Spelling suggestions: "subject:"lifshitz"" "subject:"lifschitz""
31 |
Numerical methods for dynamic micromagneticsShepherd, David January 2015 (has links)
Micromagnetics is a continuum mechanics theory of magnetic materials widely used in industry and academia. In this thesis we describe a complete numerical method, with a number of novel components, for the computational solution of dynamic micromagnetic problems by solving the Landau-Lifshitz-Gilbert (LLG) equation. In particular we focus on the use of the implicit midpoint rule (IMR), a time integration scheme which conserves several important properties of the LLG equation. We use the finite element method for spatial discretisation, and use nodal quadrature schemes to retain the conservation properties of IMR despite the weak-form approach. We introduce a novel, generally-applicable adaptive time step selection algorithm for the IMR. The resulting scheme selects error-appropriate time steps for a variety of problems, including the semi-discretised LLG equation. We also show that it retains the conservation properties of the fixed step IMR for the LLG equation. We demonstrate how hybrid FEM/BEM magnetostatic calculations can be coupled to the LLG equation in a monolithic manner. This allows the coupled solver to maintain all properties of the standard time integration scheme, in particular stability properties and the energy conservation property of IMR. We also develop a preconditioned Krylov solver for the coupled system which can efficiently solve the monolithic system provided that an effective preconditioner for the LLG sub-problem is available. Finally we investigate the effect of the spatial discretisation on the comparative effectiveness of implicit and explicit time integration schemes (i.e. the stiffness). We find that explicit methods are more efficient for simple problems, but for the fine spatial discretisations required in a number of more complex cases implicit schemes become orders of magnitude more efficient.
|
32 |
Fluctuations non-linéaires dans les gaz quantiques à deux composantes / Nonlinear fluctuations in two-component quantum gasesCongy, Thibault 29 September 2017 (has links)
Cette thèse est dédiée à l'étude des fluctuations non-linéaires dans les condensats de Bose-Einstein à deux composantes. On présente dans le premier chapitre la dynamique de champ moyen des condensats à deux composantes et les différents phénomènes typiques associés au degré de liberté spinoriel. Dans ce même chapitre, on montre que la dynamique des excitations se sépare en deux modes distincts : un mode dit de densité correspondant au mouvement global des atomes à l'intérieur du condensat et un mode dit de polarisation correspondant à la dynamique relative entre les deux espèces constituant le condensat. Ce calcul est généralisé dans le deuxième chapitre où l'on montre que le mode de polarisation persiste en présence d'un couplage cohérent entre les deux composantes. En particulier on analyse la stabilité modulationnelle du mode en déterminant, à l'aide d'une analyse multi-échelle, la dynamique des excitations non-linéaires. On montre alors que les excitations de polarisation, au contraire des excitations de densité, souffrent d'une instabilité de Benjamin-Feir. Cette instabilité est stabilisée aux grandes impulsions par une résonance onde longue - onde courte. Enfin dans le dernier chapitre, on dérive de façon non-perturbative la dynamique de polarisation proche de la limite de Manakov, dynamique quise révèle être régie par une équation de Landau-Lifshitz sans dissipation. Les équations de Landau-Lifshitz appartiennent à une hiérarchie d'équations intégrables (hiérarchie Ablowitz-Kaup-Newell-Segur) et on étudie les solutions à une phase à l'aide de la méthode d'intégration finite-gap ; on détermine notamment à l'aide de cette méthode un nouveau type de soliton pour les condensats à deux composantes. Finalement, profitant de l'intégrabilité du système, on résout le problème de Riemann à l'aide de la théorie de modulation de Whitham et on montre que les condensats à deux composantes peuvent propager des ondes de raréfaction ainsi que des ondes de choc dispersives ; on décrit notamment la modulation de ces ondes de choc par la propagation d'ondes simples et d'ondes de contact d'invariants de Riemann. / This thesis is devoted to the study of nonlinear fluctuations in two-component Bose-Einstein condensates. In the first chapter we derive the mean field dynamics of two-component condensates and we present the distinctive phenomena associated to the spinorial degree of freedom. In the same chapter, we show that the dynamics of the excitations is divided in two distinct modes: a so-called density mode which corresponds to the global motion of the atoms, and a so-called polarization mode which corresponds to the relative motion between the two species composing the condensate. The computation is generalized in the second chapter in which we demonstrate that the polarization mode remains in presence of a coherent coupling between the two components. In particular we study the modulational stability of the mode and we determine through a multi-scaling analysis the dynamics of non-linear excitations. We show that the excitations of polarization undergo a Benjamin-Feir instability contrary to the density excitations. This instability is then stabilized in the short wavelength regime by a long wave - short wave resonance. Finally in the last chapter, we derive in a non-perturbative way the polarisation dynamics close the Manakov limit.In this limit, the dynamics proves to be governed by a Landau-Lifshitz equation without dissipation. Landau-Lifshitz equations belong to a hierarchy of integrable equations (Ablowitz-Kaup-Newell-Segur hierarchy) and we derive the single-phase solutions thanks to the finite-gap method; in particular we identify a new type of soliton for the two-component Bose-Einstein condensates. Finally, taking advantage of the integrability of the system, we solve the Riemann problem thanks to the Whitham modulation theory and we show that the two-component condensates can propagate rarefaction waves as well as dispersive shockwaves; we describe the modulation of the shockwaves by the propagation of simple waves and contact waves of Riemann invariants.
|
33 |
Relativistic Density Functional Treatment of Magnetic AnisotropyZhang, Hongbin 09 October 2009 (has links)
Spin-orbit coupling (SOC) reduces the spatial symmetry of ferromagnetic
solids. That is, the physical properties of ferromagnetic materials are anisotropic,
depending on the magnetization direction. In this thesis, by means of numerical calculations with full-relativistic density functional theory, we studied
two kinds of physical properties: surface magnetic anisotropy energy (MAE)
and anisotropic thermoelectric power due to Lifshitz transitions.
After a short introduction to the full-relativistic density functional theory in Chapter 2, the MAE of ferromagnetic thin films is studied in Chapter 3. For such systems, separation of different contributions, such as bulk
magnetocrystalline anisotropy (MCA) energy, shape anisotropy energy, and
surface/interface anisotropy energy, is crucial to gain better understanding
of experiments. By fitting our calculating results for thick slabs to a phenomenological model, reliable surface MAE could be obtained. Following
this idea, we have studied the MAE of Co slabs with different geometries,
focusing on the effects of orbital polarization correction (OPC). We found
that the surface anisotropy is mainly determined by the geometry. While
OPC gives better results of orbital moments, it overestimates the MAE.
In the second part of Chapter3, the effects of electric fields on the MAE
of L10 ferromagnetic thin films are studied. Using a simple model to simulate the electric field, our calculations are in good agreement with previous
experimental results. We predicted that for CoPt, even larger effects exist.
Moreover, we found that it is the amount of screening charge that determines
the magnetoelectric coupling effects. This gives us some clue about how to
achieve electric field control of magnetization direction.
In Chapter 4, Lifshitz transitions in L10 FePt caused by a canted magnetic field are studied. We found several Lifshitz transitions in ordered FePt
with tiny features in DOS. Using a two-band model, it is demonstrated that
at such transitions, the singular behaviour of kinetic properties is due to the
interband scattering, and the singularity itself is proportional to the derivative of the singular DOS. For FePt, such singularity will be smeared into
anomaly by chemical disorder. Using CPA, we studied the effects of energy
level broadening for the critical bands in FePt. We found that for experimentally available FePt thin films, Lifshitz transitions would induce up to a
3% increase of thermopower as the magnetization is rotated from the easy
axis to the hard axis. / Spin-Bahn-Kopplung reduziert die Symmetrie ferromagnetischer Festkörper.
Das bedeutet, dass die physikalischen Eigenschaften ferromagnetischer Stoffe
anisotrop bezüglich der Magnetisierungsrichtung sind. In dieser Dissertation
werden mittels numerischer voll-relativistischer Dichtefunktional-Rechnungen
zwei Arten physikalischer Eigenschaften untersucht: magnetische Oberflächen-Anisotropieenergie (MAE) und anisotrope Thermokraft durch Lifshitz-Übergänge.
Nach einer kurzen Einführung in die relativistische Dichtefunktional-Theorie
in Kapitel 2 wird in Kapitel 3 die MAE ferromagnetischer dünner Filme
untersucht. In diesen Systemen ist es für ein Verständnis experimenteller
Ergebnisse wichtig, verschiedene Beiträge zu separieren: Volumenanteil der
magnetokristallinen Anisotropie (MCA), Formanistropie und Oberflächen bzw.
Grenzflächenanisotropie. Durch Anpassen berechneter Daten für dicke
Schichten an ein phänomenologisches Modell konnten verlässliche Oberflächen
Anisotropien erhalten werden. In dieser Weise wurde die MAE von Co-
Schichten mit unterschiedlichen Geometrien untersucht, wobei der Einfluss
von Orbitalpolarisations-Korrekturen (OPC) im Vordergrund stand. Es wurde
gefunden, dass die Oberflächenanisotropie hauptsächlich von der Geometrie
bestimmt wird. Während OPC bessere Ergebnisse für die Orbitalmomente
liefert, wird die MAE überschätzt.
Im zweiten Teil von Kapitel 3 wird der Einfluss elektrischer Felder auf die
MAE von dünnen ferromagnetischen Filmen mit L10-Struktur untersucht.
Unter Verwendung eines einfachen Modells zur Simulation des elektrischen
Feldes liefern die Rechnungen gute Übereinstimmung mit vorliegenden experimentellen
Ergebnissen. Es wird vorhergesagt, dass für CoPt ein noch
größerer Effekt existiert. Weiterhin wurde gefunden, dass die magnetoelektrische
Kopplung von der Größe der Abschirmladung bestimmt wird.
Dies ist eine wichtige Einsicht, um die Magnetisierungsrichtung durch ein
elektrisches Feld kontrollieren zu können.
In Kapitel 4 werden Lifshitz-Übergänge untersucht, die ein gekantetes
Magnetfeld hervorruft. Es wurden mehrere Lifshitz-Übergänge in geordnetem
FePt gefunden, welche kleine Anomalien in der Zustandsdichte hervorrufen.
Mit Hilfe eines Zweiband-Modells wird gezeigt, dass an solchen
Übergängen das singuläre Verhalten kinetischer Eigenschaften durch Interband-
Streuung verursacht wird und dass die Singularität proportional zur Ableitung
der singulären Zustandsdichte ist. In FePt wird durch chemische Unordnung
diese Singularität zu einer Anomalie verschmiert. Der Einfluss einer Verbreiterung
der Energieniveaus der kritischen Bänder in FePt wurde mittels CPA
untersucht. Es wurde gefunden, dass in experimentell verfügbaren dünnen FePt-Filmen Lifshitz-Übergänge bis zu 3% Erhöhung der Thermokraft erzeugen,
wenn die Magnetisierung von der leichten in die harte Richtung gedreht
wird.
|
34 |
Modèles asymptotiques en ferromagnétisme: couches minces et homogénéisationHaddar, Houssem 01 December 2000 (has links) (PDF)
Cette thèse s'intéresse, à la diffraction d'ondes électromagnétiques par un matériau ferromagnétique obéissant à la loi non-linéaire de Landau-Lifshitz, et comporte trois parties. On étudie dans la première partie le problème de Cauchy formé par le système de Maxwell et la loi de L.L. On y montre l'existence et l'unicité des solutions fortes en 2D. La deuxième partie traite le problème de diffraction par un revêtement ferromagnétique de faible épaisseur. La couche mince est remplacée par des conditions aux limites équivalentes, obtenues via un développement asymptotique par rapport à l'épaisseur et permettant un calcul approchée de la solution. La stabilité (ou instabilité) de ces conditions est analysée dans le cas général mais l'étude de l'erreur pour le problème non-linéaire n'a été faite que pour le modèle 1D. On propose et on étudie ensuite deux schémas de discrétisation en temps. L'intérêt pratique de ces conditions équivalentes a été mis en évidence par des expériences numériques 1D et 2D. La troisième partie est consacrée à l'homogénéisation d'un milieu ferromagnétique périodique. Le modèle homogénéisé est présenté dans le cas général et comprend une loi non linéaire micro-macro non locale. La convergence double échelle est montrée dans le cas laminaire. Le procédé d'homogénéisation est également validé numériquement dans ce cas.
|
35 |
Descrição de Horava-Lifshitz para modelos que violam a invariância de Lorentz via operadores de altas ordens derivativas.FARIAS, Klecio Emanuel Lima de. 17 October 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-10-17T19:12:16Z
No. of bitstreams: 1
KLECIO EMANUEL LIMA DE FARIAS – DISSERTAÇÃO (PPGFísica) 2017.pdf: 669446 bytes, checksum: 26edbf33fb48c30aed37e5d2c6da2a80 (MD5) / Made available in DSpace on 2018-10-17T19:12:16Z (GMT). No. of bitstreams: 1
KLECIO EMANUEL LIMA DE FARIAS – DISSERTAÇÃO (PPGFísica) 2017.pdf: 669446 bytes, checksum: 26edbf33fb48c30aed37e5d2c6da2a80 (MD5)
Previous issue date: 2017-10-04 / Capes / Neste trabalho, aplicamos o reescalonamento tipo ao de Hoˇrava-Lifshitz para reescrever algumas teorias eletrodinâmicas de altas ordens derivativas que violam a simetria de Lorentz, controladas por quadrivetores: (n )s que determinam direções preferenciais no espaço - tempo. As equações de movimento foram obtidas, através das quais analisamos as relações de dispersão modificadas em conjunto com os resultados observacionais das experiências de explosão de raios gama (GRB). Os limites do expoente crítico foram discutidos a partir dos dados dos GRBs através de cálculos de grau de polarizaçao (usando operador de dimensão-cinco) e de atraso temporal (usando operador de dimensão-seis) nas propagações dos fótons. As implicações físicas foram comparadas com recentes resultados da literatura sobre limites da quebra da invariância de Lorentz via GRBs. / In this work, we used a Hoˇrava-Lifshitz scaling to rewrite a high-order derivative electrodynamics that violates the Lorentz symmetry, controlled by 4-vector (n )s which determine the space-time preferential directions. The equations of motion were obtained, through which the modified dispersion relation was analyzed together with observational results of gamma ray bursts (GRB). The limits of the critical exponent were discussed from the GRBs values through calculation of degree of polarization (using five-dimensional operator) and temporal delay (using six-dimensional operator) on photon propagation. The physical implications were compared with the current results from the literature regarding Lorentz invariance violation via GRB.
|
36 |
A influência da geometria do domínio sobre a existência de equilíbrios estáveis não-constantes para alguns sistemas parabólicos.Madeira, Gustavo Ferron 23 April 2004 (has links)
Made available in DSpace on 2016-06-02T20:28:26Z (GMT). No. of bitstreams: 1
DissGFM.pdf: 388964 bytes, checksum: 0930871c8482b09826976215c487e16c (MD5)
Previous issue date: 2004-04-23 / Financiadora de Estudos e Projetos / In this work we study the problem of existence of non-constant stable equilibria
to some parabolic systems. Specifically, the Ginzburg-Landau system, the
Landau-Lifshitz system and systems with skew-gradient structure. In all cases,
we note that the geometry of the domain has a fundamental role in the problem
above: if the domain has a smooth boundary and is convex, then there are no
non-constant stable equilibrium solutions, that is, every non-constant equilibrium
is unstable. / Neste trabalho estudamos o problema da existência de equilíbrios estáveis não-constantes de alguns sistemas parabólicos, sendo eles o sistema de Ginzburg-Landau, o sistema de Landau-Lifshitz e sistemas de reação-difusão com estrutura
anti-gradiente. Em todos os casos, evidencia-se que a geometria do domínio tem
um papel fundamental para uma resposta ao problema: se o domínio tem fronteira
suave e é convexo, então não existem soluções de equilíbrio não-constantes
estáveis, ou seja, todo equilíbrio não-constante é instável.
|
37 |
Low temperature expansion in the Lifshitz formulaBordag, Michael January 2014 (has links)
The low temperature expansion of the free energy in a Casimir effect setup is considered in detail. The starting point is the Lifshitz formula in Matsubara representation and the basic method is its reformulation using the Abel-Plana formula making full use of the analytic properties. This provides a unified description of specific models. We rederive the known results and, in a number of cases, we are able to go beyond. We also discuss the cases with dissipation. It is an aim of the paper to give a coherent exposition of the asymptotic expansions for T -> 0. The paper includes the derivations and should provide a self-contained representation.
|
38 |
THE ENTANGLEMENT ENTROPY NEAR LIFSHITZ QUANTUM PHASE TRANSITIONS & THE EMERGENT STATISTICS OF FRACTIONALIZED EXCITATIONSRodney, Marlon A. 10 1900 (has links)
<p>In Part I, the relationship between the topology of the Fermi surface and the entanglement entropy S is examined. Spinless fermionic systems on one and two dimensional lattices at fixed chemical potential are considered. The lattice is partitioned into sub-system of length L and environment, and the entanglement of the subsystem with the environment is calculated via the correlation matrix. S is plotted as a function of the next-nearest or next-next nearest neighbor hopping parameter, t. In 1 dimension, the entanglement entropy jumps at lifshitz transitions where the number of Fermi points changes. In 2 dimensions, a neck-collapsing transition is accompanied by a cusp in S, while the formation of electron or hole-like pockets coincides with a kink in the S as a function of the hopping parameter. The entanglement entropy as a function of subsystem length L is also examined. The leading order coefficient of the LlnL term in 2 dimensions was seen to agree well with the Widom conjecture. Of interest is the difference this coefficient and the coefficient of the term linear in L near the neck-collapsing point. The leading order term changes like |t-t<sub>c</sub>|<sup>1/2</sup> whereas the first sub-leading term varies like |t-t<sub>c</sub>|<sup>1/3</sup>, where t<sub>c</sub> is the critical value of the hopping parameter at the transition.</p> <p>In Part II, we study the statistics of fractionalized excitations in a bosonic model which describes strongly interacting excitons in a N-band insulator. The elementary excitations of this system are strings, in a large N limit. A string is made of a series of bosons whose flavors are correlated such that the end points of a string carries a fractionalized flavor quantum number. When the tension of a string vanishes, the end points are deconfined. We determine the statistics of the fractionalized particles described by the end points of strings. We show that either bosons or Fermions can arise depending on the microscopic coupling constants. In the presence of the cubic interaction in the Hamiltonian as the only higher order interaction term, it was shown that bosons are emergent. In the presence of the quartic interaction with a positive coupling constant, it was revealed that the elementary excitations of the system possess Fermion statistics.</p> / Master of Science (MSc)
|
39 |
Valence Bond Calculations for Quantum Spin Chains: From Impurity Entanglement and Incommensurate Behaviour to Quantum Monte CarloDeschner, Andreas 04 1900 (has links)
<p>In this thesis I present three publications about the use of<br />valence bonds to gain information about quantum spin systems.<br />Valence bonds are an essential ingredient of low energy states present<br />in many compounds.<br /><br />The first part of this thesis is dedicated to<br />two studies of the antiferromagnetic J<sub>1</sub>-J<sub>2</sub> chain with<br />S=1/2. We show how automated variational calculations based on<br />valence bond states can be performed close to the Majumdar-Ghosh point<br />(MG-point). At this point, the groundstate is a product state of<br />dimers (valence bonds between nearest neighbours). In the dimerized<br />region surrounding the MG-point, we find such variational computations<br />to be reliable.<br /><br />The first publication is about<br />the entanglement properties of an impurity attached to the chain. We show<br />how to use the variational method to calculate the negativity, an<br />entanglement measure between the impurity and a distant part of the<br />chain. We find that increasing the impurity coupling and a<br />minute explicit dimerization, suppress the long-ranged entanglement<br />present in the system for small impurity coupling at the MG-point. <br /><br />The second publication is about a<br />transition from commensurate to incommensurate behaviour and how its<br />characteristics depend on the parity of the length of the chain. The<br />variational technique is used in a parameter regime inaccessible to<br />DMRG. We find that in odd chains, unlike in even chains, a very<br />intricate and interesting pattern of level crossings can be observed. <br /><br />The publication of the second part is about novel worm algorithms for<br />a popular quantum Monte Carlo method called valence bond quantum Monte<br />Carlo (VBQMC). The algorithms are based on the notion of a worm<br />moving through a decision tree. VBQMC is entirely formulated in<br />terms of valence bonds. In this thesis, I explain how the approach<br />of VBQMC can be translated to the S<sub>z</sub>-basis. The algorithms explained<br />in the publication can be applied to this S<sub>z</sub>-method.</p> / Doctor of Philosophy (PhD)
|
40 |
Etude mathématique d'un modèle de fil ferromagnétique en présence d'un courant électriqueJizzini, Rida 25 March 2013 (has links)
Dans ma thèse, j’ai travaillé sur les modèles de fils en ferromagnétisme. J’ai obtenu les résultats suivants :- Existence de solutions très régulières pour les équations de Landau-Lifschitz en dimension 3.- Stabilité de profils de murs avec critère optimal de stabilité pour un fil soumis à un champ magnétique.- Stabilité de profils de murs pour un fil soumis à un courant électrique, dans le cas d’un fil à section circulaire et dans le cas d’un fil à section ellipsoïdale. - Justification des modèles monodimensionnels de fils. / In my thesis, I worked on models of wires in ferromagnetism. I got the following results:- Existence of very regular solutions for Landau-Lifschitz equations in dimension 3.- Optimal stability criterion for a wall in a ferromagnetic wire in a magnetic field.-Stability of walls in a ferromagnetic wire subjected to an electric current, in the case of a round wire and in the case of an ellipsoidal cross-section wire.- Justification of one-dimensional wires models.
|
Page generated in 0.0397 seconds