• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 8
  • 7
  • 6
  • Tagged with
  • 56
  • 22
  • 19
  • 17
  • 13
  • 11
  • 11
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Lichtverschmutzung - Methodenentwicklung zur Analyse und Bewertung für die vorsorgende Landschaftsplanung

Zschorn, Maria 04 April 2024 (has links)
In den letzten Jahren ist das Bewusstsein für die Thematik der zunehmenden Lichtverschmutzung weltweit und auch in Deutschland gestiegen. Mittlerweile befassen sich nicht mehr nur Astronom:innen und Biolog:innen mit den Auswirkungen der künstlichen Nachthelligkeit. Auch Beleuchtungsplanung, Stadtverwaltung und Politik suchen nach Wegen, der Problematik zu begegnen. Die Landschaftsplanung als Fachplanung des Naturschutzes in Deutschland hat die Aufgabe, Natur und Landschaft sowie Auswirkungen anthropogener Aktivitäten auf diese zu analysieren und zu bewerten. Künstliche Beleuchtung bewirkt nach aktuellen Forschungen negative Effekte insbesondere auf die Schutzgüter Arten und Biotope sowie Landschaftsgestalt und Erholung. An Lichtquellen aufgrund von Hitze und Erschöpfung sterbende Insekten, Fledermäuse, die am Ausflug aus ihren Quartieren gehindert werden, ein erhöhtes Krebsrisiko für den Menschen oder die Behinderung von Wissenschaft und Forschung der Astronomie sind nur einige Beispiele für negative Auswirkungen. Für die Analyse und Bewertung solcher Belastungen im Rahmen der Landschaftsplanung fehlen jedoch methodische Ansätze. Die Entwicklung ebenjener wird durch die Komplexität der Thematik sowie die Bandbreite an beteiligten Fachbereichen und Akteur:innen erschwert. Darüber hinaus fehlen belastbare Grenzwerte aufgrund mangelnder Forschung. Die vorliegende Arbeit widmet sich der Entwicklung eines methodischen Ansatzes, der es ermöglicht, Auswirkungen von Beleuchtung auf Natur und Landschaft im Rahmen der kommunalen Landschaftsplanung zu ermitteln und adäquate Maßnahmen anzusetzen. Konkret wird dabei die Fragen behandelt, wie sich Lichtbelastungen für die betroffenen Schutzgüter der Landschaftsplanung ermitteln, räumlich verorten und mittels Maßnahmen verhindern, mindern oder beseitigen lassen. Der Ablauf der Methodik gliedert sich in die drei Schritte: A - Analyse der Beleuchtungssituation, B - Bewertung der Lichtbelastung für Arten und Biotope und C - Bewertung der Lichtbelastung für Landschaftsgestalt und Erholung. Die entwickelte Methodik wird in ArcGIS Pro durchgeführt, nutzt leicht zugängliche Datengrundlagen und erfordert kein komplexes Zusatzwissen des/der Planers:in zum Thema ‚Licht‘. Ein Handlungsleitfaden am Ende der Arbeit ermöglicht eine schnelle Übersicht und eine einfache Durchführung der einzelnen Schritte.:1 Einleitung Teil I Grundlagen 2 Planungskontext Deutschland 2.1 Das Planungssystem 2.2 Betrachtungsgegenstand der Landschaftsplanung 2.2.1 Definitionen von ‚Umwelt‘, ‚Natur‘ und ‚Landschaft‘ 2.2.2 Das Konzept der Schutzgüter 2.2.3 Das Schutzgut Arten und Biotope 2.2.4 Das Schutzgut Landschaftsgestalt und Erholung 2.3 Der kommunale Landschaftsplan 3 Bewertungsmethoden in der vorsorgenden Landschaftsplanung 3.1 Definitionen 3.2 Anforderungen an Bewertungsmethoden 3.3 Bewertungsmaßstab und Zielerfüllungsgrad 3.3.1 Leitlinien und Leitbilder mit Bezug zu künstlicher Beleuchtung 3.3.2 Umweltqualitätsziele und -standards 4 Licht und seine physikalischen Eigenschaften 4.1 Begriffliche Abgrenzung 4.2 Beschreibung und Eigenschaften von Licht 4.3 Wichtige physikalische Größen zur Beschreibung von Licht 5 Natürliches Licht und Umwelt 5.1 Natürliche Lichtrhythmen 5.2 Interaktionen zwischen Licht und Mensch 5.3 Interaktionen zwischen Licht und Tieren 5.4 Interaktionen zwischen Licht und Pflanzen 6 Künstliche Beleuchtung im Außenraum 6.1 Historische Entwicklung künstlicher Beleuchtung 6.2 Aufgabe der Beleuchtung im Außenraum 6.3 Arten künstlicher Beleuchtung im Außenraum 6.4 Charakteristik von Beleuchtung im Außenraum 6.5 Erfassung und Planung von Beleuchtung 7 Lichtverschmutzung 7.1 Entstehung, Begriffsbestimmung und korrelierende Messgrößen 7.2 Aktueller Stand der Lichtverschmutzung und rechtlicher Rahmen 7.2.1 Weltweit 7.2.2 Europa 7.2.3 Deutschland 7.3 Kritische Betrachtung der aktuellen Diskussion und bestimmender Akteure 8 Einfluss von Lichtverschmutzung auf die Schutzgüter der Landschaftsplanung 8.1 Arten und Biotope 8.1.1 Methodik 8.1.2 Ergebnisse 8.1.3 Zusammenfassung der Auswirkungen auf das Schutzgut Arten und Biotope 8.1.4 Diskussion der Datenlage 8.2 Einfluss auf Landschaftsgestalt und Erholung 8.2.1 Stand der Forschung und Methodik 8.2.2 Ergebnisse: Auswirkungen von Beleuchtung 8.2.3 Zusammenfassung der Auswirkungen auf Landschaftsgestalt und Erholung 8.2.4 Diskussion der Datenlage 8.3 Präzisierung der Minderungsmöglichkeiten und Best Practice Beispiele 8.3.1 Minderung der Negativeffekte 8.3.2 Bewusstseinsstärkung 8.3.3 Möglichkeiten auf konzeptionellen Planungsebenen 8.3.4 Best-Practice-Beispiele 9 Lichtverschmutzung in der vorsorgenden Landschaftsplanung 9.1 Einflussmöglichkeiten 9.2 Aktueller Stand der Beachtung 9.2.1 Methodik 9.2.2 Ergebnisse 9.2.3 Fazit aus der Plananalyse 9.3 Ansätze für Analyse und Bewertung von Lichtverschmutzung für Natur und Landschaft 9.3.1 Bewertungsmaßstäbe zur Problematik Lichtverschmutzung 9.3.2 Methodenansätze aus der Forschung Teil II – Methodenentwicklung 10 Einführung zur Methodenentwicklung 10.1 Ziel und zugrundeliegende Fragestellung 10.2 Ablauf 10.3 Anwendungsraum und Anforderungen 10.4 Definitionen 10.5 Freital als Beispielplanungsgebiet A – Analyse der Beleuchtung 11 Einführung zu Karte A 11.1 Fragestellung 11.2 Kriterien zur Eignung von Methodenansätzen für die Landschaftsplanung 11.3 Bestehende Methodenansätze zur Messung der Beleuchtungssituation (Darstellung der Lichtimmission) 11.3.1 Messung der Bodenbeleuchtungsstärke 11.3.2 Leuchtdichtemessungen 11.3.3 Messung der Himmelshelligkeit 11.3.4 Erfassung mittels sozialempirischer Methoden 11.3.5 Messungen aus der Luft (Befliegung) 11.4 Bestehende Methodenansätze zur Modellierung der Beleuchtungssituation 11.4.1 Mathematische Modelle auf Grundlage der Stadtlage und -größe 11.4.2 Abschätzung der Beleuchtungssituation auf Grundlage von Satellitendaten 11.4.3 Modellierung auf Grundlage von Daten zu Lichtquellen 11.5 Methoden unter Nutzung existierender Datengrundlagen 11.5.1 Lichtverschmutzungsatlas 11.6 Zusammenfassung und Auswahl eines Methodenansatzes für die Landschaftsplanung 11.7 Eingangsdaten 11.7.1 Daten zu Lichtemittenten 11.7.2 Daten zur künstlichen Himmelsaufhellung 11.7.3 Sonstige 12 Layer A1 – Lichtemittenten-Hotspots 12.1 Hotspots auf Grundlage des Leuchtenkatasters 12.1.1 Leuchtenausgestaltung 12.1.2 Lichtpunktdichte 12.2 Hotspots auf Grundlage der Landnutzungen 12.3 Darstellung der Hotspots 13 Layer A2 – Modellierung der direkten Einstrahlung aus Lichtemittenten 13.1 Definition des Modellierungsgegenstandes 13.1.1 Lichttechnische Größe 13.1.2 Abgrenzung beleuchteter Flächen 13.1.3 Zusammenfassung Modellierungsgegenstand 13.2 Umsetzung im GIS 13.2.1 Puffer 13.2.2 Sichtfeldanalysen 13.3 Beurteilung der Modellierungsergebnisse 13.3.1 Messungen 13.3.2 Verbal-argumentative Einschätzung der Eignung der Datengrundlage 13.3.3 Verbal-argumentative Einschätzung Werkzeuganwendung in ArcGIS Pro 13.4 Auswahl und Darstellung einer Variante 14 Layer A3 – Darstellung der Himmelshelligkeit 15 Zusammenfassende Beschreibung der Beleuchtungssituation (Karte A) B – Bewertung Arten und Biotope 16 B1 - Bewertung der Lichtempfindlichkeit von Arten und Biotopen 16.1 Definition und Bewertungsziel 16.2 verwendete Datengrundlagen 16.3 Bestandsbeschreibung 16.3.1 Landnutzung und Biotoptypen 16.3.2 Bestehende Schutzgebiete und Vorgaben aus übergeordneter Planung 16.3.3 Artvorkommen im Untersuchungsgebiet 16.4 Zielartenkonzepte 16.4.1 Vorteile von Zielartenkonzepten 16.4.2 Kritikpunkte an der Verwendung von Zielarten 16.4.3 Die Auswahl von Zielarten 16.4.4 Zielarten für die Bewertung der Lichtsensitivität 16.5 Auswahl und Beschreibung der Zielarten für Freital 16.5.1 Vögel 16.5.2 Fledermäuse 16.5.3 Insekten 16.6 Layer B1.1 - Empfindlichkeit gegenüber direkter Beleuchtung aufgrund von Zielartenvorkommen 16.6.1 Sensitivitätsindex 16.6.2 Anpassung des Sensitivitätsindex 16.7 Layer B1.2 - Empfindlichkeit gegenüber direkter Beleuchtung weiterer Flächen 16.7.1 Schützenswerte Lebensräume 16.7.2 Flächen der Biotopvernetzung 16.8 Layer B1.3 - Empfindlichkeit gegenüber Himmelsaufhellung 16.8.1 Vogelzugrouten 16.8.2 Größere zusammenhängende Gewässerkomplexe 16.9 Zusammenfassende Beschreibung der lichtempfindlichen Flächen für Arten und Biotope (Karte B1) 17 B2 - Konfliktanalyse und Maßnahmenkonzeption 17.1 Layer B2.1 Minderung bestehender Belastungen 17.1.1 Konflikte mit beleuchteten Flächen 17.1.2 Konflikte mit Raum- und Himmelsaufhellung 17.2 Layer B2.2 Schutz und Entwicklung von Flächen 17.3 weitere Maßnahmen ohne Verortung 17.4 Zusammenfassung des Ziel- und Maßnahmenkonzeptes (Karte B2) C - Bewertung der Lichtempfindlichkeit von Landschaftsgestalt und Erholung 18 C1 Bewertung der Lichtempfindlichkeit von Landschaftsgestalt und Erholung 18.1 Definition und Bewertungsziel 18.2 Im vorliegenden Fall verwendete Datengrundlagen 18.3 Bestandsbeschreibung 18.3.1 Landschaftsbild 18.3.2 Erholung 18.3.3 Erlebbarkeit von natürlicher Dunkelheit und Sternenhimmel 18.4 Layer C1.1 – (kulturhistorisch) bedeutsame Orte der Himmelsbeobachtung 18.5 Layer C1.2 – Orte zum Erleben von Sternenhimmel und Dunkelheit 18.6 Zusammenfassende Beschreibung der lichtempfindlichen Flächen für Landschaftsgestalt und Erholung 19 C2 Konfliktanalyse und Maßnahmenkonzeption 19.1 Layer C2.1 – Minderung bestehender Belastungen 19.1.1 Konflikte mit beleuchteten Flächen 19.1.2 Konflikte mit Himmelsaufhellung 19.2 Layer C2.2 – Schutz und Entwicklung von Flächen 19.3 weitere Maßnahmen ohne Verortung 19.4 Zusammenfassung des Ziel- und Maßnahmenkonzeptes (Karte C2) Teil III – Zusammenfassung und Anleitung für die Durchführung in der Praxis 20 Zusammenfassung 20.1 Anleitung zur Durchführung in der Praxis 20.1.1 Analyse der Beleuchtungssituation vor Ort (Karte A) 20.1.2 Arten und Biotope (Karten B1 und B2) 20.1.3 Landschaftsgestalt und Erholung (Karten C1 und C2) 20.2 Diskussion 20.2.1 Praxistauglichkeit 20.2.2 Inhaltliche Richtigkeit 20.3 Fazit Quellenverzeichnis Danksagung Eidesstattliche Erklärung Anhang
42

Die Dorfkümmerer von Brandenburg: Ein Bericht aus der Praxis

Ehrlich, Kornelia, Federwisch, Tobias, Werner, Anna-Dorothea 15 June 2021 (has links)
Nicht wenige peripher gelegene Dörfer sind geprägt durch eine wechselseitige Verstärkung von wirtschaftlichen, sozialen und demographischen Herausforderungen. Da viele dieser Herausforderungen nur unter Einbindung der Menschen vor Ort bewältigt werden können, erlangen starke Partner aus der Dorfgemeinschaft eine zunehmende Bedeutung. Mit dem Modell Dorfkümmerer förderten das Land Brandenburg aus Mitteln des Europäischen Sozialfonds (ESF) und des Landes Brandenburg sowie der Generali Zukunftsfonds diejenigen Akteure, die Veränderungsprozesse in ihren jeweiligen Heimatgemeinden initiieren wollten. Als so genannte Potenzialentwickler hatten die Dorfkümmerer die Aufgabe, sozial innovative und sozialunternehmerische Lösungsansätze voranzutreiben und das Leistungsvermögen der Dorfbewohner systematisch zu fördern.
43

Birds & Blades / Environmentally safe spatial allocation of wind turbine structures

Bose, Anushika 11 March 2021 (has links)
Kollisionen von Vögeln mit Windturbinen haben sich zu einer bedenklichen Quelle für die Gefährdung besonders von Populationen seltenerer Vogelarten entwickelt. Allerdings wird im Allgemeinen auch bestätigt, dass die Nutzung der Windenergie unverzichtbar ist. Das Hauptziel dieser Arbeit war es, die Relevanz der Wechselwirkungen zu verstehen, die zwischen technischen Infrastrukturen und den von Kollisionen betroffenen Vogelarten auf der Landschaftsebene stattfinden. Da sowohl von der Landschaft beeinflusst werden. Unter Nutzung der durch gezielte Nachsuche gefundenen Opfer der am häufigsten von Kollisionen betroffenen Artengruppen paradoxerweise as als Proxy für das Vorkommen von Arten, und Durch die Anwendung verschiedener Techniken zur Modellierung der Artenverbreitung (SDMs) die “kollisionsempfindliche Nische “für jede der Vogelgruppen beschrieben. Obwohl die vorhergesagten Gebiete mit potenziellen Kollisionsrisiko insgesamt nur kleine, aber stark verteilt im ungefährdes Bundeslandes hatten. Greifvögel mit die breiteste Nische, die zudem signifikante Überlappungen mit den kollisionsempfindlichen Nischen der anderen Gruppen aufwies. Die niedrig bewerteten Gebiete weiter differenziert, die als tatsächliche „Bereiche ohne Risiko“ interpretiert wurden, für weitere geplante Winkraftanlagen. Zusätzlich die jeweiligen Potentiale und Gefärdungen für Kollisionen auf der Basis der regionalen Dichteverteilungen der Arten in Brandenburg mit Ensemble-Methoden von Boosted Regression Trees wird ebenfalls bewertet. Zusammenfassend, diese Analysen paradigmatisch, sowohl die Gebiete als auch die Entfernungen zu den Grenzlinien der verschiedenen Landnutzungsformen ein höheres Risiko für die Kollision von Individuen der untersuchten Arten mit Windkraftanlagen ergibt ermitteln . Dieser Ansatz kann es möglich machen, zukünftige Windparkerweiterungen in der Landschaft im die möglichst kollisionsfreie und naturverträglicheStandorte in der Landschaft. / Although, it is well recognized that harnessing wind energy is highly indispensable, but collisions of birds at wind turbines has also developed simultaneously, concerning multiple bird species. With wind being strongly affected by the landscape and the behaviour of birds also being strongly influenced by the landscape, the main objective of the thesis was to understand the relevance of interactions between wind energy infrastructures and bird species from an ecological perspective of the landscape. Utilizing the carcass collision datasets of the frequently-hit bird-groups paradoxically as proxies for species presence, collision sensitive ecological distances to different land-use types were ascertained, by employing multiple techniques of species distribution modelling (SDMs), to delineate their respective collision sensitive niche employing the capabilities of machine learning algorithms. The predicted areas were specialized and highly dispersed across the federal state, with raptors showing the broadest niche and significant overlaps with the other groups. Based on estimated collision probabilities of the assessed areas (between 0 and 1), further segregations differentiated only those areas with negligible collision probabilities, <0.05, which were interpreted as the actual "no risk areas, suggesting any further planned additions of wind turbines to be suitably positioned only in these “safer” areas. Additionally, these collision probabilities were translated to strike susceptibilities, by relating them to the regional density distributions of the species as well. Summarizing, these analyses paradigmatically ascertained collision risk areas, and especially the collision sensitive distances from different land-use types to these areas, enabling the accurate guidance of future wind farm expansions in the landscape. Ultimately, formulating novel wind turbine allocation strategies to minimize avian collisions, making them as compatible as possible.
44

Bewertung, Verarbeitung und segmentbasierte Auswertung sehr hoch auflösender Satellitenbilddaten vor dem Hintergrund landschaftsplanerischer und landschaftsökologischer Anwendungen / Evaluation, processing and segment-based analysis of very high resolution satellite imagery against the background of applications in landscape planning and landscape ecology

Neubert, Marco 03 March 2006 (has links) (PDF)
Die Fernerkundung war in den vergangenen Jahren von einschneidenden Umbrüchen gekennzeichnet, die sich besonders in der stark gestiegenen geometrischen Bodenauflösung der Sensoren und den damit einhergehenden Veränderungen der Verarbeitungs- und Auswertungsverfahren widerspiegeln. Sehr hoch auflösende Satellitenbilddaten - definiert durch eine Auflösung zwischen einem halben und einem Meter - existieren seit dem Start von IKONOS Ende 1999. Etwa im selben Zeitraum wurden extrem hoch auflösende digitale Flugzeugkameras (0,1 bis 0,5 m) entwickelt. Dieser Arbeit liegen IKONOS-Daten mit einer Auflösung von einem (panchromatischer Kanal) bzw. vier Metern (Multispektraldaten) zugrunde. Bedingt durch die Eigenschaften sehr hoch aufgelöster Bilddaten (z. B. Detailgehalt, starke spektrale Variabilität, Datenmenge) lassen sich bisher verfügbare Standardverfahren der Bildverarbeitung nur eingeschränkt anwenden. Die Ergebnisse der in dieser Arbeit getesteten Verfahren verdeutlichen, dass die Methoden- bzw. Softwareentwicklung mit den technischen Neuerungen nicht Schritt halten konnte. Einige Verfahren werden erst allmählich für sehr hoch auflösende Daten nutzbar (z. B. atmosphärisch-topographische Korrektur). Die vorliegende Arbeit zeigt, dass Daten dieses Auflösungsbereiches mit bisher verwendeten pixelbasierten, statistischen Klassifikationsverfahren nur unzulänglich ausgewertet werden können. Die hier untersuchte Anwendung von Bildsegmentierungsmethoden hilft, die Nachteile pixelbasierter Verfahren zu überwinden. Dies wurde durch einen Vergleich pixel- und segmentbasierter Klassifikationsverfahren belegt. Im Rahmen einer Segmentierung werden homogene Bildbereiche zu Regionen verschmolzen, welche die Grundlage für die anschließende Klassifikation bilden. Hierzu stehen über die spektralen Eigenschaften hinaus Form-, Textur- und Kontextmerkmale zur Verfügung. In der verwendeten Software eCognition lassen sich diese Klassifikationsmerkmale zudem auf Grundlage des fuzzy-logic-Konzeptes in einer Wissensbasis (Entscheidungsbaum) umsetzen. Ein Vergleich verschiedener, derzeit verfügbarer Segmentierungsverfahren zeigt darüber hinaus, dass sich mit der genutzten Software eine hohe Segmentierungsqualität erzielen lässt. Der wachsende Bedarf an aktuellen Geobasisdaten stellt für sehr hoch auflösende Fernerkundungsdaten eine wichtige Einsatzmöglichkeit dar. Durch eine gezielte Klassifikation der Bilddaten lassen sich Arbeitsgrundlagen für die hier betrachteten Anwendungsfelder Landschaftsplanung und Landschaftsökologie schaffen. Die dargestellten Beispiele von Landschaftsanalysen durch die segmentbasierte Auswertung von IKONOS-Daten zeigen, dass sich eine Klassifikationsgüte von 90 % und höher erreichen lässt. Zudem können die infolge der Segmentierung abgegrenzten Landschaftseinheiten eine Grundlage für die Berechnung von Landschaftsstrukturmaßen bilden. Nationale Naturschutzziele sowie internationale Vereinbarungen zwingen darüber hinaus zur kontinuierlichen Erfassung des Landschaftsinventars und dessen Veränderungen. Fernerkundungsdaten können in diesem Bereich zur Etablierung automatisierter und operationell einsatzfähiger Verfahren beitragen. Das Beispiel Biotop- und Landnutzungskartierung zeigt, dass eine Erfassung von Landnutzungseinheiten mit hoher Qualität möglich ist. Bedingt durch das Auswertungsverfahren sowie die Dateneigenschaften entspricht die Güte der Ergebnisse noch nicht vollständig den Ansprüchen der Anwender, insbesondere hinsichtlich der erreichbaren Klassifikationstiefe. Die Qualität der Ergebnisse lässt sich durch die Nutzung von Zusatzdaten (z. B. GIS-Daten, Objekthöhenmodelle) künftig weiter steigern. Insgesamt verdeutlicht die Arbeit den Trend zur sehr hoch auflösenden digitalen Erderkundung. Für eine breite Nutzung dieser Datenquellen ist die weitere Entwicklung automatisierter und operationell anwendbarer Verarbeitungs- und Analysemethoden unerlässlich. / In recent years remote sensing has been characterised by dramatic changes. This is reflected especially by the highly increased geometrical resolution of imaging sensors and as a consequence thereof by the developments in processing and analysis methods. Very high resolution satellite imagery (VHR) - defined by a resolution between 0.5 and 1 m - exists since the start of IKONOS at the end of 1999. At about the same time extreme high resolution digital airborne sensors (0.1 till 0.5 m) have been developed. The basis of investigation for this dissertation is IKONOS imagery with a resolution of one meter (panchromatic) respectively four meters (multispectral). Due to the characteristics of such high resolution data (e.g. level of detail, high spectral variability, amount of data) the use of previously available standard methods of image processing is limited. The results of the procedures tested within this work demonstrate that the development of methods and software was not able to keep up with the technical innovations. Some procedures are only gradually becoming suitable for VHR data (e.g. atmospheric-topographic correction). Additionally, this work shows that VHR imagery can be analysed only inadequately using traditional pixel-based statistical classifiers. The herein researched application of image segmentation methods helps to overcome drawbacks of pixel-wise procedures. This is demonstrated by a comparison of pixel and segment-based classification. Within a segmentaion, homogeneous image areas are merged into regions which are the basis for the subsequent classification. For this purpose, in addition to spectral features also formal, textural and contextual properties are available. Furthermore, the applied software eCognition allows the definition of the features for classification based on fuzzy logic in a knowledge base (decision tree). An evaluation of different, currently available segmentation approaches illustrates that a high segmentation quality is achievable with the used software. The increasing demand for geospatial base data offers an important field of application for VHR remote sensing data. With a targeted classification of the imagery the creation of working bases for the herein considered usage for landscape planning and landscape ecology is possible. The given examples of landscape analyses using a segment-based processsing of IKONOS data show an achievable classification accuracy of 90 % and more. The landscape units delineated by image segmentation could be used for the calculation of landscape metrics. National aims of nature conservation as well as international agreements constrain a continuous survey of the landscape inventory and the monitoring of its changes. Remote sensing imagery can support the establishment of automated and operational methods in this field. The example of biotope and land use type mapping illustrates the possibility to detect land use units with a high precision. Depending on the analysis method and the data characteristics the quality of the results is not fully equivalent to the user?s demands at the moment, especially concerning the achievable depth of classification. The quality of the results can be enhanced by using additional thematic data (e.g. GIS data, object elevation models). To summarize this dissertation underlines the trend towards very high resolution digital earth observation. Thus, for a wide use of this kind of data it is essentially to further develop automated and operationally useable processing and analysis methods.
45

Modellgestützte Bewertung und Optimierung landschaftsbezogener Planungen unter besonderer Berücksichtigung des Erosionsschutzes: Modellgestützte Bewertung und Optimierung landschaftsbezogener Planungen unter besonderer Berücksichtigung des Erosionsschutzes

Schob-Adam, Annekatrin 25 January 2013 (has links)
Die Planung geeigneter Maßnahmen zu Verminderung des Bodenabtrags ist gebunden an eine möglichst präzise Ermittlung von Erosions- und Depositionsflächen, die Lokalisierung des Oberflächenabflusses und die Erfassung möglicher Eintrittspunkte des erodierten Bodens in Fließ- und Stillgewässer (siehe auch DUTTMANN 1999). Dazu stehen verschiedene Instrumente zur Verfügung. Neben den klassischen Methoden wie Kartierungen von Erosionsformen sowie deren Verteilung oder Messungen zur Quantifizierung von Bodenab- und aufträgen kommt der Anwendung von Modellen eine deutlich steigende Bedeutung zu. Dazu stehen einerseits empirische Modelle und andererseits prozessorientierte physikalisch basierte Modelle zur Verfügung. Bedingt durch den damit verbundenen Aufwand wurde bisher auf einen Einsatz dieser Modelle im Rahmen der planerischen Praxis weitgehend verzichtet. Mit der Anwendung des physikalisch basierten Erosionsmodells EROSION 3D wurde die Anwendbarkeit des Modells als Instrument in der Planungspraxis untersucht. Dazu wurde geprüft, ob der Ist-Zustand der Flächen dargestellt und die Planung von Maßnahmen präzisiert und objektiviert wurden kann. Diese Zielstellung wurde an drei, in verschiedenen Regionen Sachsens gelegenen Fallbeispielen mit verschiedenen planerischen Zielstellungen untersucht. Alle Untersuchungsgebiete befinden sich in überwiegend agrarisch geprägten Landschaften, da mit dem gewählten Modell vorrangig erosive Prozesse auf ackerbaulich genutzten Standorten dargestellt werden. Das erste Fallbeispiel untersucht, inwieweit die Funktion des Bodens als Archiv der Natur- und Kulturgeschichte auf Ackerflächen gewährleistet wurde und welche Maßnahmen zum Schutz dieser Bodenfunktion beitragen können. Archäologische Bodendenkmäler auf landwirtschaftlich genutzten Flächen unterliegen durch die deutliche Intensivierung der landwirtschaftlichen Bodenbearbeitung einer zunehmenden Gefährdung. Als Vorgehensweise wurde hier zuerst die graduelle Gefährdung der archäologischen Bodendenkmäler auf mesoskaliger Ebene bestimmt. Dazu erfolgt die Ermittlung der potentiellen Erosionsgefährdung. Anschließend für mehrere Hot-Spot-Flächen auf der Ebene des Kleineinzugsgebietes (chorische Ebene) eine hochaufgelöste Prüfung des derzeitigen Zustandes der Flächen und die Ableitung und Prüfung von Schutzmaßnahmen unter der Annahme von mehreren Landschaftsszenarien durchgeführt. Das zweite Fallbeispiel betrachtet den Einsatz des Erosionsmodells im Rahmen des Artenschutzes am Beispiel der Flussperlmuschel (Margaritifera margaritifera). Die Flussperlmuscheln sind durch Sediment- und Stoffeinträge in Fließgewässer extrem in ihrem Bestand gefährdet. Mit Hilfe der Modellierungsszenarien wurde untersucht, ob Stoffeintragspfade aus landwirtschaftlich genutzten Flächen und Sedimentübertrittspunkte in Gewässer nachvollziehbar ermittelt werden. Die Erwartung wurde durch den Modelleinsatz bestätigt. Auf Basis des Ist-Zustandes wurden anschließend Maßnahmenvorschläge erarbeitet, die zur Minimierung der Gewässereutrophierung und damit zum Schutz der Flussperlmuschel beitragen. Fallbeispiel 3 untersucht im Untersuchungsgebiet Baderitzer Stausee vorliegende umweltrelevante Planungen hinsichtlich ihrer Aussagen zum Erosionsschutz und den möglichen Einsatz von Erosionsmodellierungen auf dieser Planungsebene. Dazu wurde für dieses Fallbeispiel ein optimiertes Szenario mit der Fokussierung auf den Erosionsschutz entwickelt. Zusammenfassend wird festgestellt, dass das Modell EROSION 3D den unterschiedlichen Planungsansprüchen der drei ausgewählten Fallbeispiele gerecht werden konnte und ein weiterer Einsatz des Modells im Rahmen umweltrelevanter Maßnahmen sehr gut vorstellbar ist. Dazu bedarf es neben der noch zu beantwortenden Frage nach dem Finanzierungskonzept vor allem der Mitarbeit und kompetenten Beratung der Entscheidungsträger durch die Planer und Planerinnen.:INHALTSVERZEICHNIS ABBILDUNGSVERZEICHNIS TABELLENVERZEICHNIS ABKÜRZUNGEN UND SYMBOLE 1 Einleitung 1 1.1 Motivation 1 1.2 Ziel 3 1.3 Vorgehensweise 4 2 Stand des Wissens 5 2.1 Bodenerosion 5 2.1.1 Nutzungsbedingte Erosion 6 2.1.2 Erosionsschäden 8 2.1.3 Erosionsschutz 9 2.2 Umweltziele, Umweltqualitätsziele und Umwelthandlungsziele des Erosionsschutzes 13 2.2.1 Allgemeine Grundlagen 13 2.2.2 Situation des Erosionsschutzes 15 2.3 Rechtliche Grundlagen des Erosionsschutzes 19 2.3.1 Weltweit 19 2.3.2 Europäische Union (EU) 21 2.3.3 Bundesebene 22 2.3.4 Länderebene am Beispiel des Freistaates Sachsen 26 2.4 Landschaftsbezogene Planungen - Umsetzungsinstrumente des Erosionsschutzes? 28 2.4.1 Einordnung der Landschaftsplanung im Planungssystem 28 2.4.2 Planungsrecht und räumliche Planungssysteme 28 2.4.3 Raumordnung 28 2.4.4 Landschaftsplanung 29 2.4.5 Weitere Planungsinstrumente 31 2.4.6 Landwirtschaftliche Fachplanungen 32 2.5 Bisherige planerische Ansätze zur Erosionsminderung 33 2.5.1 Kriterien zur Ackerschlaggestaltung 33 2.5.2 Sächsischer Leitfaden Bodenschutz bei Planungs- und Genehmigungsverfahren 33 2.5.3 Aktuelle sächsische, deutsche und europäische Förderprogramme 33 2.5.4 Standards zum Erosionsschutz unter Cross Compliance ab dem 01. Juli 2010 35 3 Methodik 36 3.1 Vorgehensweise 36 3.1.1 Fallbeispiel 1 – Erosionsbedingte Gefährdung archäologischer Denkmalflächen 38 3.1.2 Fallbeispiel 2 - Arten- und Gewässerschutz am Beispiel der Flussperlmuschel 39 3.1.3 Fallbeispiel 3 – Optimierung landschaftsgliedernder Strukturen 40 3.2 Erosionsmodellierung 42 3.2.1 Stand der Wissenschaft 42 3.2.2 Auswahlkriterien der Modellanwendung 43 3.2.3 EROSION 3D 45 3.3 Daten- und Informationsgrundlagen 49 3.3.1 Landnutzungsparameter 49 3.3.2 Bodendaten 50 3.3.3 Ableitung des Landnutzungs- und Bodendatensatzes 51 3.3.4 Geländehöhen/ Geländemodell 51 3.3.5 Niederschlagsdaten 52 3.4 Experimentelle Parameterbestimmung 55 3.4.1 Feldarbeiten 55 3.4.2 Laborarbeiten 55 4 Ergebnisse 56 4.1 Fallbeispiel 1 – Schutz archäologischer Denkmalflächen 56 4.1.1 Beschreibung des Untersuchungsgebietes 57 4.1.2 Erosionsgefährdung des Gesamtgebietes - Übersichtsmodellierung 62 4.1.3 Erosionsgefährdung der Hotspotflächen 67 4.2 Fallbeispiel 2 – Artenschutzschwerpunkt Flussperlmuschel 92 4.2.1 Beschreibung der Untersuchungsgebiete 93 4.2.2 Gefährdungsursachen 97 4.2.3 Ergebnisse 99 4.2.4 Lokalisierung und Quantifizierung von Eintragspfaden und Übertrittspunkten 108 4.3 Fallbeispiel 3 – Optimierung landschaftsgliedernder Strukturen im Einzugsgebiet Stausee Baderitz 113 4.3.1 Beschreibung des Untersuchungsgebietes 113 4.3.2 Vorgehensweise 116 4.3.3 Ergebnisse der Modellierungsszenarien 125 5 Diskussion und Schlussfolgerungen 136 5.1 Fallbeispiel 1 136 5.1.1 Übersichtsmodellierung 136 5.1.2 Hot-Spot-Szenarien 136 5.1.3 Schlussfolgerungen 138 5.2 Fallbeispiel 2 139 5.2.1 Modellierungsergebnisse 139 5.2.2 Fehlerdiskussion 141 5.2.3 Vergleich der Modellierungsergebnisse mit vorliegenden Untersuchungen 143 5.2.4 Nicht berücksichtigte Gefährdungsfaktoren 144 5.2.5 Schlussfolgerungen Fallbeispiel 2 144 5.3 Fallbeispiel 3 146 5.3.1 Berücksichtigung des Erosionsschutzes in den vorliegenden Umweltplanungen 146 5.3.2 Erosionsmodellierung 146 5.3.3 Schlussfolgerung Fallbeispiel 3 150 5.4 Synopse der Fallbeispiele 153 5.4.1 Diskussion der Methodik 153 5.4.2 Eignung des Modells für die Umweltplanung 155 5.4.3 Einsatzmöglichkeiten auf der Basis gesetzlicher Grundlagen 156 5.4.4 Fazit 159 6 Zusammenfassung 161 7 Abstract 163 8 Literaturverzeichnis 164 Erklärung gemäß Anlage 4 – Eidesstattliche Versicherung 177 ANHANG A 1 Parametrisierung Fallbeispiel 2 180 A 2 Parametrisierung Fallbeispiel 3 182 A 3 Kartographische Darstellung der Modellergebnisse Fallbeispiel 1 187 / The planning of suitable measurements for reducing soil erosion is linked to a possible precise calculation of size of erosion and deposition, the localization of the overland flow and the side identification of any possible signs of eroded soil in flowing and in slack water (DUTTMANN 1999). A number of different instruments are available. Additionally to the classical methods, such as, field mapping the erosion forms, as well as, the allocation or measurements for the quantification of soil erosion and application, it also increases the importance of models. On the one side there are the empirical models and on the other the process orientated physical models. Due to the amount of work involved in using such models in the real world, they have been mainly ignored. Under the use of physical based erosion models EROSION 3D the use of these models as instruments of planning practice has been examined. The actual condition of the areas has also been produced and to see if the planning of measurements can be precise and objective. This aim has been examined in three different regions in Saxony in case studies each with different methods of planning. All examination areas were located in mainly agricultural countrysides and examined mainly with chosen model of erosion process concerning agronomic used locations. The first case study examined to what extent the function the soil as archive the nature and cultural history on agronomic areas had been allowed for and which measurements for the protection of these soil functions can make a contribution. Archaeological sites on used agricultural areas are exposed to greater danger due to the increased use of soil cultivation. First the potential erosion danger of archaeological sites on a mesoskalig level with subsequent gradual erosion levels was calculated. Finally for several hot spot areas followed a detailed examination of the current condition of the areas and the diversion and examination of protection measurements concerning several countryside scenarios. The second case study looked at the application of erosion models in the framework of wildlife conservation with the example choosen of freshwater pearl mussel (Margaritifera margaritifera). The freshwater pearl mussels are extremely endangered in their population as they are in the sediment and element inputs in flowing water. The examination looked comprehensibly at the help of element input ways on countryside areas and loose sediment in waters. Based on the actual situation a number of measurement suggestions were prepared for the reduction of water eutrophication and add to the protection of the freshwater pearl mussel. Case study 3 looked at the examination point Baderitzer Stausee the actual status of the countryside planning and the possible use of erosion models as possible methods of these planning levels. To what extent the existing plans for erosion protection in these planning procedures had been taken into account up to now.:INHALTSVERZEICHNIS ABBILDUNGSVERZEICHNIS TABELLENVERZEICHNIS ABKÜRZUNGEN UND SYMBOLE 1 Einleitung 1 1.1 Motivation 1 1.2 Ziel 3 1.3 Vorgehensweise 4 2 Stand des Wissens 5 2.1 Bodenerosion 5 2.1.1 Nutzungsbedingte Erosion 6 2.1.2 Erosionsschäden 8 2.1.3 Erosionsschutz 9 2.2 Umweltziele, Umweltqualitätsziele und Umwelthandlungsziele des Erosionsschutzes 13 2.2.1 Allgemeine Grundlagen 13 2.2.2 Situation des Erosionsschutzes 15 2.3 Rechtliche Grundlagen des Erosionsschutzes 19 2.3.1 Weltweit 19 2.3.2 Europäische Union (EU) 21 2.3.3 Bundesebene 22 2.3.4 Länderebene am Beispiel des Freistaates Sachsen 26 2.4 Landschaftsbezogene Planungen - Umsetzungsinstrumente des Erosionsschutzes? 28 2.4.1 Einordnung der Landschaftsplanung im Planungssystem 28 2.4.2 Planungsrecht und räumliche Planungssysteme 28 2.4.3 Raumordnung 28 2.4.4 Landschaftsplanung 29 2.4.5 Weitere Planungsinstrumente 31 2.4.6 Landwirtschaftliche Fachplanungen 32 2.5 Bisherige planerische Ansätze zur Erosionsminderung 33 2.5.1 Kriterien zur Ackerschlaggestaltung 33 2.5.2 Sächsischer Leitfaden Bodenschutz bei Planungs- und Genehmigungsverfahren 33 2.5.3 Aktuelle sächsische, deutsche und europäische Förderprogramme 33 2.5.4 Standards zum Erosionsschutz unter Cross Compliance ab dem 01. Juli 2010 35 3 Methodik 36 3.1 Vorgehensweise 36 3.1.1 Fallbeispiel 1 – Erosionsbedingte Gefährdung archäologischer Denkmalflächen 38 3.1.2 Fallbeispiel 2 - Arten- und Gewässerschutz am Beispiel der Flussperlmuschel 39 3.1.3 Fallbeispiel 3 – Optimierung landschaftsgliedernder Strukturen 40 3.2 Erosionsmodellierung 42 3.2.1 Stand der Wissenschaft 42 3.2.2 Auswahlkriterien der Modellanwendung 43 3.2.3 EROSION 3D 45 3.3 Daten- und Informationsgrundlagen 49 3.3.1 Landnutzungsparameter 49 3.3.2 Bodendaten 50 3.3.3 Ableitung des Landnutzungs- und Bodendatensatzes 51 3.3.4 Geländehöhen/ Geländemodell 51 3.3.5 Niederschlagsdaten 52 3.4 Experimentelle Parameterbestimmung 55 3.4.1 Feldarbeiten 55 3.4.2 Laborarbeiten 55 4 Ergebnisse 56 4.1 Fallbeispiel 1 – Schutz archäologischer Denkmalflächen 56 4.1.1 Beschreibung des Untersuchungsgebietes 57 4.1.2 Erosionsgefährdung des Gesamtgebietes - Übersichtsmodellierung 62 4.1.3 Erosionsgefährdung der Hotspotflächen 67 4.2 Fallbeispiel 2 – Artenschutzschwerpunkt Flussperlmuschel 92 4.2.1 Beschreibung der Untersuchungsgebiete 93 4.2.2 Gefährdungsursachen 97 4.2.3 Ergebnisse 99 4.2.4 Lokalisierung und Quantifizierung von Eintragspfaden und Übertrittspunkten 108 4.3 Fallbeispiel 3 – Optimierung landschaftsgliedernder Strukturen im Einzugsgebiet Stausee Baderitz 113 4.3.1 Beschreibung des Untersuchungsgebietes 113 4.3.2 Vorgehensweise 116 4.3.3 Ergebnisse der Modellierungsszenarien 125 5 Diskussion und Schlussfolgerungen 136 5.1 Fallbeispiel 1 136 5.1.1 Übersichtsmodellierung 136 5.1.2 Hot-Spot-Szenarien 136 5.1.3 Schlussfolgerungen 138 5.2 Fallbeispiel 2 139 5.2.1 Modellierungsergebnisse 139 5.2.2 Fehlerdiskussion 141 5.2.3 Vergleich der Modellierungsergebnisse mit vorliegenden Untersuchungen 143 5.2.4 Nicht berücksichtigte Gefährdungsfaktoren 144 5.2.5 Schlussfolgerungen Fallbeispiel 2 144 5.3 Fallbeispiel 3 146 5.3.1 Berücksichtigung des Erosionsschutzes in den vorliegenden Umweltplanungen 146 5.3.2 Erosionsmodellierung 146 5.3.3 Schlussfolgerung Fallbeispiel 3 150 5.4 Synopse der Fallbeispiele 153 5.4.1 Diskussion der Methodik 153 5.4.2 Eignung des Modells für die Umweltplanung 155 5.4.3 Einsatzmöglichkeiten auf der Basis gesetzlicher Grundlagen 156 5.4.4 Fazit 159 6 Zusammenfassung 161 7 Abstract 163 8 Literaturverzeichnis 164 Erklärung gemäß Anlage 4 – Eidesstattliche Versicherung 177 ANHANG A 1 Parametrisierung Fallbeispiel 2 180 A 2 Parametrisierung Fallbeispiel 3 182 A 3 Kartographische Darstellung der Modellergebnisse Fallbeispiel 1 187
46

Bewertung, Verarbeitung und segmentbasierte Auswertung sehr hoch auflösender Satellitenbilddaten vor dem Hintergrund landschaftsplanerischer und landschaftsökologischer Anwendungen

Neubert, Marco 14 October 2005 (has links)
Die Fernerkundung war in den vergangenen Jahren von einschneidenden Umbrüchen gekennzeichnet, die sich besonders in der stark gestiegenen geometrischen Bodenauflösung der Sensoren und den damit einhergehenden Veränderungen der Verarbeitungs- und Auswertungsverfahren widerspiegeln. Sehr hoch auflösende Satellitenbilddaten - definiert durch eine Auflösung zwischen einem halben und einem Meter - existieren seit dem Start von IKONOS Ende 1999. Etwa im selben Zeitraum wurden extrem hoch auflösende digitale Flugzeugkameras (0,1 bis 0,5 m) entwickelt. Dieser Arbeit liegen IKONOS-Daten mit einer Auflösung von einem (panchromatischer Kanal) bzw. vier Metern (Multispektraldaten) zugrunde. Bedingt durch die Eigenschaften sehr hoch aufgelöster Bilddaten (z. B. Detailgehalt, starke spektrale Variabilität, Datenmenge) lassen sich bisher verfügbare Standardverfahren der Bildverarbeitung nur eingeschränkt anwenden. Die Ergebnisse der in dieser Arbeit getesteten Verfahren verdeutlichen, dass die Methoden- bzw. Softwareentwicklung mit den technischen Neuerungen nicht Schritt halten konnte. Einige Verfahren werden erst allmählich für sehr hoch auflösende Daten nutzbar (z. B. atmosphärisch-topographische Korrektur). Die vorliegende Arbeit zeigt, dass Daten dieses Auflösungsbereiches mit bisher verwendeten pixelbasierten, statistischen Klassifikationsverfahren nur unzulänglich ausgewertet werden können. Die hier untersuchte Anwendung von Bildsegmentierungsmethoden hilft, die Nachteile pixelbasierter Verfahren zu überwinden. Dies wurde durch einen Vergleich pixel- und segmentbasierter Klassifikationsverfahren belegt. Im Rahmen einer Segmentierung werden homogene Bildbereiche zu Regionen verschmolzen, welche die Grundlage für die anschließende Klassifikation bilden. Hierzu stehen über die spektralen Eigenschaften hinaus Form-, Textur- und Kontextmerkmale zur Verfügung. In der verwendeten Software eCognition lassen sich diese Klassifikationsmerkmale zudem auf Grundlage des fuzzy-logic-Konzeptes in einer Wissensbasis (Entscheidungsbaum) umsetzen. Ein Vergleich verschiedener, derzeit verfügbarer Segmentierungsverfahren zeigt darüber hinaus, dass sich mit der genutzten Software eine hohe Segmentierungsqualität erzielen lässt. Der wachsende Bedarf an aktuellen Geobasisdaten stellt für sehr hoch auflösende Fernerkundungsdaten eine wichtige Einsatzmöglichkeit dar. Durch eine gezielte Klassifikation der Bilddaten lassen sich Arbeitsgrundlagen für die hier betrachteten Anwendungsfelder Landschaftsplanung und Landschaftsökologie schaffen. Die dargestellten Beispiele von Landschaftsanalysen durch die segmentbasierte Auswertung von IKONOS-Daten zeigen, dass sich eine Klassifikationsgüte von 90 % und höher erreichen lässt. Zudem können die infolge der Segmentierung abgegrenzten Landschaftseinheiten eine Grundlage für die Berechnung von Landschaftsstrukturmaßen bilden. Nationale Naturschutzziele sowie internationale Vereinbarungen zwingen darüber hinaus zur kontinuierlichen Erfassung des Landschaftsinventars und dessen Veränderungen. Fernerkundungsdaten können in diesem Bereich zur Etablierung automatisierter und operationell einsatzfähiger Verfahren beitragen. Das Beispiel Biotop- und Landnutzungskartierung zeigt, dass eine Erfassung von Landnutzungseinheiten mit hoher Qualität möglich ist. Bedingt durch das Auswertungsverfahren sowie die Dateneigenschaften entspricht die Güte der Ergebnisse noch nicht vollständig den Ansprüchen der Anwender, insbesondere hinsichtlich der erreichbaren Klassifikationstiefe. Die Qualität der Ergebnisse lässt sich durch die Nutzung von Zusatzdaten (z. B. GIS-Daten, Objekthöhenmodelle) künftig weiter steigern. Insgesamt verdeutlicht die Arbeit den Trend zur sehr hoch auflösenden digitalen Erderkundung. Für eine breite Nutzung dieser Datenquellen ist die weitere Entwicklung automatisierter und operationell anwendbarer Verarbeitungs- und Analysemethoden unerlässlich. / In recent years remote sensing has been characterised by dramatic changes. This is reflected especially by the highly increased geometrical resolution of imaging sensors and as a consequence thereof by the developments in processing and analysis methods. Very high resolution satellite imagery (VHR) - defined by a resolution between 0.5 and 1 m - exists since the start of IKONOS at the end of 1999. At about the same time extreme high resolution digital airborne sensors (0.1 till 0.5 m) have been developed. The basis of investigation for this dissertation is IKONOS imagery with a resolution of one meter (panchromatic) respectively four meters (multispectral). Due to the characteristics of such high resolution data (e.g. level of detail, high spectral variability, amount of data) the use of previously available standard methods of image processing is limited. The results of the procedures tested within this work demonstrate that the development of methods and software was not able to keep up with the technical innovations. Some procedures are only gradually becoming suitable for VHR data (e.g. atmospheric-topographic correction). Additionally, this work shows that VHR imagery can be analysed only inadequately using traditional pixel-based statistical classifiers. The herein researched application of image segmentation methods helps to overcome drawbacks of pixel-wise procedures. This is demonstrated by a comparison of pixel and segment-based classification. Within a segmentaion, homogeneous image areas are merged into regions which are the basis for the subsequent classification. For this purpose, in addition to spectral features also formal, textural and contextual properties are available. Furthermore, the applied software eCognition allows the definition of the features for classification based on fuzzy logic in a knowledge base (decision tree). An evaluation of different, currently available segmentation approaches illustrates that a high segmentation quality is achievable with the used software. The increasing demand for geospatial base data offers an important field of application for VHR remote sensing data. With a targeted classification of the imagery the creation of working bases for the herein considered usage for landscape planning and landscape ecology is possible. The given examples of landscape analyses using a segment-based processsing of IKONOS data show an achievable classification accuracy of 90 % and more. The landscape units delineated by image segmentation could be used for the calculation of landscape metrics. National aims of nature conservation as well as international agreements constrain a continuous survey of the landscape inventory and the monitoring of its changes. Remote sensing imagery can support the establishment of automated and operational methods in this field. The example of biotope and land use type mapping illustrates the possibility to detect land use units with a high precision. Depending on the analysis method and the data characteristics the quality of the results is not fully equivalent to the user?s demands at the moment, especially concerning the achievable depth of classification. The quality of the results can be enhanced by using additional thematic data (e.g. GIS data, object elevation models). To summarize this dissertation underlines the trend towards very high resolution digital earth observation. Thus, for a wide use of this kind of data it is essentially to further develop automated and operationally useable processing and analysis methods.
47

Landowners and biodiversity: Analysis of the potential of conservation on private land in the East of Bolivia / Bewertung der Entwicklungspotential privater Naturschutzgebiete in East Bolivien

Choquehuanca Zeballos, Jorge Luis 24 January 2005 (has links)
No description available.
48

Assessing the perceived environment through crowdsourced spatial photo content for application to the fields of landscape and urban planning / Nutzung von räumlich verorteten, im Internet von vielen Menschen zusammengetragenen Fotodaten zur Auswertung und Einschätzung der öffentlichen Wahrnehmung von Landschaft und Umwelt in Stadt- und Landschaftsplanung

Dunkel, Alexander 12 August 2016 (has links) (PDF)
Assessing information on aspects of identification, perception, emotion, and social interaction with respect to the environment is of particular importance to the fields of natural resource management. Our ability to visualize this type of information has rapidly improved with the proliferation of social media sites throughout the Internet in recent years. While many methods to extract information on human behavior from crowdsourced geodata already exist, this work focuses on visualizing landscape perception for application to the fields of landscape and urban planning. Visualization of people’s perceptual responses to landscape is demonstrated with crowdsourced photo geodata from Flickr, a popular photo sharing community. A basic, general method to map, visualize and evaluate perception and perceptual values is proposed. The approach utilizes common tools for spatial knowledge discovery and builds on existing research, but is specifically designed for implementation within the context of landscape perception analysis and particularly suited as a base for further evaluation in multiple scenarios. To demonstrate the process in application, three novel types of visualizations are presented: the mapping of lines of sight in Yosemite Valley, the assessment of landscape change in the area surrounding the High Line in Manhattan, and individual location analysis for Coit Tower in San Francisco. The results suggest that analyzing crowdsourced data may contribute to a more balanced assessment of the perceived landscape, which provides a basis for a better integration of public values into planning processes. / Als Wahrnehmung wird der Bewusstseinsprozess des subjektiven Verstehens der Umwelt bezeichnet. Grundlage für diesen Prozess ist die Gewinnung von Informationen über die Sinne, also aus visuellen, olfaktorischen, akustischen und anderen Reizen. Die Wahrnehmung ist aber auch wesentlich durch interne Prozesse beeinflusst. Das menschliche Gehirn ist fortlaufend damit beschäftigt, sowohl bewusst als auch unbewusst Sinneswahrnehmungen mit Erinnerungen abzugleichen, zu vereinfachen, zu assoziieren, vorherzusagen oder zu vergleichen. Aus diesem Grund ist es schwierig, die Wahrnehmung von Orten und Landschaften in Planungsprozessen zu berücksichtigen. Jedoch wird genau dies von der Europäischen Landschaftskonvention gefordert, die Landschaft als einen bestimmten Bereich definiert, so wie er von Besuchern und Einwohnern wahrgenommen wird (“as a zone or area as perceived by local people or visitors”, ELC Art. 1, Abs. 38). Während viele Fortschritte und Erkenntnisse, zum Beispiel aus den Kognitionswissenschaften, heute helfen, die Wahrnehmung einzelner Menschen zu verstehen, konnte die Stadt- und Landschaftsplanung kaum profitieren. Es fehlt an Kenntnissen über das Zusammenwirken der Wahrnehmung vieler Menschen. Schon Stadtplaner Kevin Lynch beschäftigte dieses gemeinsame, kollektive ‚Bild‘ der menschlichen Umwelt ("generalized mental picture", Lynch, 1960, p. 4). Seitdem wurden kaum nennenswerte Fortschritte bei der Erfassung der allgemeinen, öffentlichen Wahrnehmung von Stadt- und Landschaft erzielt. Dies war Anlass und Motivation für die vorliegende Arbeit. Eine bisher in der Planung ungenutzte Informationsquelle für die Erfassung der Wahrnehmung vieler Menschen bietet sich in Form von crowdsourced Daten (auch ‚Big Data‘), also großen Mengen an Daten die von vielen Menschen im Internet zusammengetragen werden. Im Vergleich zu konventionellen Daten, zum Beispiel solchen die durch Experten erhoben werden und durch öffentliche Träger zur Verfügung stehen, eröffnet sich durch crowdsourced Daten eine bisher nicht verfügbare Quelle für Informationen, um die komplexen Zusammenhänge zwischen Raum, Identität und subjektiver Wahrnehmung zu verstehen. Dabei enthalten crowdsourced Daten lediglich Spuren menschlicher Entscheidungen. Aufgrund der Menge ist es aber möglich, wesentliche Informationen über die Wahrnehmung derer, die diese Daten zusammengetragen haben, zu gewinnen. Dies ermöglicht es Planern zu verstehen, wie Menschen ihre unmittelbare Umgebung wahrnehmen und mit ihr interagieren. Darüber hinaus wird es immer wichtiger, die Ansichten Vieler in Planungsprozessen zu berücksichtigen (Lynam, De Jong, Sheil, Kusumanto, & Evans, 2007; Brody, 2004). Der Wunsch nach öffentlicher Beteiligung sowie die Anzahl an beteiligten Stakeholdern nehmen dabei konstant zu. Durch das Nutzen dieser neuen Informationsquelle bietet sich eine Alternative zu herkömmlichen Ansätzen wie Umfragen, die genutzt werden um beispielsweise Meinungen, Positionen, Werte, Normen oder Vorlieben von bestimmten sozialen Gruppen zu messen. Indem es crowdsourced Daten erleichtern, solch soziokulturelle Werte zu bestimmen, können die Ergebnisse vor allem bei der schwierigen Gewichtung gegensätzlicher Interessen und Ansichten helfen. Es wird die Ansicht geteilt, dass die Nutzung von crowdsourced Daten, indem Einschätzungen von Experten ergänzt werden, letztendlich zu einer faireren, ausgeglichenen Berücksichtigung der Allgemeinheit in Entscheidungsprozessen führen kann (Erickson, 2011, p.1). Eine große Anzahl an Methoden ist bereits verfügbar, um aus dieser Datenquelle wichtige landschaftsbezogene Informationen auszulesen. Beispiele sind die Bewertung der Attraktivität von Landschaften, die Bestimmung der Bedeutung von Sehenswürdigkeiten oder Wahrzeichen, oder die Einschätzung von Reisevorlieben von Nutzergruppen. Viele der bisherigen Methoden wurden jedoch als ungenügend empfunden, um die speziellen Bedürfnisse und das breite Spektrum an Fragestellungen zur Landschaftswahrnehmung in Stadt- und Landschaftsplanung zu berücksichtigen. Das Ziel der vorliegenden Arbeit ist es, praxisrelevantes Wissen zu vermitteln, welches es Planern erlaubt, selbstständig Daten zu erforschen, zu visualisieren und zu interpretieren. Der Schlüssel für eine erfolgreiche Umsetzung wird dabei in der Synthese von Wissen aus drei Kategorien gesehen, theoretische Grundlagen (1), technisches Wissen zur Datenverarbeitung (2) sowie Kenntnisse zur grafischen Visualisierungen (3). Die theoretischen Grundlagen werden im ersten Teil der Arbeit (Part I) präsentiert. In diesem Teil werden zunächst Schwachpunkte aktueller Verfahren diskutiert, um anschließend einen neuen, konzeptionell-technischen Ansatz vorzuschlagen der gezielt auf die Ergänzung bereits vorhandener Methoden zielt. Im zweiten Teil der Arbeit (Part II) wird anhand eines Datenbeispiels die Anwendung des Ansatzes exemplarisch demonstriert. Fragestellungen die angesprochen werden reichen von der Datenabfrage, Verarbeitung, Analyse, Visualisierung, bis zur Interpretation von Grafiken in Planungsprozessen. Als Basis dient dabei ein Datenset mit 147 Millionen georeferenzierte Foto-Daten und 882 Millionen Tags der Fotoaustauschplatform Flickr, welches in den Jahren 2007 bis 2015 von 1,3 Millionen Nutzern zusammengetragen wurde. Anhand dieser Daten wird die Entwicklung neuer Visualisierungstechniken exemplarisch vorgestellt. Beispiele umfassen Spatio-temporal Tag Clouds, eine experimentelle Technik zur Generierung von wahrnehmungsgewichteten Karten, die Visualisierung von wahrgenommenem Landschaftswandel, das Abbilden von wahrnehmungsgewichteten Sichtlinien, sowie die Auswertung von individueller Wahrnehmung von und an bestimmten Orten. Die Anwendung dieser Techniken wird anhand verschiedener Testregionen in den USA, Kanada und Deutschland für alle Maßstabsebenen geprüft und diskutiert. Dies umfasst beispielsweise die Erfassung und Bewertung von Sichtlinien und visuellen Bezügen in Yosemite Valley, das Monitoring von wahrgenommenen Veränderungen im Bereich der High Line in New York, die Auswertung von individueller Wahrnehmung für Coit Tower in San Francisco, oder die Beurteilung von regional wahrgenommenen identitätsstiftenden Landschaftswerten für Baden-Württemberg und die Greater Toronto Area (GTA). Anschließend werden Ansätze vorgestellt, um die Qualität und Validität von Visualisierungen einzuschätzen. Abschließend wird anhand eines konkreten Planungsbeispiels, des London View Management Frameworks (LVMF), eine spezifische Implementation des Ansatzes und der Visualisierungen kurz aufgezeigt und diskutiert. Mit der Arbeit wird vor allem das breite Potential betont, welches die Nutzung von crowdsourced Daten für die Bewertung von Landschaftswahrnehmung in Stadt- und Landschaftsplanung bereithält. Insbesondere crowdsourced Fotodaten werden als wichtige zusätzliche Informationsquelle gesehen, da sie eine bisher nicht verfügbare Perspektive auf die allgemeine, öffentliche Wahrnehmung der Umwelt ermöglichen. Während der breiteren Anwendung noch einige Grenzen gesetzt sind, können die vorgestellten experimentellen Methoden und Techniken schon wichtige Aufschlüsse über eine ganze Reihe von wahrgenommenen Landschaftswerten geben. Auf konzeptioneller Ebene stellt die Arbeit eine erste Grundlage für weitere Forschung dar. Bevor jedoch eine breite Anwendung in der Praxis möglich ist, müssen entscheidende Fragen gelöst werden, beispielsweise zum Copyright, zur Definition von ethischen Standards innerhalb der Profession, sowie zum Schutz der Privatsphäre Beteiligter. Längerfristig wird nicht nur die Nutzung der Daten als wichtig angesehen, sondern auch die Erschließung der essentiellen Möglichkeiten dieser Entwicklung zur besseren Kommunikation mit Auftraggebern, Beteiligten und der Öffentlichkeit in Planungs- und Entscheidungsprozessen.
49

Landschaftsbezogene Identitätsbildung und kollektives Landschaftswissen am Beispiel des Landkreises Mittelsachsen

Hanke, Romy 31 August 2018 (has links)
Den Ausgangspunkt dieser Arbeit bildete die Auseinandersetzung um Landschaft und deren Bedeutung für eine landschaftsbezogene Identitätsbildung aus Sicht der Bewohner ebenso wie aus der planerischen Perspektive. Da Landschaft erst durch die Interpretation ihrer Betrachter und deren Handlungspraktiken zu dem wird, was im Sinne ihrer Nutzer auch den Wert ausmacht, gilt es v. a. sich diesen wertgebenden Prozessen und deren bezugnehmenden Merkmalen zu widmen. Der planerische Auftrag identifikationsstiftende Landschaftsmerkmale zu erfassen und dabei das konstruktivistische Landschaftverständnis als ein Konstrukt eines kollektiven Sozialzusammenhanges verfolgend, bietet für einen Landschaftsdiskurs den größten Anknüpfungspunkt und bringt in seiner Logik das Anliegen der Landschaftsinterpretation von Bewohnern hervor. Schwerpunkt dieser Arbeit ist es herauszustellen, welche Aspekte identitätsstiftender landschaftsbezogener Merkmale die Bewohner für die Verhandlung um raumbezogene Zugehörigkeit hinzuziehen und wie diese mit den Merkmalen der planerischen Analyse übereinstimmen oder sich ergänzen bzw. wie sie verhandelt werden. Mithilfe eines Gruppendiskussionsverfahrens sollen diese Merkmale aus Sicht der Bewohner, methodisch aufbauend auf einer „klassischen“ Kulturlandschaftserfassung, angekoppelt und ergänzt werden. Das Gruppendiskussionsverfahren als Methode der qualitativen Sozialforschung eignet sich zum einen als qualitativer Forschungsansatz für diese Arbeit, weil er eine freie Entfaltung der Relevanzsysteme und damit ein kontrolliertes Fremdverstehen ermöglicht. Im Rahmen des Aneignungsprozesses um Landschaft soll das zentrale Prinzip der Offenheit angesetzt werden, was im Sinne von Kruse (2015, 65) bedeutet, das eigene Relevanzsystem (planerischer Hintergrund) zu öffnen, um das Fremde an sich heranzulassen. Es geht weniger darum den eigenen Standpunkt, Wissensbestände und Konzepte anzuzweifeln, als vielmehr eine reflexive Sensibilisierung für eine eigene Relevanz zu erreichen (vgl. Kruse 2015, 71). Zum anderen liegt die hohe Eignung in einer nondirektiven Gruppenleitungsform und zusätzlich in einer Vielfalt der Diskussionsteilnehmenden. Unter Gruppendiskussion ist ein Gespräch aus bis zu 15 Teilnehmern zu einem gemeinsamen Thema zu verstehen, wobei der Fragende keine vornehmlich gesprächsleitende, sondern v. a. eine beobachtende Position inne hat (nondirektive). Im Rahmen des Forschungsprojektes „Kulturlandschaftspojekt Mittelsachsen“ des Lehrstuhls Landschaftsplanung unter Leitung von Frau Prof. Dr. Catrin Schmidt im Auftrag des Landkreis Mittelsachsen, wurden von der Bearbeiterin in neun Gemeinden des Landkreises Gruppendiskussionen über einen Zeitraum von drei Monaten im Jahr 2014 durchgeführt. Die Auswertung der Gespräche erfolgte auf Basis der dokumentarischen Methode stufenweise. Dazu wurden die aufgezeichneten Gespräche in einem ersten Schritt transkribiert, im Weiteren durch eine formulierende Interpretation in die wesentlichen Themen selektiert und der immanente Sinngehalt wiedergegeben, um dann mit der refletierenden Interpretation zu forschungsleitenden Kernaussagen und Thesen zu kommen. Außerdem wurden die innerhalb des „Kulturlandschaftspojektes Mittelsachsen“ erarbeiteten, landschaftsbezogenen Merkmale der GIS-basierten Landschaftscharakterisierungen den Aussagen aus den Gruppengesprächen gegenübergestellt. In einer vertiefenden Interpretation anhand von Thesen wurden zudem die Zusammenhänge aktueller Landschaftsdiskurse in Abhängigkeit von gesellschaftlichen Rahmenbedingungen verifiziert und die Bedeutung für zu erwartende Trends herausgestellt. Nicht nur die Inhalte und Verhandlungspraktiken innerhalb des Gruppendiskussionsverfahrens wurden an neun geführten Gesprächsrunden analysiert, sondern auch die zur Durchführung notwendigen Schritte. Die gewonnenen Erkenntnisse aus den Zusammenhängen von Auswahl der Gruppenteilnehmenden und Art und Weise der Fragestellungen sowie der Motivation der Teilnehmenden und den Auswirkungen auf den Erfolg der Diskussion, bildeten die Basis für die Modifizierungsvorschläge eines Gruppendiskussionsverfahrens. Zusammenfassend zeigen diese konkreten Möglichkeiten wie mithilfe von Gruppendiskussionen das Landschaftwissen der Bewohner aufbauend auf einer planerischen Analyse eines Landschaftsausschnittes ermittelt und in ein Kulturlandschaftskonzept integriert werden können. Im Ergebnis wurde dabei deutlich, dass die Wahrnehmung einer Region nicht ohne den Bezug auf den konkreten lokalen Ort funktioniert. Von Vorteil stellte sich dabei das grenzübergreifende Denken der Bewohner heraus. Das Interesse raumbezogener Gesellschaftwissenschaften an Landschaft kann für die Landschaftsplanung sehr inspirierend sein, v. a. wenn das methodische Gerüst der sozialwissenschaftlichen Erhebungsmethoden dabei noch stärker mit den Planungswissenschaften verknüpft werden kann. Es gilt demnach Varianten der empirischen Erhebungsmethoden zum einen und Methoden der Auswertung zum anderen für eine Nutzung in planerischem Kontext weiterzudenken. Diese Arbeit liefert einen wichtigen Ansatz.
50

Assessing the perceived environment through crowdsourced spatial photo content for application to the fields of landscape and urban planning

Dunkel, Alexander 23 June 2016 (has links)
Assessing information on aspects of identification, perception, emotion, and social interaction with respect to the environment is of particular importance to the fields of natural resource management. Our ability to visualize this type of information has rapidly improved with the proliferation of social media sites throughout the Internet in recent years. While many methods to extract information on human behavior from crowdsourced geodata already exist, this work focuses on visualizing landscape perception for application to the fields of landscape and urban planning. Visualization of people’s perceptual responses to landscape is demonstrated with crowdsourced photo geodata from Flickr, a popular photo sharing community. A basic, general method to map, visualize and evaluate perception and perceptual values is proposed. The approach utilizes common tools for spatial knowledge discovery and builds on existing research, but is specifically designed for implementation within the context of landscape perception analysis and particularly suited as a base for further evaluation in multiple scenarios. To demonstrate the process in application, three novel types of visualizations are presented: the mapping of lines of sight in Yosemite Valley, the assessment of landscape change in the area surrounding the High Line in Manhattan, and individual location analysis for Coit Tower in San Francisco. The results suggest that analyzing crowdsourced data may contribute to a more balanced assessment of the perceived landscape, which provides a basis for a better integration of public values into planning processes.:Contents 3 1 Introduction 7 1.1 Motivation 7 1.2 Literature review and conceptual scope 9 1.3 Terminology 11 1.4 Related research 12 1.5 Objectives 14 1.6 Methodology 16 1.7 Formal conventions 21 I. Part I: Conceptual framework 23 1.1 Visual perception 23 1.2 Theory and practice in landscape perception assessment 27 1.2.1 Expert valuation versus participation 27 1.2.2 Photography-based landscape perception assessment 32 1.2.2.1. Photo-based surveys 32 1.2.2.2. Photo-based Internet surveys 35 1.2.2.3. Photo-interviewing and participant photography 37 1.2.3 Conclusions 40 1.3 Conceptual approach 42 1.3.1 A framing theory: Distributed cognition 42 1.3.2 Description of the approach 46 1.3.3 Choosing the right data source 48 1.3.3.1. Availability of crowdsourced and georeferenced photo data 48 1.3.3.2. Suitability for analyzing human behavior and perception 51 1.3.4 Relations between data and the phenomenon under observation 55 1.3.4.1. Photo taking and landscape perception 55 1.3.4.2. User motivation in the context of photo sharing in communities 61 1.3.4.3. Describing and tagging photos: Forms of attributing meaning 66 1.3.5 Considerations for measuring and weighting data 70 1.3.6 Conclusions 77 II. Part II: Application example – Flickr photo analysis and evaluation of results 80 2.1 Software architecture 80 2.2 Materials and methods 86 2.2.1 Data retrieval, initial data structure and overall quantification 86 2.2.2 Global data bias 89 2.2.3 Basic techniques for filtering and classifying data 94 2.2.3.1. Where: photo locations 94 2.2.3.2. Who: user origin 96 2.2.3.3. When: time of photo taking 102 2.2.3.4. What: tag frequency 108   2.2.4 Methods for aggregating data 113 2.2.4.1. Clustering of photo locations 113 2.2.4.2. Clustering of tag locations 115 2.3 Application to planning: techniques for visualizing data 118 2.3.1 Introduction 118 2.3.2 Tag maps 121 2.3.2.1. Description of technique 121 2.3.2.2. Results: San Francisco and Berkeley waterfront 126 2.3.2.3. Results: Berkeley downtown and university campus 129 2.3.2.4. Results: Dresden and the Elbe Valley 132 2.3.2.5. Results: Greater Toronto Area and City of Toronto 136 2.3.2.6. Results: Baden-Württemberg 143 2.3.2.7. Summary 156 2.3.3 Temporal comparison for assessing landscape change 158 2.3.3.1. Description of technique 158 2.3.3.2. Results: The High Line, NY 159 2.3.3.3. Summary 160 2.3.4 Determining lines of sight and important visual connections 161 2.3.4.1. Description of technique 161 2.3.4.2. Results: Yosemite Valley 162 2.3.4.3. Results: Golden Gate and Bay Bridge 167 2.3.4.4. Results: CN Tower, Toronto 168 2.3.4.5. Summary 170 2.3.5 Individual location analysis 171 2.3.5.1. Description of technique 171 2.3.5.2. Results: Coit Tower, San Francisco 171 2.3.5.3. Results: CN Tower, Toronto 172 2.3.5.4. Summary 173 2.4 Quality and accuracy of results 175 2.4.1 Methodology 175 2.4.2 Accuracy of data 175 2.4.3 Validity and reliability of visualizations 178 2.4.3.1. Reliability 178 2.4.3.2. Validity 180 2.5 Implementation example: the London View Framework 181 2.5.1 Description 181 2.5.2 Evaluation methodology 183 2.5.3 Analysis 184 2.5.3.1. Landmarks 184 2.5.3.2. Views 192 2.5.4 Summary 199 III. Discussion 203 3.1 Application of the framework from a wider perspective 203 3.2 Significance of results 204 3.3 Further research 205   3.4 Discussion of workshop results and further feedback 206 3.4.1 Workshops at University of Waterloo and University of Toronto, Canada 206 3.4.2 Workshop at University of Technology Dresden, Germany 209 3.4.3 Feedback from presentations, discussions, exhibitions: second thoughts 210 IV. Conclusions 212 V. References 213 5.1 Literature 213 5.2 List of web references 228 5.3 List of figures 230 5.4 List of tables 234 5.5 List of maps 235 5.6 List of appendices 236 VI. Appendices 237 / Als Wahrnehmung wird der Bewusstseinsprozess des subjektiven Verstehens der Umwelt bezeichnet. Grundlage für diesen Prozess ist die Gewinnung von Informationen über die Sinne, also aus visuellen, olfaktorischen, akustischen und anderen Reizen. Die Wahrnehmung ist aber auch wesentlich durch interne Prozesse beeinflusst. Das menschliche Gehirn ist fortlaufend damit beschäftigt, sowohl bewusst als auch unbewusst Sinneswahrnehmungen mit Erinnerungen abzugleichen, zu vereinfachen, zu assoziieren, vorherzusagen oder zu vergleichen. Aus diesem Grund ist es schwierig, die Wahrnehmung von Orten und Landschaften in Planungsprozessen zu berücksichtigen. Jedoch wird genau dies von der Europäischen Landschaftskonvention gefordert, die Landschaft als einen bestimmten Bereich definiert, so wie er von Besuchern und Einwohnern wahrgenommen wird (“as a zone or area as perceived by local people or visitors”, ELC Art. 1, Abs. 38). Während viele Fortschritte und Erkenntnisse, zum Beispiel aus den Kognitionswissenschaften, heute helfen, die Wahrnehmung einzelner Menschen zu verstehen, konnte die Stadt- und Landschaftsplanung kaum profitieren. Es fehlt an Kenntnissen über das Zusammenwirken der Wahrnehmung vieler Menschen. Schon Stadtplaner Kevin Lynch beschäftigte dieses gemeinsame, kollektive ‚Bild‘ der menschlichen Umwelt ("generalized mental picture", Lynch, 1960, p. 4). Seitdem wurden kaum nennenswerte Fortschritte bei der Erfassung der allgemeinen, öffentlichen Wahrnehmung von Stadt- und Landschaft erzielt. Dies war Anlass und Motivation für die vorliegende Arbeit. Eine bisher in der Planung ungenutzte Informationsquelle für die Erfassung der Wahrnehmung vieler Menschen bietet sich in Form von crowdsourced Daten (auch ‚Big Data‘), also großen Mengen an Daten die von vielen Menschen im Internet zusammengetragen werden. Im Vergleich zu konventionellen Daten, zum Beispiel solchen die durch Experten erhoben werden und durch öffentliche Träger zur Verfügung stehen, eröffnet sich durch crowdsourced Daten eine bisher nicht verfügbare Quelle für Informationen, um die komplexen Zusammenhänge zwischen Raum, Identität und subjektiver Wahrnehmung zu verstehen. Dabei enthalten crowdsourced Daten lediglich Spuren menschlicher Entscheidungen. Aufgrund der Menge ist es aber möglich, wesentliche Informationen über die Wahrnehmung derer, die diese Daten zusammengetragen haben, zu gewinnen. Dies ermöglicht es Planern zu verstehen, wie Menschen ihre unmittelbare Umgebung wahrnehmen und mit ihr interagieren. Darüber hinaus wird es immer wichtiger, die Ansichten Vieler in Planungsprozessen zu berücksichtigen (Lynam, De Jong, Sheil, Kusumanto, & Evans, 2007; Brody, 2004). Der Wunsch nach öffentlicher Beteiligung sowie die Anzahl an beteiligten Stakeholdern nehmen dabei konstant zu. Durch das Nutzen dieser neuen Informationsquelle bietet sich eine Alternative zu herkömmlichen Ansätzen wie Umfragen, die genutzt werden um beispielsweise Meinungen, Positionen, Werte, Normen oder Vorlieben von bestimmten sozialen Gruppen zu messen. Indem es crowdsourced Daten erleichtern, solch soziokulturelle Werte zu bestimmen, können die Ergebnisse vor allem bei der schwierigen Gewichtung gegensätzlicher Interessen und Ansichten helfen. Es wird die Ansicht geteilt, dass die Nutzung von crowdsourced Daten, indem Einschätzungen von Experten ergänzt werden, letztendlich zu einer faireren, ausgeglichenen Berücksichtigung der Allgemeinheit in Entscheidungsprozessen führen kann (Erickson, 2011, p.1). Eine große Anzahl an Methoden ist bereits verfügbar, um aus dieser Datenquelle wichtige landschaftsbezogene Informationen auszulesen. Beispiele sind die Bewertung der Attraktivität von Landschaften, die Bestimmung der Bedeutung von Sehenswürdigkeiten oder Wahrzeichen, oder die Einschätzung von Reisevorlieben von Nutzergruppen. Viele der bisherigen Methoden wurden jedoch als ungenügend empfunden, um die speziellen Bedürfnisse und das breite Spektrum an Fragestellungen zur Landschaftswahrnehmung in Stadt- und Landschaftsplanung zu berücksichtigen. Das Ziel der vorliegenden Arbeit ist es, praxisrelevantes Wissen zu vermitteln, welches es Planern erlaubt, selbstständig Daten zu erforschen, zu visualisieren und zu interpretieren. Der Schlüssel für eine erfolgreiche Umsetzung wird dabei in der Synthese von Wissen aus drei Kategorien gesehen, theoretische Grundlagen (1), technisches Wissen zur Datenverarbeitung (2) sowie Kenntnisse zur grafischen Visualisierungen (3). Die theoretischen Grundlagen werden im ersten Teil der Arbeit (Part I) präsentiert. In diesem Teil werden zunächst Schwachpunkte aktueller Verfahren diskutiert, um anschließend einen neuen, konzeptionell-technischen Ansatz vorzuschlagen der gezielt auf die Ergänzung bereits vorhandener Methoden zielt. Im zweiten Teil der Arbeit (Part II) wird anhand eines Datenbeispiels die Anwendung des Ansatzes exemplarisch demonstriert. Fragestellungen die angesprochen werden reichen von der Datenabfrage, Verarbeitung, Analyse, Visualisierung, bis zur Interpretation von Grafiken in Planungsprozessen. Als Basis dient dabei ein Datenset mit 147 Millionen georeferenzierte Foto-Daten und 882 Millionen Tags der Fotoaustauschplatform Flickr, welches in den Jahren 2007 bis 2015 von 1,3 Millionen Nutzern zusammengetragen wurde. Anhand dieser Daten wird die Entwicklung neuer Visualisierungstechniken exemplarisch vorgestellt. Beispiele umfassen Spatio-temporal Tag Clouds, eine experimentelle Technik zur Generierung von wahrnehmungsgewichteten Karten, die Visualisierung von wahrgenommenem Landschaftswandel, das Abbilden von wahrnehmungsgewichteten Sichtlinien, sowie die Auswertung von individueller Wahrnehmung von und an bestimmten Orten. Die Anwendung dieser Techniken wird anhand verschiedener Testregionen in den USA, Kanada und Deutschland für alle Maßstabsebenen geprüft und diskutiert. Dies umfasst beispielsweise die Erfassung und Bewertung von Sichtlinien und visuellen Bezügen in Yosemite Valley, das Monitoring von wahrgenommenen Veränderungen im Bereich der High Line in New York, die Auswertung von individueller Wahrnehmung für Coit Tower in San Francisco, oder die Beurteilung von regional wahrgenommenen identitätsstiftenden Landschaftswerten für Baden-Württemberg und die Greater Toronto Area (GTA). Anschließend werden Ansätze vorgestellt, um die Qualität und Validität von Visualisierungen einzuschätzen. Abschließend wird anhand eines konkreten Planungsbeispiels, des London View Management Frameworks (LVMF), eine spezifische Implementation des Ansatzes und der Visualisierungen kurz aufgezeigt und diskutiert. Mit der Arbeit wird vor allem das breite Potential betont, welches die Nutzung von crowdsourced Daten für die Bewertung von Landschaftswahrnehmung in Stadt- und Landschaftsplanung bereithält. Insbesondere crowdsourced Fotodaten werden als wichtige zusätzliche Informationsquelle gesehen, da sie eine bisher nicht verfügbare Perspektive auf die allgemeine, öffentliche Wahrnehmung der Umwelt ermöglichen. Während der breiteren Anwendung noch einige Grenzen gesetzt sind, können die vorgestellten experimentellen Methoden und Techniken schon wichtige Aufschlüsse über eine ganze Reihe von wahrgenommenen Landschaftswerten geben. Auf konzeptioneller Ebene stellt die Arbeit eine erste Grundlage für weitere Forschung dar. Bevor jedoch eine breite Anwendung in der Praxis möglich ist, müssen entscheidende Fragen gelöst werden, beispielsweise zum Copyright, zur Definition von ethischen Standards innerhalb der Profession, sowie zum Schutz der Privatsphäre Beteiligter. Längerfristig wird nicht nur die Nutzung der Daten als wichtig angesehen, sondern auch die Erschließung der essentiellen Möglichkeiten dieser Entwicklung zur besseren Kommunikation mit Auftraggebern, Beteiligten und der Öffentlichkeit in Planungs- und Entscheidungsprozessen.:Contents 3 1 Introduction 7 1.1 Motivation 7 1.2 Literature review and conceptual scope 9 1.3 Terminology 11 1.4 Related research 12 1.5 Objectives 14 1.6 Methodology 16 1.7 Formal conventions 21 I. Part I: Conceptual framework 23 1.1 Visual perception 23 1.2 Theory and practice in landscape perception assessment 27 1.2.1 Expert valuation versus participation 27 1.2.2 Photography-based landscape perception assessment 32 1.2.2.1. Photo-based surveys 32 1.2.2.2. Photo-based Internet surveys 35 1.2.2.3. Photo-interviewing and participant photography 37 1.2.3 Conclusions 40 1.3 Conceptual approach 42 1.3.1 A framing theory: Distributed cognition 42 1.3.2 Description of the approach 46 1.3.3 Choosing the right data source 48 1.3.3.1. Availability of crowdsourced and georeferenced photo data 48 1.3.3.2. Suitability for analyzing human behavior and perception 51 1.3.4 Relations between data and the phenomenon under observation 55 1.3.4.1. Photo taking and landscape perception 55 1.3.4.2. User motivation in the context of photo sharing in communities 61 1.3.4.3. Describing and tagging photos: Forms of attributing meaning 66 1.3.5 Considerations for measuring and weighting data 70 1.3.6 Conclusions 77 II. Part II: Application example – Flickr photo analysis and evaluation of results 80 2.1 Software architecture 80 2.2 Materials and methods 86 2.2.1 Data retrieval, initial data structure and overall quantification 86 2.2.2 Global data bias 89 2.2.3 Basic techniques for filtering and classifying data 94 2.2.3.1. Where: photo locations 94 2.2.3.2. Who: user origin 96 2.2.3.3. When: time of photo taking 102 2.2.3.4. What: tag frequency 108   2.2.4 Methods for aggregating data 113 2.2.4.1. Clustering of photo locations 113 2.2.4.2. Clustering of tag locations 115 2.3 Application to planning: techniques for visualizing data 118 2.3.1 Introduction 118 2.3.2 Tag maps 121 2.3.2.1. Description of technique 121 2.3.2.2. Results: San Francisco and Berkeley waterfront 126 2.3.2.3. Results: Berkeley downtown and university campus 129 2.3.2.4. Results: Dresden and the Elbe Valley 132 2.3.2.5. Results: Greater Toronto Area and City of Toronto 136 2.3.2.6. Results: Baden-Württemberg 143 2.3.2.7. Summary 156 2.3.3 Temporal comparison for assessing landscape change 158 2.3.3.1. Description of technique 158 2.3.3.2. Results: The High Line, NY 159 2.3.3.3. Summary 160 2.3.4 Determining lines of sight and important visual connections 161 2.3.4.1. Description of technique 161 2.3.4.2. Results: Yosemite Valley 162 2.3.4.3. Results: Golden Gate and Bay Bridge 167 2.3.4.4. Results: CN Tower, Toronto 168 2.3.4.5. Summary 170 2.3.5 Individual location analysis 171 2.3.5.1. Description of technique 171 2.3.5.2. Results: Coit Tower, San Francisco 171 2.3.5.3. Results: CN Tower, Toronto 172 2.3.5.4. Summary 173 2.4 Quality and accuracy of results 175 2.4.1 Methodology 175 2.4.2 Accuracy of data 175 2.4.3 Validity and reliability of visualizations 178 2.4.3.1. Reliability 178 2.4.3.2. Validity 180 2.5 Implementation example: the London View Framework 181 2.5.1 Description 181 2.5.2 Evaluation methodology 183 2.5.3 Analysis 184 2.5.3.1. Landmarks 184 2.5.3.2. Views 192 2.5.4 Summary 199 III. Discussion 203 3.1 Application of the framework from a wider perspective 203 3.2 Significance of results 204 3.3 Further research 205   3.4 Discussion of workshop results and further feedback 206 3.4.1 Workshops at University of Waterloo and University of Toronto, Canada 206 3.4.2 Workshop at University of Technology Dresden, Germany 209 3.4.3 Feedback from presentations, discussions, exhibitions: second thoughts 210 IV. Conclusions 212 V. References 213 5.1 Literature 213 5.2 List of web references 228 5.3 List of figures 230 5.4 List of tables 234 5.5 List of maps 235 5.6 List of appendices 236 VI. Appendices 237

Page generated in 0.0916 seconds