• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 32
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 199
  • 199
  • 63
  • 53
  • 36
  • 22
  • 21
  • 21
  • 20
  • 20
  • 20
  • 19
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Μαθηματικές μέθοδοι στα μικροοικονομικά και χρηματοοικονομικά

Ανδριόπουλος, Κωστής 22 December 2011 (has links)
Η διατριβή χωρίζεται σε δύο μέρη. Στο Μέρος Α' χρησιμοποιούνται μαθηματικές μέθοδοι της Θεωρίας Παιγνίων και των Δυναμικών Συστημάτων για να μελετηθεί η κανονική και χαοτική δυναμική διαφόρων μοντέλων της Μικροοικονομίας. Βασικά αποτελέσματα είναι η μετάβαση σε συνθήκες πλήρους ανταγωνισμού και η διαφοροποίηση του παραγόμενου προιόντος σε ένα δυοπώλιο-τριοπώλιο. Στο Μέρος Β', κύριος στόχος της έρευνας ήταν να συνδεθούν ορισμένες από τις πλέον γνωστές μερικές διαφορικές εξισώσεις (ΜΔΕ) που χρησιμοποιούνται στα Οικονομικά Μαθηματικά και Χρηματοοικονομικά, με την εξίσωση της θερμότητας της Μαθηματικής Φυσικής, εφαρμόζοντας την κατά Lie συμμετρίες ανάλυση. Επίσης η ανάλυση αυτή αποδείχθηκε ιδιαίτερα ισχυρή για την εύρεση αλγεβρικών δομών εξισώσεων που περιγράφουν την τιμολόγηση αγαθών. Έτσι, οδηγούμαστε με συστηματικό τρόπο όχι μόνο στην εύρεση νέων λύσεων αλλά και στην ανακάλυψη κομψών γενικεύσεων των εξισώσεων αυτών. / The thesis is divided into two parts. In Part One we use the mathematical methods of Game Theory and Dynamical Systems to study the stable and chaotic dynamics of various models in Microeconomics. Some of our main results are the route to perfect competition and the differentiation of goods in a duopoly and in a triopoly. In Part Two, our main concern was to link some of the most well-known partial differential equations that are encountered in Economics and Financial Mathematics, with the heat equation of Mathematical Physics, using Lie symmetry analysis. More to that, this analysis proved extremely powerful to the finding of interesting algebraic properties for equations that describe the pricing of commodities. In such way, we succeed in presenting, in a systematic fashion, not only new solutions, but also elegant generalisations of the equations under investigation.
192

High accuracy computational methods for the semiclassical Schrödinger equation

Singh, Pranav January 2018 (has links)
The computation of Schrödinger equations in the semiclassical regime presents several enduring challenges due to the presence of the small semiclassical parameter. Standard approaches for solving these equations commence with spatial discretisation followed by exponentiation of the discretised Hamiltonian via exponential splittings. In this thesis we follow an alternative strategy${-}$we develop a new technique, called the symmetric Zassenhaus splitting procedure, which involves directly splitting the exponential of the undiscretised Hamiltonian. This technique allows us to design methods that are highly efficient in the semiclassical regime. Our analysis takes place in the Lie algebra generated by multiplicative operators and polynomials of the differential operator. This Lie algebra is completely characterised by Jordan polynomials in the differential operator, which constitute naturally symmetrised differential operators. Combined with the $\mathbb{Z}_2$-graded structure of this Lie algebra, the symmetry results in skew-Hermiticity of the exponents for Zassenhaus-style splittings, resulting in unitary evolution and numerical stability. The properties of commutator simplification and height reduction in these Lie algebras result in a highly effective form of $\textit{asymptotic splitting:} $exponential splittings where consecutive terms are scaled by increasing powers of the small semiclassical parameter. This leads to high accuracy methods whose costs grow quadratically with higher orders of accuracy. Time-dependent potentials are tackled by developing commutator-free Magnus expansions in our Lie algebra, which are subsequently split using the Zassenhaus algorithm. We present two approaches for developing arbitrarily high-order Magnus--Zassenhaus schemes${-}$one where the integrals are discretised using Gauss--Legendre quadrature at the outset and another where integrals are preserved throughout. These schemes feature high accuracy, allow large time steps, and the quadratic growth of their costs is found to be superior to traditional approaches such as Magnus--Lanczos methods and Yoshida splittings based on traditional Magnus expansions that feature nested commutators of matrices. An analysis of these operatorial splittings and expansions is carried out by characterising the highly oscillatory behaviour of the solution.
193

Sobre Anéis de Lie Admitindo Automorfismos de Ordens Finitas e Álgebras de Lie Quase Nilpotentes. / Sobre Anéis de Lie Admitindo Automorfismos de Ordens Finitas e Álgebras de Lie Quase Nilpotentes. / On lie Rings Admitting Automorphisms of Fintite Order and Lie Algebras Almost Nilpotent / On lie Rings Admitting Automorphisms of Fintite Order and Lie Algebras Almost Nilpotent

MELO, Emerson Ferreira de 28 February 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:17Z (GMT). No. of bitstreams: 1 EMERSON FERREIRA DE MELO.pdf: 459851 bytes, checksum: b6bbc846b2c7808e954127d464c634e5 (MD5) Previous issue date: 2011-02-28 / In this work we present a study on Lie rings and algebras admitting an automorphism of finite order. We emphasize questions on nilpotency. We prove important results of this theory, for example the Higman, Kreknin and Kostrikin s Theorem. Furthermore, let L be a finite dimensional Lie algebra over an algebraically closed field of characteristic 0. Suppose that L admits a nilpotent Lie algebra D with n weights in L, and let m be the dimension of the Fitting null component with respect to D. Then L is almost nilpotent, namely, L contains a nilpotent subalgebra N of {m,n}-bounded codimension and of nbounded nilpotency class. If m = 0, then L is nilpotent of bounded class by a function of n. This theorem was published by E. I. Khukhro and P. Shumyatsky in the paper entitled Lie Algebras with Almost Constant-Free Derivations . / Nesta dissertação apresentamos um estudo sobre anéis e álgebras de Lie admitindo um automorfismo de ordem finita, com ênfase em questões sobre nilpotência. Demonstramos resultados importantes desta teoria, como por exemplo o Teorema de Higman, Kreknin e Kostrikin. Além disso, considere L uma álgebra de Lie de dimensão finita sobre um corpo algebricamente fechado de característica 0. Suponha que L admita uma álgebra de derivações nilpotente D com n pesos em L, e seja m a dimensão da componente nula de Fitting com respeito a D. Então L é quase nilpotente, ou seja, L contém uma subálgebra N de codimensão {m,n}-limitada e classe de nilpotência n-limitada. Se m = 0, então L é nilpotente de classe limitada por uma função de n. Este teorema foi publicado por E. I. Khukhro e P. Shumyatsky num artigo intitulado Lie Algebras with almost constant-free derivations .
194

Sobre Centralizadores de Automorfismos Coprimos em Grupos Profinitos e Álgebras de Lie / About Centralized coprime automorphisms Profinitos Groups and Lie Algebras

LIMA, Márcio Dias de 27 June 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:19Z (GMT). No. of bitstreams: 1 Dissertacao Marcio Lima.pdf: 1529346 bytes, checksum: c6a80a13d55b40203c44877c4cdeb1f4 (MD5) Previous issue date: 2011-06-27 / A be an elementary abelian group of order q2, where q a prime number. In this paper we will study the influence of centering on the structure of automorphism groups profinitos in this sense if A acting as a coprime group of automorphisms on a group profinito G and CG(a) is periodic for each a 2 A#, then we will show that G is locally finite. It will be demonstrated also the case where A acts as a group of automorphisms of a group pro-p of G / Sejam A um grupo abeliano elementar de ordem q2, onde q um número primo. Neste trabalho estudamos a influência dos centralizadores de automorfismos na estrutura dos grupos profinitos, neste sentido se A age como um grupo de automorfismos coprimos sobre um grupo profinito G e que CG(a) é periódico para cada a 2 A#, então mostraremos que G é localmente finito. Será demonstrado também o caso onde A age como um grupo de automorfismos sobre um grupo pro-p de G.
195

Lieovy grupy a jejich fyzikální aplikace / Lie groups and their physical applications

Kunz, Daniel January 2020 (has links)
In this thesis I describe construction of Lie group and Lie algebra and its following usage for physical problems. To be able to construct Lie groups and Lie algebras we need define basic terms such as topological manifold, tensor algebra and differential geometry. First part of my thesis is aimed on this topic. In second part I am dealing with construction of Lie groups and algebras. Furthermore, I am showing different properties of given structures. Next I am trying to show, that there exists some connection among Lie groups and Lie algebras. In last part of this thesis is used just for showing how this apparat can be used on physical problems. Best known usage is to find physical symmetries to establish conservation laws, all thanks to famous Noether theorem.
196

"Abstract" homomorphisms of split Kac-Moody groups

Caprace, Pierre-Emmanuel 20 December 2005 (has links)
Cette thèse est consacrée à une classe de groupes, appelés groupes de Kac-Moody, qui généralise de façon naturelle les groupes de Lie semi-simples, ou plus précisément, les groupes algébriques réductifs, dans un contexte infini-dimensionnel. On s'intéresse plus particulièrement au problème d'isomorphismes pour ces groupes, en vue d'obtenir un analogue infini-dimensionnel de la célèbre théorie des homomorphismes 'abstraits' de groupes algébriques simples, due à Armand Borel et Jacques Tits.<p><p>Le problème d'isomorphismes qu'on étudie s'avère être un cas particulier d'un problème plus général, qui consiste à caractériser les homomorphismes de groupes algébriques vers les groupes de Kac-Moody, dont l'image est bornée. Ce problème peut à son tour s'énoncer comme un problème de rigidité pour les actions de groupes algébriques sur les immeubles, via l'action naturelle d'un groupe de Kac-Moody sur une paire d'immeubles jumelés. Les résultats partiels, relatifs à ce problème de rigidité, que nous obtenons, nous permettent d'apporter une solution complète au problème d'isomorphismes pour les groupes de Kac-Moody déployés.<p>En particulier, on obtient un résultat de dévissage pour les automorphismes de ces objets. Celui-ci fournit à son tour une description complète de la structure du groupe d'automorphismes d'un groupe de Kac-Moody déployé sur un corps de caractéristique~$0$.<p><p>Nos arguments permettent également de traiter de façon analogue certaines formes anisotropes de groupes de Kac-Moody complexes, appelées formes unitaires. On montre en particulier que la topologie Hausdorff naturelle que portent ces formes est un invariant de leur structure de groupe abstrait. Ceci généralise un résultat bien connu de H. Freudenthal pour les groupes de Lie compacts.<p><p>Enfin, l'on s'intéresse aux homomorphismes de groupes de Kac-Moody à image fini-dimensionnelle, et l'on démontre la non-existence de tels homomorphismes à noyau central, lorsque le domaine est un groupe de Kac-Moody de type indéfini sur un corps infini. Ceci réduit un problème ouvert, dit problème de linéarité pour les groupes de Kac-Moody, au cas de corps de base finis. / Doctorat en sciences, Spécialisation mathématiques / info:eu-repo/semantics/nonPublished
197

Fonctions génératrices des polynômes de Hartley des algèbres de Lie simples de rang 2.

Pelletier, Xavier 09 1900 (has links)
Ce mémoire étudie deux familles de fonctions orthogonales, soit les fonctions d'orbite de Weyl et les fonctions d'orbite de Hartley. Chacune de ces familles est associée à une algèbre de Lie simple et cette recherche se limite aux algèbres A₂, C₂ et G₂ de rang 2. Les fonctions d'orbite de Weyl ont été largement étudiées depuis des années en raison de leurs propriétés exceptionnelles. Nouvellement, elles ont été utilisées pour générer des polynômes de Chebyshev généralisés et calculer les fonctions génératrices de ces polynômes pour les algèbres de Lie simples de rang 2. Les fonctions d'orbite de Hartley, quant à elles, ont été récemment introduites par Hrivnák et Juránek et l'étude de ces dernières ne fait que débuter. L'objectif de ce mémoire est de définir des polynômes de Chebyshev généralisés associés aux fonctions de Hartley et de calculer les fonctions génératrices de ceux-ci pour les algèbres A₂, C₂ et G₂. Le premier chapitre introduit les systèmes de racines et le groupe de Weyl, original et affine, ainsi que leurs domaines fondamentaux, afin que le lecteur ait les notations et définitions pour comprendre les chapitres suivants. Le deuxième chapitre présente et étudie les fonctions de Weyl. Il définit également leurs polynômes de Chebyshev généralisés et se termine en présentant les différentes fonctions génératrices de ces polynômes pour les algèbres de Lie simples de rang 2. Finalement, le troisième chapitre contient les résultats originaux; il expose les fonctions de Hartley et certaines de leurs propriétés. Il définit les polynômes de Chebyshev généralisés de celles-ci et énonce également leurs relations d'orthogonalité discrète. Il conclut en calculant les fonctions génératrices de ces polynômes pour les algèbres A₂, C₂ et G₂. / This master's thesis studies two families of orthogonal functions, the Weyl orbit functions and the Hartley orbit functions. Each of these families is associated to a simple Lie algebra and the present work is limited to the algebras A₂, C₂ and G₂ of rank 2. Weyl orbit functions have been widely studied for years because of their exceptional properties. Recently, these properties have been used to generate generalized Chebyshev polynomials and to compute the generating functions of these polynomials for the simple Lie algebras of rank 2. Hartley orbit functions, on the other hand, were recently introduced by Hrivnák and Juránek and the study of the latter has only begun. The objective of this thesis is to define the generalized Chebyshev polynomials of Hartley orbit functions and to compute their generating functions for the algebras A₂, C₂ and G₂. The first chapter introduces root systems and the Weyl group, original and affine, and their fundamental domains, so that the reader has the notations and definitions at hand to read the following chapters. The second chapter introduces and studies Weyl orbit functions. It also defines their generalized Chebyshev polynomials and ends by presenting the different generating functions of these polynomials for simple Lie algebras of rank 2. Finally, the third chapter contains the original contribution; it presents the Hartley functions and some of their properties. It defines the generalized Chebyshev polynomials of these and also states their discrete orthogonality relations. It concludes by computing the generating functions of these polynomials for the algebras A₂, C₂ and G₂.
198

Condição de Nilpotência para Grupos Localmente Finitos de expoente p e Álgebras de Lie (p-1)- Engel de Característica p (ou 0) / Condição de Nilpotência para Grupos Localmente Finitos de expoente p e Álgebras de Lie (p-1)- Engel de Característica p (ou 0) / Nilpotency Conditions for Locally Finite Groups of Prime Exponet p and (p-1)-Engel Lie Álgebra of Characteristic p (ou 0) / Nilpotency Conditions for Locally Finite Groups of Prime Exponet p and (p-1)-Engel Lie Álgebra of Characteristic p (ou 0)

CARVALHO, Lucimeire Alves de 25 April 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:18Z (GMT). No. of bitstreams: 1 Dissertacao_Lucimeire.pdf: 347668 bytes, checksum: 1994a286b451a5d4bd05254e9a5299d8 (MD5) Previous issue date: 2011-04-25 / Let P be a locally finite group of prime exponent p, admitting a finite soluble automorphism group G of order n coprime to p. In this work we study the influence of the centralizers of the automorphisms in G on the structure of P. In this sense we show that if CP(G), the subgroup of fixed points is soluble of derived length d, then P is nilpotent of class bounded in terms of p, n and d. It will be also shown that if a (p-1)-Engel Lie algebra L of characteristic p (or 0) admits a finite soluble automorphism group G of order n coprime to the characteristic of L, such that CL(G), the subalgebra of fixed points, is soluble of derived length d, then the Lie algebra L is nilpotent of class bounded in terms of p, n and d. / Seja P um grupo localmente finito de expoente primo p, admitindo um grupo G de automorfismos solúvel finito de ordem n coprima com p. Neste trabalho estudaremos a influência dos centralizadores dos automorfismos em G sobre a estrutura de P. Nesse sentido, mostraremos que se CP(G), o subgrupo de pontos fixos, é solúvel de comprimento derivado d, então P é nilpotente de classe limitada em termos de p;n e d. Será demonstrado também que se uma álgebra de Lie (p-1)-Engel L, de característica p (ou 0) admite um grupo de automorfismos G solúvel finito de ordem n coprima com a característica de L, tal que CL(G), a subálgebra de pontos fixos, é solúvel de comprimento derivado d, então a álgebra de Lie L é nilpotente de classe limitada em termos de p;n e d.
199

Deux exemples d'algèbres de Hopf d'extraction-contraction : mots tassés et diagrammes de dissection / Two examples of Hopf algebras with a selection-quotient coprodut : packed words and dissection diagrams

Mammez, Cécile 27 November 2017 (has links)
Ce manuscrit est consacré à l'étude de la combinatoire de deux algèbres de Hopf d'extraction-contraction. La première est l'algèbre de Hopf de mots tassés WMat introduite par Duchamp, Hoang-Nghia et Tanasa dont l'objectif était la construction d'un modèle de coproduit d'extraction-contraction pour les mots tassés. Nous expliquons certains sous-objets ou objets quotients ainsi que des applications vers d'autres algèbres de Hopf. Ainsi, nous considérons une algèbre de permutations dont le dual gradué possède un coproduit de déconcaténation par blocs et un produit de double battage décalé. Le double battage engendre la commutativité de l'algèbre qui est donc distincte de celle de Malvenuto et Reutenauer. Nous introduisons également une algèbre de Hopf engendrée par les mots tassés de la forme x₁...x₁. Elle est isomorphe à l'algèbre de Hopf des fonctions symétriques non commutatives. Son dual gradé est donc isomorphe à l'algèbre de Hopf des fonctions quasi-symétriques. Nous considérons également une algèbre de Hopf de compositions et donnons son interprétation en termes de coproduit semi-direct d'algèbres de Hopf. Le deuxième objet d'étude est l'algèbre de Hopf de diagrammes de dissection HD introduite par Dupont en théorie des nombres. Nous cherchons des éléments de réponse concernant la nature de sa cogèbre sous-jacente. Est-elle colibre ? La dimension des éléments primitifs de degré 3 ne permet pas de conclure. Le cas du degré 5 permet d'établir la non-coliberté dans le cas où le paramètre de HD vaut - 1. Nous étudions également la structure pré-Lie du dual gradué HD. Nous réduisons le champ de recherche à la sous-algèbre pré-Lie non triviale engendrée par le diagramme de dissection de degré 1. Cette algèbre pré-Lie n'est pas libre. / This thesis deals with the study of combinatorics of two Hopf algebras. The first one is the packed words Hopf algebra WMAT introduced by Duchamp, Hoang-Nghia, and Tanasa who wanted to build a coalgebra model for packed words by using a selection-quotient process. We describe certain sub-objects or quotient objects as well as maps to other Hopf algebras. We consider first a Hopf algebra of permutations. Its graded dual has a block deconcatenation coproduct and double shuffle product. The double shuffle product is commutative so the Hopf algebra is different from the Malvenuto and Reutenauer one. We analyze then the Hopf algebra generated by packed words looking like x₁...x₁. This Hopf algebra and non commutative symmetric functions are isomorphic. So its graded dual and quasi-symmetric functions are isomorphic too. Finally we consider a Hopf algebra of compositions an give its interpretation in terms of a semi-direct coproduct structure. The second objet we study is the Hopf algebra of dissection diagrams HD introduced by Dupont in number theory. We study the cofreedom problem. We can't conclude with homogeneous primitive elements of degree 3. With the degree 5 case, we can say that is not cofree with the parameter -1. We study the pre-Lie algebra structure of HD's graded dual too. We consider in particular the sup-pre-Lie algebra generated by the dissection diagram of degree 1. It is not a free pre-Lie algebra.

Page generated in 0.0728 seconds