Spelling suggestions: "subject:"eie algebra"" "subject:"iie algebra""
181 |
Spin Representations, Clifford Algebras and SpinorsWogel, Simon January 2023 (has links)
We begin by giving some theoretical background to the underlying concepts of spin representations and spinors. This is done from the perspective of Lie groups and Lie algebras. In particular, we discuss the functionality of Clifford algebras in the determination of the double-covering spin groups. An introduction to K-algebras and Clifford algebras is then given, focusing on the properties of pseudo-Euclidean spaces <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathbb%7BR%7D%5E%7Bp,q%7D" data-classname="equation" data-title="" />. Some low-dimensional examples are also included, culminating with a characterisation of some Clifford algebras as matrix algebras. Elementary representation theory is then introduced and quickly followed by the definition of the Clifford-Lipschitz and spin groups. The work of Lundholm and Svensson (2016), Vaz and da Rocha (2016), and Schwichtenberg (2018) is then united to construct a definition of the spin representations. An attempt at formulating a definition of spinors from a mathematical perspective is then given; formed by combining multiple approaches and definitions of the above-mentioned authors, as well as drawing inspiration from important cases in theoretical physics, in particular that of SO(3) and the Lorentz group SO(1,3).
|
182 |
Determiningeons : a computer program for approximating lie generators admitted by dynamical systemsNagao, Gregory G. 01 January 1980 (has links) (PDF)
As was recognized by same of the most reputable physicists of the world such as Galilee and Einstein, the basic laws of physics must inevitably be founded upon invariance principles. Galilean and special relativity stand as historical landmarks that emphasize this message. It's no wonder that the great developments of modern physics (such as those in elementary particle physics) have been keyed upon this concept.
The modern formulation of classical mechanics (see Abraham and Marsden [1]) is based upon "qualitative" or geometric analysis. This is primarily due to the works of Poincare. Poincare showed the value of such geometric analysis in the solution of otherwise insoluble problems in stability theory. It seems that the insights of Poincare have proven fruitful by the now famous works of Kolmogorov, Arnold, and Moser. The concepts used in this geometric theory are again based upon invariance principles, or symmetries.
The work of Sophus Lie from 1873 to 1893 laid the groundwork for the analysis of invariance or symmetry principles in modern physics. His primary studies were those of partial differential equations. This led him to the study of the theory of transformations and inevitably to the analysis of abstract groups and differential geometry. Here we show same further applications of Lie group theory through the use of transformation groups. We emphasize the use of transformation invariance to find conservation laws and dynamical properties in chemical physics.
|
183 |
Tangent and Cotangent Bundles, Automorphism Groups and Representations of Lie GroupsHindeleh, Firas Y. 06 September 2006 (has links)
No description available.
|
184 |
Oktaven und Reduktionstheorie / Octonions and reduction theoryRoeseler, Karsten 07 February 2011 (has links)
No description available.
|
185 |
A new invariant of quadratic lie algebras and quadratic lie superalgebrasDuong, Minh-Thanh 06 July 2011 (has links) (PDF)
In this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7.
|
186 |
A new invariant of quadratic lie algebras and quadratic lie superalgebras / Un nouvel invariant des algèbres de Lie et des super-algèbres de Lie quadratiquesDuong, Minh thanh 06 July 2011 (has links)
Dans cette thèse, nous définissons un nouvel invariant des algèbres de Lie quadratiques et des superalgèbres de Lie quadratiques et donnons une étude et classification complète des algèbres de Lie quadratiques singulières et des superalgèbres de Lie quadratiques singulières, i.e. celles pour lesquelles l’invariant n’est pas nul. La classification est en relation avec les orbites adjointes des algèbres de Lie o(m) et sp(2n). Aussi, nous donnons une caractérisation isomorphe des algèbres de Lie quadratiques 2-nilpotentes et des superalgèbres de Lie quadratiques quasi-singulières pour le but d’exhaustivité. Nous étudions les algèbres de Jordan pseudoeuclidiennes qui sont obtenues des extensions doubles d’un espace vectoriel quadratique par une algèbre d’une dimension et les algèbres de Jordan pseudo-euclidienne 2-nilpotentes, de la même manière que cela a été fait pour les algèbres de Lie quadratiques singulières et des algèbres de Lie quadratiques 2-nilpotentes. Enfin, nous nous concentrons sur le cas d’une algèbre de Novikov symétrique et l’étudions à dimension 7. / In this thesis, we defind a new invariant of quadratic Lie algebras and quadratic Lie superalgebras and give a complete study and classification of singular quadratic Lie algebras and singular quadratic Lie superalgebras, i.e. those for which the invariant does not vanish. The classification is related to adjoint orbits of Lie algebras o(m) and sp(2n). Also, we give an isomorphic characterization of 2-step nilpotent quadratic Lie algebras and quasi-singular quadratic Lie superalgebras for the purpose of completeness. We study pseudo-Euclidean Jordan algebras obtained as double extensions of a quadratic vector space by a one-dimensional algebra and 2-step nilpotent pseudo-Euclidean Jordan algebras, in the same manner as it was done for singular quadratic Lie algebras and 2-step nilpotent quadratic Lie algebras. Finally, we focus on the case of a symmetric Novikov algebra and study it up to dimension 7.
|
187 |
Brisure de symétrie par la réduction des groupes de Lie simples à leurs sous-groupes de Lie réductifs maximauxLarouche, Michelle 12 1900 (has links)
Dans ce travail, nous exploitons des propriétés déjà connues pour les systèmes de poids des représentations afin de les définir pour les orbites des groupes de Weyl des algèbres de Lie simples, traitées individuellement, et nous étendons certaines de ces propriétés aux orbites des groupes de Coxeter non cristallographiques. D'abord, nous considérons les points d'une orbite d'un groupe de Coxeter fini G comme les sommets d'un polytope (G-polytope) centré à l'origine d'un espace euclidien réel à n dimensions. Nous introduisons les produits et les puissances symétrisées de G-polytopes et nous en décrivons la décomposition en des sommes de G-polytopes. Plusieurs invariants des G-polytopes sont présentés. Ensuite, les orbites des groupes de Weyl des algèbres de Lie simples de tous types sont réduites en l'union d'orbites des groupes de Weyl des sous-algèbres réductives maximales de l'algèbre. Nous listons les matrices qui transforment les points des orbites de l'algèbre en des points des orbites des sous-algèbres pour tous les cas n<=8 ainsi que pour plusieurs séries infinies des paires d'algèbre-sous-algèbre. De nombreux exemples de règles de branchement sont présentés. Finalement, nous fournissons une nouvelle description, uniforme et complète, des centralisateurs des sous-groupes réguliers maximaux des groupes de Lie simples de tous types et de tous rangs. Nous présentons des formules explicites pour l'action de tels centralisateurs sur les représentations irréductibles des algèbres de Lie simples et montrons qu'elles peuvent être utilisées dans le calcul des règles de branchement impliquant ces sous-algèbres. / In this work, we exploit properties well known for weight systems of representations to define them for individual orbits of the Weyl groups of simple Lie algebras, and we extend some of these properties to orbits of non-crystallographic Coxeter groups. Points of an orbit of a finite Coxeter group G are considered as vertices of a polytope (G-polytope) centered at the origin of a real n-dimensional Euclidean space. Products and symmetrized powers of G-polytopes are introduced and their decomposition into the sums of G-polytopes is described. Several invariants of G-polytopes are found. The orbits of Weyl groups of simple Lie algebras of all types are reduced to the union of orbits of the Weyl groups of maximal reductive subalgebras of the algebra. Matrices transforming points of the orbits of the algebra into points of subalgebra orbits are listed for all cases n<=8 and for many infinite series of algebra-subalgebra pairs. Numerous examples of branching rules are shown. Finally, we present a new, uniform and comprehensive description of centralizers of the maximal regular subgroups in compact simple Lie groups of all types and ranks. Explicit formulas for the action of such centralizers on irreducible representations of the simple Lie algebras are given and shown to have application to computation of the branching rules with respect to these subalgebras.
|
188 |
Finite dimensional realizations for term structure models driven by semimartingalesTappe, Stefan 10 November 2005 (has links)
Es sei ein Heath-Jarrow-Morton Zinsstrukturmodell df(t,T) = alpha(t,T)dt + sigma(t,T)dX_t gegeben, angetrieben von einem mehrdimensionalen Semimartingal X. Das Ziel dieser Arbeit besteht darin, die Existenz endlich dimensionaler Realisierungen für solche Modelle zu untersuchen, wobei wir als treibende Prozesse die Klasse der Grigelionis Prozesse wählen, die insbesondere Levy Prozesse enthält. Zur Bearbeitung der Fragestellung werden zwei veschiedene Ansätze verfolgt. Wir dehnen die Ideen aus der Differenzialgeometrie von Björk und Svensson (2001) auf die vorliegende Situation aus und zeigen, dass das in der zitierten Arbeit bewiesene Kriterium für die Existenz endlich dimensionaler Realisierungen in unserem Fall als notwendiges Kriterium dienlich ist. Dieses Resultat wird auf konkrete Volatilitätsstrukturen angewandt. Im Kontext von sogenannten Benchmark Realisierungen, die eine natürliche Verallgemeinerung von Short Rate Realisierungen darstellen, leiten wir Integro-Differenzialgleichungen her, die für die Untersuchung der Existenz endlich dimensionaler Realisierungen hilfreich sind. Als Verallgemeinerung eines Resultats von Jeffrey (1995) beweisen wir außerdem, dass Zinsstrukturmodelle, die eine generische Benchmark Realisierung besitzen, notwendigerweise eine singuläre Hessesche Matrix haben. Beide Ansätze zeigen, dass neue Phänomene auftreten, sobald der treibende Prozess X Sprünge macht. Es gibt dann auf einmal nur noch sehr wenige Zinsstrukturmodelle, die endlich dimensionale Realisierungen zulassen, was ein beträchtlicher Unterschied zu solchen Modellen ist, die von einer Brownschen Bewegung angetrieben werden. Aus diesem Grund zeigen wir, dass für die in der Literatur oft behandelten Modelle mit deterministischer Richtungsvolatilität eine Folge von endlich dimensionalen Systemen existiert, die gegen das Zinsmodell konvergieren. / Let f(t,T) be a term structure model of Heath-Jarrow-Morton type df(t,T) = alpha(t,T)dt + sigma(t,T)dX_t, driven by a multidimensional semimartingale X. Our objective is to study the existence of finite dimensional realizations for equations of this kind. Choosing the class of Grigelionis processes (including in particular Levy processes) as driving processes, we approach this problem from two different directions. Extending the ideas from differential geometry in Björk and Svensson (2001), we show that the criterion for the existence of finite dimensional realizations, proven in the aforementioned paper, still serves as a necessary condition in our setup. This result is applied to concrete volatility structures. In the context of benchmark realizations, which are a natural generalization of short rate realizations, we derive integro-differential equations, suitable for the analysis of the realization problem. Generalizing Jeffrey (1995), we also prove a result stating that forward rate models, which generically possess a benchmark realization, must have a singular Hessian matrix. Both approaches reveal that, with regard to the results known for driving Wiener processes, new phenomena emerge, as soon as the driving process X has jumps. In particular, the occurrence of jumps severely limits the range of models that admit finite dimensional realizations. For this reason we prove, for the often considered case of deterministic direction volatility structures, the existence of finite dimensional systems converging to the forward rate model.
|
189 |
On Representations of the Jacobi Group and Differential EquationsWebster, Benjamin 01 January 2018 (has links)
In PDEs with nontrivial Lie symmetry algebras, the Lie symmetry naturally yield Fourier and Laplace transforms of fundamental solutions. Applying this fact we discuss the semidirect product of the metaplectic group and the Heisenberg group, then induce a representation our group and use it to investigate the invariant solutions of a general differential equation of the form .
|
190 |
Brisure de symétrie par la réduction des groupes de Lie simples à leurs sous-groupes de Lie réductifs maximauxLarouche, Michelle 12 1900 (has links)
Dans ce travail, nous exploitons des propriétés déjà connues pour les systèmes de poids des représentations afin de les définir pour les orbites des groupes de Weyl des algèbres de Lie simples, traitées individuellement, et nous étendons certaines de ces propriétés aux orbites des groupes de Coxeter non cristallographiques. D'abord, nous considérons les points d'une orbite d'un groupe de Coxeter fini G comme les sommets d'un polytope (G-polytope) centré à l'origine d'un espace euclidien réel à n dimensions. Nous introduisons les produits et les puissances symétrisées de G-polytopes et nous en décrivons la décomposition en des sommes de G-polytopes. Plusieurs invariants des G-polytopes sont présentés. Ensuite, les orbites des groupes de Weyl des algèbres de Lie simples de tous types sont réduites en l'union d'orbites des groupes de Weyl des sous-algèbres réductives maximales de l'algèbre. Nous listons les matrices qui transforment les points des orbites de l'algèbre en des points des orbites des sous-algèbres pour tous les cas n<=8 ainsi que pour plusieurs séries infinies des paires d'algèbre-sous-algèbre. De nombreux exemples de règles de branchement sont présentés. Finalement, nous fournissons une nouvelle description, uniforme et complète, des centralisateurs des sous-groupes réguliers maximaux des groupes de Lie simples de tous types et de tous rangs. Nous présentons des formules explicites pour l'action de tels centralisateurs sur les représentations irréductibles des algèbres de Lie simples et montrons qu'elles peuvent être utilisées dans le calcul des règles de branchement impliquant ces sous-algèbres. / In this work, we exploit properties well known for weight systems of representations to define them for individual orbits of the Weyl groups of simple Lie algebras, and we extend some of these properties to orbits of non-crystallographic Coxeter groups. Points of an orbit of a finite Coxeter group G are considered as vertices of a polytope (G-polytope) centered at the origin of a real n-dimensional Euclidean space. Products and symmetrized powers of G-polytopes are introduced and their decomposition into the sums of G-polytopes is described. Several invariants of G-polytopes are found. The orbits of Weyl groups of simple Lie algebras of all types are reduced to the union of orbits of the Weyl groups of maximal reductive subalgebras of the algebra. Matrices transforming points of the orbits of the algebra into points of subalgebra orbits are listed for all cases n<=8 and for many infinite series of algebra-subalgebra pairs. Numerous examples of branching rules are shown. Finally, we present a new, uniform and comprehensive description of centralizers of the maximal regular subgroups in compact simple Lie groups of all types and ranks. Explicit formulas for the action of such centralizers on irreducible representations of the simple Lie algebras are given and shown to have application to computation of the branching rules with respect to these subalgebras.
|
Page generated in 0.0717 seconds