• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 32
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 199
  • 199
  • 63
  • 53
  • 36
  • 22
  • 21
  • 21
  • 20
  • 20
  • 20
  • 19
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Η γεωμετρία των ομογενών χώρων και πολλαπλότητες σημαιών

Χρυσικός, Ιωάννης 20 February 2008 (has links)
Μια από τις πιο επιτυχείς προσεγγίσεις της γεωμετρίας είναι αυτή που πρότεινε ο Γερμανός μαθηματικός Felix Klein στο γνωστό Πρόγραμμα Erlangen. To πρόγραμμα αυτό αποτέλεσε ένα γενικό σχέδιο ταξινόμησης των διάφορων γεωμετριών που εμφανίστηκαν μετά την ανακάλυψη των μη Ευκλείδειων γεωμετριών, με τεράστιες επιπτώσεις όχι μόνο στα μαθηματικά αλλά και στη θεωρητική φυσική. Σύμγωνα με τον Klein, το αντικείμενο της γεωμετρίας είναι μια πολλαπλότητα στην οποία δρα μια ομάδα μετασχηματισμών, η οποία συνήθως είναι μια ομάδα Lie. Στη περίπτωση που η ομάδα δρα μεταβατικά πάνω στην πολλαπλότητα, τότε οδηγούμαστε στην περίτωση των ομογενών χώρων. Κλασικά παραδείγματα τέτοιων χώρων αποτελούν η σφαίρα και ο πραγματικός ή μιγαδικός προβολικός χώρος. Η βασική ιδιότητα των ομογενών χώρων είναι ότι αν γνωρίζουμε την τιμή κάποιου γεωμετρικού μεγέθους (για παράδειγμα της καμπυλότητας) σε ένα σημείο του χώρου τότε χρησιμοποιώντας κατάλληλες απεικονίσεις μεταφοράς μπορούμε να υπολογίσουμε την τιμή του μεγέθους αυτού σε οποιοδήποτε άλλο σημείο του χώρου. Στην εργασία μας περιγράφουμε τη γεωμετρία των χώρων αυτών χρησιμοποιώντας εργαλεία από τη θεωρία των ομάδων Lie. Το δεύτερο σκέλος της εργασίας αφορά τη θεωρία των πολλαπλοτήτων σημαιών, οι οποίες αποτελούν και μια ιδιαίτερη κλάση ομογενών χώρων. Μια πολλαπλότητα σημαιών είναι η τροχιά της συζυγούς αναπαράστασης μιας ημιαπλής ομάδας Lie. Οι χώροι αυτοί δέχονται μια κομψή αλγεβρική περιγραφή χρησιμοποιώντας τη δομική θεωρία των ημιαπλών αλγεβρών Lie και ταξινομούνται από τα χρωματιστά διαγράμματα Dynkin. / One of the most successful approaches to geometry is that suggested by the german mathematician Felix Klein and his famous Erlangen programm. According to Klein, a geometry is the study of all these objects which remain invariant under the action of a transormation group. Usually this group is a Lie group. If the above action is transitive then the space is called Homogeneous space. Classical examples of these spaces are the sphere and the real or complex projective space. The basic property of homogeneous spaces is that if we know the value of a geometrical object (e.g curvature) at a given point, then we can calculate the value of this quantity at any other point by using certain translations maps. In this project we describe the geometry of homogeneous spaces, by using tools of the Lie group theory. The second part of this project has to do with generalized flag manifolds, which are an important class of homogeneous spaces. A flag manifold is the orbit of the adjoint representation of a compact semisimple Lie group. These spaces admit a nice algebraic description by using the structure theory of semisimple Lie algebras and are classified by painted Dynkin diagramms.
152

The paradigms of mechanics : a symmetry based approach.

Lemmer, Ryan Lee. January 1996 (has links)
An overview of the historical developments of the paradigms of classical mechanics, the free particle, oscillator and the Kepler problem, is given ito (in terms of) their conserved quantities. Next, the orbits of the three paradigms are found from quadratic forms. The quadratic forms are constructed using first integrals found by the application of Poisson's theorem. The orbits are presented ito expanding surfaces defined by the quadratic forms. The Lie and Noether symmetries of the paradigms are investigated. The free particle is discussed in detail and an overview of the work done on the oscillator and Kepler problem is given. The Lie and Noether theories are compared from various aspects. A technical description of Lie groups and algebras is given. This provides a basis for a discussion of the historical development of the paradigms of mechanics ito their group properties. Lastly the paradigms are discussed ito of Quantum Mechanics. / Thesis (M.Sc.)-University of Natal, 1996.
153

Representações de peso máximo para álgebras de Lie correntes truncadas / Highest weight representations for truncated current Lie algebras

Martins, Victor do Nascimento 17 July 2013 (has links)
Made available in DSpace on 2015-03-26T13:45:36Z (GMT). No. of bitstreams: 1 texto completo.pdf: 610299 bytes, checksum: 974c87fb133c18b010f2adf40631a6b4 (MD5) Previous issue date: 2013-07-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / These algebras are defined by the tensor product of a Lie algebra and of a truncated polynornial ring. The rnain goal is to establish a criterion for the reducibility of the universal objects in the theory of highest weight representations, the so called Verma modules. ln his doctoral thesis, Benjamin J. Wilson proved that the reducibility of the Verrna rnodules of the truncated current Lie algebras depends only on one of their hornogeneous cornponents. This work consists in studying the criterion established by Wilson. / Neste trabalho estudamos representações de peso máxirno de álgebras de Lie correntes trancados. Estas álgebras são definidas corno o produto tensorial de urna álgebra de Lie por um anel de polinômios truncado. O objetivo principal é estabelecer um critério para a redutibilidade dos objetos universais da teoria de representações de peso máxirno, os chamados módulos Verme. Em sua tese de doutorado, Benjamin J. Wilson provou que a redutibilidade dos módulos Verma das álgebras de Lie correntes truncadas depende apenas de uma de suas componentes homogêneas. Nosso trabalho consiste em estudar o critério estabelecido por Wilson.
154

Métodos algébricos em ciências moleculares / Algebraic methods in molecular science

Esmerindo de Sousa Bernardes 16 January 1997 (has links)
O espectro vibracional do monofluoracetileno (HCCF) e do monocloroacetileno (HCCCl) são calculados por meio de técnicas algébricas sob a hipótese de que eles resultam de uma simetria u(4) dada pela cadeia u(4) ⊃ so(4) ⊃ so(3). Os resultados são comparados com as 170 linhas vibracionais experimentais disponíveis para o HCCF e com as 23 disponíveis para o HCCCL. Os desvios médios encontrados de 7 cm-1 e 4 cm-1, respectivamente, estabelecem estes sistemas como os melhores exemplos de simetria dinâmica em Física Molecular até o momento. Numa outra aplicação de técnicas algébricas, tendo em mente aplicações que requerem a manipulação de diferentes representações irredutíveis, nós calculamos fórmulas fechadas e analíticas para os elementos de matriz dos geradores da álgebra simplética sp(4,C) atuando numa representação irredutível arbitrária da cadeia sp(4,C) ⊃ sp(2,C) ⊕sp(2, C), a qual está sendo utilizada no estudo do código genético. A base utilizada é ortogonal e é análoga à base de Gel\'fand- Tsetlin para as álgebras unitárias. / The vibrational spectrum of monofluoroacetylene (HCCF) and of monochloroacetylene (HCCCl) are calculated by means of algebraic techniques under the hypothesis that they result from a U(4) symmetry through the chain U(4) symmetry through the chain U(4) ⊃ O(4) ⊃ O(3). The results are compared with the 170 experimentally available vibrational lines for the HCCF and with the 23 experimentally available vibrational lines for the HCCCl. The mean square deviation is founded to be 7 cm-1 and 4 cm-1, respectivelly, establishing these spectra as the best examples of a dynamical symmetry reported in Molecular Physics so far. In another application of algebraic techniques, having in mind applications in which the algebraic handling of several different irreducible representations are necessary, we provide closed formulas for the matrix elements of the symplectic sp(4,C) Lie algebra on an arbitrary irreducible representation on the chain sp(4,C) ⊃ sp(2,C) ⊕ sp(2,C), which is being used in the study of the genetic code by Lie algebras. The used basis is orthogonal and analogous to the Gel\'fand- Tsetlin basis of unitary algebras.
155

Semigrupos gerados por classes laterais e funções caracteristicas de semigrupos / Semigroups generated by cosets and characteristics functions of semigroups

Santos, Laercio Jose dos 28 June 2007 (has links)
Orientador: Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-10T09:55:18Z (GMT). No. of bitstreams: 1 Santos_LaercioJosedos_D.pdf: 632399 bytes, checksum: 25069afc192f7633f7f8cd6bdce8e96e (MD5) Previous issue date: 2007 / Resumo: Este trabalho divide-se em duas partes. Na primeira parte, obtemos condições necessárias e suficientes para que uma família de classes laterais de um subgrupo de Lie gere um subsemigrupo com interior não vazio. Aplicamos essas condições aos pares simétricos, onde o grupo é semi-simples. Como consequência, mostramos que o subgrupo dos pontos fixos de vários automorfismos involutivos é maximal como semigrupo. Na segunda parte, definimos a função característica de um subsemigrupo de um grupo de Lie semi-simples e, encontramos um subconjunto do domínio de definição dessa função. Fizemos isto usando a teoria geral de semigrupos em grupos semi-simples. Usamos a função característica de um semigrupo, com algumas hipóteses adicionais, para introduzir uma métrica Riemanniana nas órbitas do subgrupo das unidades do semigrupo. Com essa métrica, obtemos uma condição necessária para que um subgrupo possa ser imerso em um semigrupo próprio com interior não vazio / Abstract: This work is made of two parts. In the first one, we gave necessary and sufficient conditions for a family of cosets of a Lie subgroup to generate a subsemigroup with nonempty interior. We apply these conditions to symmetric pairs where the group is semi-simple. As a consequence we prove that for several involutive automorphisms the fixed points subgroup is a maximal semigroup. In the second part, we define a characteristic function of a subsemigroup of a semi- simple Lie group and we find a subset where the function is defined. This is made through general theory of semigroups in semi-simple groups. The characteristic function is used, together with some additional hypothesis, for to create a Riemannian metric in the orbits of the unity subgroup of the semigroup. With this metric we gave a necessary condition for a subgroup be embedded in a proper semigroup with nonempty interior / Doutorado / Teoria de Lie / Doutor em Matemática
156

Equigeodésicas e aplicações equiharmônicas em variedades flag generalizadas / Equigeodesics and equiharmonic maps on generalized flag manifolds

Grama, Lino Anderson da Silva, 1981- 17 August 2018 (has links)
Orientador: Caio José Colletti Negreiros / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T12:45:02Z (GMT). No. of bitstreams: 1 Grama_LinoAndersondaSilva_D.pdf: 1119551 bytes, checksum: d2dc2c993629f40f7976e91497c5d219 (MD5) Previous issue date: 2011 / Resumo: O principal objetivo deste trabalho é o estudo de aplicações harmônicas em variedades flag generalizadas. Na primeira parte do trabalho, consideramos aplicações cujo domínio é uma superfície de Riemann. Provamos que toda aplicação holomorfa-horizontal na variedade flag é uma aplicação equiharmônica (ie, harmônica com respeito a cada métrica invariante na variedade flag). Obtemos também as fórmulas de Plucker para curvas holomorfa-horizontais na variedade flag maximal. Na segunda parte do trabalho, consideramos aplicações harmônicas cujo domínio possui dimensão 1 ( ie, geodésicas) na variedade flag. Provamos que toda variedade ag generalizada admite curvas que são geodésicas com respeito a cada métrica invariante. Tais curvas são chamadas equigeodésicas. Fornecemos uma descrição algébrica para tais curvas e exibimos famílias de equigeodésicas em diversas famílias de variedades flag / Abstract: The main goal of this work is the study of harmonic maps in generalized flag manifolds. In the first part of the work, we consider maps whose domain is a Riemann surface. We prove that every holomorphic-horizontal map in the flag manifold is an equiharmonic map (i.e. harmonic with respect to each invariant metric in the flag manifold). We also obtain the Plucker formulae for holomorphic-horizontal curves in full flag manifolds. In the second part of the work, we consider harmonic maps whose domain has dimension one (i.e. geodesics) in the ag manifold. We prove that every generalized flag manifold admit curves that are geodesics with respect to each invariant metric. Such curves are called equigeodesics. We provide an algebraic characterization for such curves and exhibit families of equigeodesics in several families of flag manifolds / Doutorado / Doutor em Matemática
157

Caracteres de limites classicos de afinizações minimais de tipo E6 / Characters of classical limits of minimal affinizations of type E6

Pereira, Fernanda de Andrade 03 December 2010 (has links)
Orientador: Adriano Adrega de Moura / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-15T13:08:41Z (GMT). No. of bitstreams: 1 Pereira_FernandadeAndrade_M.pdf: 1042187 bytes, checksum: adcbcf9ff1fb8219267fb3097af14c9d (MD5) Previous issue date: 2010 / Resumo: O conceito de afinização minimal, introduzido por V. Chari e A. Pressley, surgiu a partir da impossibilidade de se estender, em geral, uma representação do grupo quântico associado a uma álgebra de Lie simples para o grupo quântico associado à sua álgebra de laços, o que sempre é possível no contexto clássico. Uma classe especial de afinizações minimais é a dos módulos de Kirillov-Reshetikhin, que são afinizações minimais dos módulos irredutíveis quando os pesos máximos são múltiplos dos pesos fundamentais. Esses módulos são objetos de muitos estudos por causa das suas aplicações em física-matemática. Um problema de interesse particular envolvendo afinizações minimais é o de descrever seus caracteres. Neste trabalho apresentamos algumas fórmulas para os caracteres de afinizações minimais quando a álgebra de Lie simples envolvida é do tipo E6. A principal técnica utilizada foi proposta por V. Chari e A. Moura ao se considerar o limite clássico das afinizações minimais. As fórmulas são obtidas através de um estudo sistemático de certos módulos graduados dados por geradores e relações para a correspodente álgebra de correntes. O ponto principal é demonstrar que estes módulos são isomorfos aos limites clássicos das afinizações minimais quando vistos como módulos para a álgebra de correntes / Abstract: The concept of minimal affinization, introduced by V. Chari and A. Pressley, arose from the impossibility of extending, in general, a representation of the quantum group associated to a simple Lie algebra to the quantum group associated to its loop algebra, which is always possible on the classical context. A special class of minimal affinizations is that of Kirillov-Reshetikhin modules, which are minimal affinizations of the irreducible modules having multiples of the fundamental weights as highest weights. These modules are objects of intensive studies because of their applications in mathematical physics. One problem of particular interest involving minimal affinizations is that of describing their characters. In this work we present some formulas for the characters of minimal affinizations when the simple Lie algebra involved is of type E6. The main strategy used here was proposed by V. Chari and A. Moura by considering the classical limit of minimal affinizations. The formulas are obtained through a systematic study of certain graded modules for the corresponding current algebra given by generators and relations. The main point is to prove that these modules are isomorphic to the classical limits of the minimal affinizations when the latter are regarded as modules for the current algebra / Mestrado / Algebra / Mestre em Matemática
158

O Lema do Diamante de Bergman e aplicações / The Lemma of Bergman's Diamond and applications

Solís, Victor Hugo López 19 March 2012 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2015-03-11T19:37:56Z No. of bitstreams: 2 Dissertação - Victor Hugo López Solís - 2012.pdf: 755677 bytes, checksum: ab64efbb1cbb6b6d5b9683cad6f75d6e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-03-13T18:58:33Z (GMT) No. of bitstreams: 2 Dissertação - Victor Hugo López Solís - 2012.pdf: 755677 bytes, checksum: ab64efbb1cbb6b6d5b9683cad6f75d6e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-03-13T18:58:59Z (GMT). No. of bitstreams: 2 Dissertação - Victor Hugo López Solís - 2012.pdf: 755677 bytes, checksum: ab64efbb1cbb6b6d5b9683cad6f75d6e (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2012-03-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Our work has as main objective, to establish conditions for a canonical form for elements of a ring, semigroup or algebraic structure similar. This result is obtained through the main Theorem 3.10 (The Lemma of Bergman’s Diamond) with applications. / O nosso trabalho tem como objetivo principal, estabelecer condições para obter uma forma canônica para os elementos de um anel, semigrupo ou estrutura algébrica similar. Isto é obtido através do resultado principal, o Teorema 3.10 (O Lema do Diamante de Bergman), com aplicações.
159

Dimensão de Gelfand-Kirillov em álgebras relativamente livres / Gelfand-Kirillov dimension in relatively free algebras

Machado, Gustavo Grings, 1987- 25 August 2018 (has links)
Orientador: Plamen Emilov Kochloukov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T04:30:00Z (GMT). No. of bitstreams: 1 Machado_GustavoGrings_D.pdf: 808427 bytes, checksum: 4482c43f5d1998040317e1873220ce8c (MD5) Previous issue date: 2014 / Resumo: Neste trabalho estudamos o invariante denominado dimensão de Gelfand-Kirillov para álgebras com identidades polinomiais, sobretudo para álgebras não-associativas, com o objetivo de melhor compreender a estrutura das identidades polinomiais. Ultimamente este invariante tem ganhado importância, uma vez que ele é relativamente fácil de calcular e, de certa forma, é capaz de diferenciar o crescimento de duas álgebras. Para álgebras associativas a GK-dimensão mostrou-se muito útil ao detectar que álgebras que por um lado são PI-equivalentes sobre corpos de característica zero pelo Teorema do Produto Tensorial de Kemer, por outro lado não são PI-equivalentes quando a característica do corpo infinito é positiva. Isto aponta para o surgimento de novos ????-ideais, conjuntos de identidades satisfeitas por uma álgebra, que são ???? -primos para corpos infinitos de característica positiva. Ainda é um problema em aberto a classificação e a compreensão destes ????-ideais em característica positiva, embora seja bem compreendida para PI-Álgebras associativas em característica zero, segundo a teoria de Kemer. Entretanto a situação é ainda menos clara para variedades de álgebras não-associativas como Álgebras de Jordan ou Álgebras de Lie. Sabe-se muito pouco sobre resultados que apontem para uma classificação de ????-ideais fora do caso associativo, até mesmo sobre corpos de característica zero. Inclusive se conhece pouco sobre o comportamento dos ????-ideais, mesmo de álgebras simples. Aqui damos um passo, calculando algumas GK-dimensões para álgebras relativamente livres de posto finito a partir da expressão da série de Hilbert. Destacamos em especial que calculamos a dimensão de Gelfand-Kirillov da álgebra relativamente livre de qualquer posto finito da álgebra de Lie das matrizes 2 × 2 de traço zero sobre um corpo infinito de característica diferente de 2. Acreditamos que estes resultados permitirão ajudar a compreender melhor o comportamento dos ????-ideais em álgebras não-associativas / Abstract: In this thesis we study the invariant called Gelfand-Kirillov Dimension for algebras with polynomial identities, mainly for non-associative algebras, aiming at better understanding the structure of the polynomial identities. This invariant has gained importance lately since in many cases it is relatively easy to calculate and, surprisingly, it is capable of distinguishing the growth of two algebras. For associative algebras GK-dimension was found to be very useful to detect that algebras which on one hand are PI-equivalent over fields of characteristic zero, according to Tensor Product Theorem of Kemer, on the other hand are not PI-equivalent when the characteristic of the infinite base field is positive. This points towards the rise of new ????-ideals, sets of identities satisfied by an algebra, which are ????-prime for infinite fields of positive characteristic. The classification and the understanding of such ????-ideals in positive characteristic are still open problems, although it is well understood for associative PI-Algebras in characteristic zero, using Kemer¿s theory. The situation is much less clear for varieties of non-associative algebras like Jordan Algebras or Lie Algebras. Very little is known about results towards a classification of ????-ideals outside the associative case, even over fields of characteristic zero. Accordingly little is known concerning the behavior of ????-ideals, even for simple algebras. Here we make a step towards this goal by computing some GK-dimensions of some relatively free algebras of finite rank by using the expression of the Hilbert series. In particular we compute the Gelfand-Kirillov dimension of the relatively free algebra of any finite rank generated by the Lie Algebra of the 2 × 2 traceless matrices over an infinite field of characteristic different from 2. We hope that results in this direction will contribute to a better understanding of the behavior of ????-ideals in non-associative algebras / Doutorado / Matematica / Doutor em Matemática
160

Homologia e cohomologia de variedades flag reais / Homology and cohomology of real flag manifolds

Rabelo, Lonardo, 1983- 21 August 2018 (has links)
Orientador: Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T00:23:49Z (GMT). No. of bitstreams: 1 Rabelo_Lonardo_D.pdf: 1560307 bytes, checksum: ad1323aadd78f3943acaf2c6e13b96d0 (MD5) Previous issue date: 2012 / Resumo: Esta tese apresenta uma abordagem para o estudo da topologia das variedades flag reais. A homologia é obtida pela determinação do operador fronteira da homologia celular. Isto se dá a partir de uma parametrização explícita das células de Shubert que fornecem a estrutura celular destas variedades. Para o anel de cohomologia de uma variedade flag maximal, encontram-se os seus geradores como classes de Stiefel-Whitney de um fibrado de linha sobre a variedade flag / Abstract: This thesis presents an approach for the study of topology of real flag manifolds. The homology is obtained by the determination of the boundary operator for the cellular homology. This follows from an explicit parametrization of the Schubert cells which gives a cellular structure for these manifolds. For the cohomology ring of a maximal flag manifold, its generators are found as Stiefel-Whitney classes of a line fiber bundle over the flag manifold / Doutorado / Matematica / Doutor em Matemática

Page generated in 0.087 seconds