriale. Nous donnons les deux conditions de h-croissance et de croissance d'échelle, qui garantissent l'existence, l'unicité et la monotonie des solutions, et conduisent à un algorithme qui les détermine en deux passes de lecture des données. Le chapitre 2 reste dans le cadre précédent, mais étudie plus spécifiquement l'optimisation sous contrainte. Il débouche sur trois généralisations du modèle Lagrangien. Le chapitre 3 applique l'optimisation par treillis énergétique au cas de figure où l'énergie est introduite par une « vérité terrain », c'est à dire par un jeu de dessins manuel, que les partitions optimales doivent serrer au plus près. Enfin, le chapitre 4 passe des treillis énergétiques à ceux des courbes de Jordan dans le plan euclidien, qui définissent un modèle continu de segmentations hiérarchiques. Il permet entre autres de composer les hiérarchies avec diverses fonctions numériques / Hierarchical segmentation has been a model which both identifies with the construct of extracting a tree structured model of the image, while also interpreting it as an optimization problem of the optimal scale selection. Hierarchical processing is an emerging field of problems in computer vision and hyper-spectral image processing community, on account of its ability to structure high-dimensional data. Chapter 1 discusses two important concepts of Braids and Energetic lattices. Braids of partitions is a richer hierarchical partition model that provides multiple locally non-nested partitioning, while being globally a hierarchical partitioning of the space. The problem of optimization on hierarchies and further braids are non-tractable due the combinatorial nature of the problem. We provide conditions, of h-increasingness, scale-increasingness on the energy defined on partitions, to extract unique and monotonically ordered minimal partitions. Furthermore these conditions are found to be coherent with the Braid structure to perform constrained optimization on hierarchies, and more generally Braids. Chapter 2 demonstrates the Energetic lattice, and how it generalizes the Lagrangian formulation of the constrained optimization problem on hierarchies. Finally in Chapter 3 we apply the method of optimization using energetic lattices to the problem of extraction of segmentations from a hierarchy, that are proximal to a ground truth set. Chapter 4 we show how one moves from the energetic lattice on hierarchies and braids, to a numerical lattice of Jordan Curves which define a continous model of hierarchical segmentation. This model enables also to compose different functions and hierarchies
325

Análise isogeométrica aplicada a elementos de vigas planas. / Isogeometric analysis applied to 2D beam elements.

Marchiori, Gianluca 21 February 2019 (has links)
A análise isogeométrica (AIG) de estruturas consiste em construir a geometria exata ou aproximada de um modelo computacional a partir de funções criadas por meio de tecnologias de Computer Aided Design (CAD), tais como B-Splines, NURBS (Non-Uniform Rational BSplines) e T-splines, e aplicar o conceito de análise isoparamétrica, ou seja, representar o espaço de solução para as variáveis independentes em termos das mesmas funções que representam a geometria. O presente trabalho visa o estudo da análise isogeométrica aplicada a vigas planas, com a utilização de B-Splines e NURBS para aproximação de deslocamentos. São desenvolvidos modelos isogeométricos de vigas planas baseados nas hipóteses de Bernoulli- Euler e Timoshenko, e alguns exemplos de aplicação são realizados a fim de comparar os resultados numéricos com soluções analíticas, mostrando boa concordância. Uma questão pertinente à AIG corresponde à imposição de vínculos em pontos do domínio em que as funções básicas não sejam interpolatórias ou os vínculos desejados não forem diretamente relacionados aos graus de liberdade do elemento, que é o caso do elemento de viga de Bernoulli-Euler, já que as rotações geralmente não são tidas como graus de liberdade mas há a necessidade de se prescrever condições de contorno/conexão nas mesmas para descrever problemas físicos. Essa questão é tratada no presente trabalho através dos Métodos de Lagrange e de penalidade. São realizados exemplos de aplicação construídos com elementos de viga de Bernoulli-Euler utilizando os métodos de Lagrange e de penalidade na imposição de vínculos e na conexão entre pontos de regiões de domínio. / Isogeometric analysis (IGA) consists on building the geometry of the computational model with functions created by Computer Aided Design (CAD) technologies, such as B-Splines, NURBS (Non-Uniform Rational B-Splines) and T-Splines. Then, isoparametric concept is employed, that is, the solution space is represented by means of the same functions used to describe the geometry. The aim of the present contribution is the study of isogeometric analysis applied to 2D beams with interpolation via B-splines and NURBS. Two-dimensional isogeometric beam formulations based on Bernoulli-Euler and Timoshenko assumptions are presented. Some examples of application are given and results are compared to analytical solutions, showing good agreement. An important issue about IGA corresponds to the imposition of constraints at points of domain in which the shape functions are not interpolatory, or the desired constraints are not directly related to the degrees of freedoms. This may occur for Bernoulli-Euler beams since rotations are not usually defined as degrees of freedom, but they need to be assessed for prescription of some boundary/connection conditions. This is done in present contribution by employing both Lagrange and penalty methods. Some examples of structures composed by 2D isogeometric Bernoulli-Euler beam elements are solved by using Lagrange and Penalty methods to impose constraints and to make the connection between domain regions.
326

Curve shortening in second-order lagrangian

Unknown Date (has links)
A second-order Lagrangian system is a generalization of a classical mechanical system for which the Lagrangian action depends on the second derivative of the state variable. Recent work has shown that the dynamics of such systems c:an be substantially richer than for classical Lagrangian systems. In particular, topological properties of the planar curves obtained by projection onto the lower-order derivatives play a key role in forcing certain types of dynamics. However, the application of these techniques requires an analytic restriction on the Lagrangian that it satisfy a twist property. In this dissertation we approach this problem from the point of view of curve shortening in an effort to remove the twist condition. In classical curve shortening a family of curves evolves with a velocity which is normal to the curve and proportional to its curvature. The evolution of curves with decreasing action is more general, and in the first part of this dissertation we develop some results for curve shortening flows which shorten lengths with respect to a Finsler metric rather than a Riemannian metric. The second part of this dissertation focuses on analytic methods to accommodate the fact that the Finsler metric for second-order Lagrangian system has singularities. We prove the existence of simple periodic solutions for a general class of systems without requiring the twist condition. Further; our results provide a frame work in which to try to further extend the topological forcing theorems to systems without the twist condition. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
327

Simulação de escoamentos sobre configurações tridimensionais com malhas de blocos múltiplos.

Leonor Camila Quispe Yagua 00 December 2000 (has links)
O presente trabalho objetiva o desenvolvimento, implementação e análise de métodos numéricos baseados em técnicas de malhas de blocos múltiplos. As malhas de blocos múltiplos se dividem em malhas de blocos múltiplos justapostos e malhas de blocos múltiplos sobrepostos. Dentre as classes existentes destes métodos, o trabalho vai se concentrar em técnicas de malhas sobrepostos. Dentre as classes existentes destes métodos, o trabalho vai se concentrar em técnicas de malhas sobrepostas, porque estas oferecem uma maior flexibilidade para o procedimento de geração de malhas estruturadas. Estas técnicas são particularmente adequadas para configurações realisticamente complexas. O presente trabalho analisa a técnica Chimera, explicando os processos a serem feitos para a criação de uma malha adequada para aplicação desta técnica. O trabalho compreeende também o desenvolvimento e validação de códigos de simulação baseados em uma formulação bidimensional e tridimensional. O algoritmo numérico para a solução de equações Euler/Navier-Stokes usa um esquema centrado com dissipação artificial no contexto de diferenças finitas. As aplicações realizadas com esta técnica foram feitas sobre geometrias de interesse em aerodinâmica.
328

Un abordaje del multiplicador de Lagrange por medio de la teoría de registros de representación semiótica en estudiantes de economía

Proleón Patricio, Daniel Giovanni 08 February 2019 (has links)
El presente trabajo tiene como objetivo analizar la coordinación de las Representaciones en los Registros de Representación Semiótica (gráfico, algebraico y natural) que estudiantes de Economía de una universidad particular de Lima, realizan cuando desarrollan una situación problema relacionada al Multiplicador de Lagrange. Para poder llevar a cabo este trabajo, hemos revisado antecedentes de investigación que tienen como objeto matemático al Multiplicador de Lagrange, así como funciones reales de varias variables, ya sea con el empleo de la tecnología o sin ella. Por otro lado, hemos justificado la realización de nuestra investigación por medio de aspectos académicos, curriculares y personales para poder mostrar la pertinencia del presente trabajo. El marco teórico empleado pertenece a la Teoría de Registros de Representación Semiótica (TRRS) de Duval (1995), mediante el cual podremos analizar las coordinaciones realizadas por los estudiantes cuando resuelvan una situación problema. El referencial metodológico empleado es Aspectos de la Ingeniería Didáctica (ID) de Artigue (1995), cuya estructura guiará nuestra tesis. Con respecto a la etapa experimental, se escogieron dos parejas de estudiantes, quienes resolvieron una situación problema de una actividad, en la cual utilizaron el software Geogebra para su realización. Para finalizar, se realizó el análisis de los resultados obtenidos en la situación problema, en el cual se confrontaron los análisis a priori y a posteriori, para observar si los resultados obtenidos fueron los esperados por el investigador. Siendo así, se concluye que el software Geogebra favorece la conversión de representaciones en el registro algebraico para representaciones en el registro gráfico. Por otro lado, el uso de la TRRS permitió identificar las dificultades por las cuales los estudiantes no lograron la coordinación de registros. / The main objective of the present work is to analyze the coordination of the Representations in the Registries of Semiotic Representation (graphic-algebraic-natural language), that students of Economics, of a public university in Lima, perform when they develop a problem issue related to the Lagrange Multiplier (LM) to carry out this thesis, we have reviewed research backgrounds that has have as a mathematical object of study the LM, whether it is with the use of technology or without it. Also, we have reviewed and analysed the applications that are presented in the experiments carried out in those investigations, as well as the use of the instruments used for data collection, which serves as a guide for the design of the activities present in the problem situation . On the other hand, we have justified the realization of our research taking into account the academic, curricular, personal and professional aspects in order to show the relevance of the execution of our work. The theoretical framework use is that of the Theory of Registries of Semiotic Representation (TRRS) of Duval (1995), provides us with valuable and necessary tools to understand and interpret the transformations made by the subjects of research when a problem situation occurs. Likewise, we have chosen as a methodological reference aspect of the Didactic Engineering (ID) of Artigue (1995) whose structure will guide our tesis. To carry out the experimental stage, we have chosen two couples who will participate in a problematic situation, composed of two activities, in wich they used the Geogebra software for its realization. Finally, an analusis was made of the results obtained from the problematic situation, in wich we compared the a priori analysis and the a posteriori analysis, the characteristic of the ID, to observe whether the results were or were not predicted by the researcher. Thus, it is conclude that the use of the GeoGebra software favours the conversion of representations in the algebraic register for representations in the graphic register. On the other hand, the TRRS allows us to explain how conversions and treatments are developed, also to identify the difficulties for which students do not manage to coordinate. / Tesis
329

Simulation numérique directe et analyse des transferts de chaleur dans les lits de particules fixes et mobiles

Euzenat, Florian 11 December 2017 (has links) (PDF)
Ces travaux de recherche s'intéressent à la caractérisation des transferts thermiques dans les milieux fluide-particules, et en particulier, les lits fluidisés au sein desquels un solide divisé est mis en suspension par un fluide. La grande diversité d'échelles spatiales et temporelles dans ces procédés nécessite d'étudier les interactions hydrodynamiques, thermiques et/ou chimiques entre les particules et le fluide à l'aide d'une approche multi-échelles. Une étude des transferts thermiques dans des lits fixes puis fluidisés, est réalisée à deux échelles : locale (Particle Resolved Simulation) et moyennée (Discrete Element Method-Computional Fluids Dynamics). L'étude PRS permet de caractériser les couplages locaux des transferts thermiques entre particules ainsi que la dynamique de ces transferts dans les configurations fluidisées. Une étude comparative entre les échelles met en évidence les limites du modèle DEM-CFD à capter les fluctuations des transferts thermiques observées dans les simulations PRS. Dans un dernier temps, les fermetures du modèle DEM-CFD sont améliorées de manière à réintroduire les fluctuations perdues par le changement d'échelles.
330

Simulation numérique et contrôle optimal d'interactions fluide incompressible/structure par une méthode de Lagrange-Galerkin d'ordre 2. Applications aux ouvrages d'art

Fourestey, Gilles 11 December 2002 (has links) (PDF)
Le but de cette thèse est la construction et l'implémentation d'une méthode de Lagrange-Galerkin d'ordre élevé dans un code de simulation d'interactions fluide/structure. Cette méthode repose sur une formulation par éléments finis mixtes et une méthode des caractéristiques d'ordre 2 en maillage fixe ou mobile. La stabilité de ce schéma a été étudiée dans des cas simples. Des analyses aéroélastiques de structures généralement rencontrées dans le Génie Civil ont été effectuées à travers des tests numériques sur des coupes de ponts en mouvements forcés et libres. Les résultats obtenus ont été comparés à ceux obtenus avec la méthode de Lagrange-Galerkin d'ordre 1 ainsi qu'à des études réalisées en soufflerie expérimentale. Enfin, l'utilisation des méthodes de Lagrange-Galerkin dans des problèmes de contrôle optimal a été étudiée. Un schéma discret linéarisé basé sur la méthode des caractéristiques a été construit et quelques tests simples pour des problèmes de contrôle et d'identification en maillages fixes et mobiles ont été effectués.

Page generated in 0.0504 seconds