• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 9
  • Tagged with
  • 32
  • 26
  • 25
  • 23
  • 21
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Framtida behov av litium och kobolt för produktion av litium-jonbatterier vid Northvolt Ett i Skellefteå / Projecting future demand for lithium and cobalt at Northvolt Ett in Skellefteå

Stone Pöldma, Sofia January 2022 (has links)
Den ökande efterfrågan på laddbara bilar medför även en ökad efterfrågan på vissa metaller som krävs i framställande av tillhörande batterier. Efterfrågan på metaller som litium och kobolt ökar drastiskt. Samtidigt associeras utvinning av litium och kobolt med ett flertal hållbarhetsproblem som främst påverkar redan sårbara människor. För att minska de ohållbara konsekvenserna av råvaruextraktion är en möjlighet att öka andelen återvunnet material i nyproduktionen av litiumjonbatterier. Visserligen är återvinning en viktig komponent i batteritillverkningen, men det är ej totalt okomplicerat att skifta produktionen från nyutvunnen metall till återvunnen. Dessa svårigheter kan härledas till elbilsmarknadens exponentiella ökning i omfång vilket kräver mer metall för produktion än vad som kan mötas av återvunnet material.  Denna studie utvecklar och presenterar matematiska modeller i Microsoft Excel som uppskattar beräknad efterfrågan av nybruten litium och kobolt från år 2022 till 2050 i litium- jonbatterifabriken Northvolt Ett i Skellefteå. Modellerna baseras på antaganden från tidigare studier vilka tolkas i en litteraturgenomgång. Flertalet alternativa scenarion i återvinningsandelar, metallintensitet per energilagringsenhet och framtida batteriteknologi är samtliga konsistenta med litteraturgenomgången och brukas i beräkningarna. Resultaten visar att det, oavsett återvinningsandel och metallintensifiering, finns ett kontinuerligt behov av nyextraktion av litium för att möta efterfrågan vid Northvolt Ett under hela tidsperioden. Nybrytning av kobolt är enligt modelleringen som längst nödvändigt till år 2048. Dessutom, om högre återvinning kan uppnås, eller till och med en utfasning av kobolt i batteriproduktionen, kan behovet av brytning av kobolt för batteriproduktion vid Northvolt Ett nollställas redan 2030. Resultaten visar enhälligt att åtgärder som metallintensifiering och återvinning ej är tillräckligt för att undvika beroende av ny brytning av litium för batteriproduktion, men har motsatt effekt för behovet av nybruten kobolt. / The rising demand for chargeable vehicles entails a rising demand for certain metals needed in the manufacturing of the vehicles’ appurtenant batteries. The demand for metals such as lithium and cobalt are growing drastically. At the same time, the extraction of lithium and cobalt is associated with numerous sustainability issues that primarily affect the already vulnerable. To diminish the unsustainable consequences of primary commodity extraction; recycling is seen as a way of decreasing primary metal in lithium-ion battery production in favour of recycled materials. Admittedly, recycling is an important component of the battery industry. However, there are difficulties in substituting primary metal for recycling. These difficulties come down to the exponential growth of the electric vehicle market which demands more metal for production than can be met by batteries recycled at the end of life. As well as providing secondary commodities for battery production it is important that end of life electric vehicle batteries are recycled in order to prevent harmful pollution caused by landfill.  The study develops and presents mathematical models in Microsoft Excel that estimates the projected demand for primary metal between the years of 2022 and 2050 in the lithium-ion vehicle battery production plant Northvolt Ett in Skellefteå, Sweden. The models are based on assumptions from earlier work retrieved from a literature review. Several alternative scenarios in recycling rates, metal intensity per energy storage unit and battery technology in the future all consistent with the literature review are used in the calculations. The results show that regardless of recycling rates and metal intensifying rates there is a need for continuous extraction of primary lithium for electric vehicle battery production at Northvolt Ett during the entire modelled period. Nonetheless, extraction of primary cobalt will at most be needed until 2048. Additionally, if higher recycling rates are adopted or even a phase out of cobalt in production, the need for mining cobalt for battery production at Northvolt Ett could be diminished as early as 2030. The results clarify that decreasing the amount of lithium in batteries and recycling is not enough to avoid a dependence on primary sources as production rates grow, but this could however be the case for cobalt.
12

Lithium-ion Battery Recycling : From a Manufacturing Strategy Perspective / Återvinning av litiumjonbatterier : ur ett produktionsstrategiskt perspektiv

KARLSSON, INGRID, LINDSTRÖM, JENNY January 2018 (has links)
The electrification of the transport sector in combination with an increased demand for storage solutions for renewable energy is contributing to a rapid growth of the battery market. Lithium-ion batteries have shown to be a promising technology for efficient energy storage the last two decades. A rapidly increasing battery production will however cause challenges within waste management and put pressure on current recycling infrastructures. Within research, insufficient attention has been given to how traditional manufacturing strategy is applied within recycling environments. The objective of this study was, therefore, to investigate if and how the unique characteristics of battery recycling affect its manufacturing strategy. A case study of the planning of a battery recycling unit was conducted in collaboration with Northvolt AB to detect challenges and unique characteristics for battery recycling. A framework within manufacturing strategy was applied on the contextual study to identify underlying factors to be considered when building a large scale recycling. Based on multiple interviews with industry expert’s, critical factors were identified and classified according to the literature framework. Our research concludes that the main categories within traditional manufacturing strategy are valid within a recycling environment. On an operational level, however, it was implied that the specific characteristics for recycling have to be considered when formulating a manufacturing strategy. To concretize, it is suggested that attention is given to uncertainties in inflow, of both timing and amount of discarded products. It is important to carefully consider the variety in battery chemistry fed into the recycling process and to design a flexible process, to be prepared for future disruption. Furthermore, managerial implications for battery producers are to facilitate recycling through three key aspects; simplifying the disassembly of battery systems, developing intelligent labelling systems and to push for industry standards. / Elektrifieringen av transportsektorn i kombination med en ökad efterfrågan av förnybar energi, bidrar till en snabb tillväxt av batterimarknaden. Litiumjonbatterier har under de senaste två decennierna visat sig vara en lovande teknologi för effektiv energilagring. En snabbt ökande batteriproduktion skapar dock utmaningar för nuvarande återvinningssystem. Otillräcklig forskning har givits till hur traditionell produktionsstrategi kan appliceras i återvinningsmiljöer. Därav var målet med denna studie att undersöka om och hur återvinningsmiljöns unika karaktär påverkar dess produktionsstrategi. En case studie av en planerad återvinningsanläggning genomfördes i samarbete med Northvolt AB, för att identifiera utmaningar och unika karaktärsdrag för batteriåtervinning. Ett litterärt ramverk inom produktionsstrategi applicerades på den kontextuella studien för att sammanställa och utvärdera underliggande faktorer som bör tas i beaktning för en storskalig återvinningsanläggning. Efter ett flertal intervjuer med experter kunde kritiska faktorer identifieras och klassificeras enligt det litterära ramverket. Studien visar att huvudkategorierna inom traditionell produktionsstrategi även gäller för återvinnig. På en operationell nivå konstateras det dock att den specifika karaktären för återvinning måste tas i beaktning när strategin utformas. För att konkretisera rekommenderas det att osäkerheter i inflöde, gällande fördröjning och mängder av kasserade batterier, hanteras i samarbete med externa aktörer som kan garantera en kontinuerlig leverans. Det är även viktigt att se över variationen av batterikemier som behandlas i återvinningsprocessen samt att designa en flexibel process som snabbt kan anpassas till framtida behov. Slutligen indikerar studien att batteriproducenter bör sträva efter att förenkla batteriåtervinning genom tre huvudpunkter; underlätta demontering av batterisystem, utveckla intelligent märkning och främja industristandarder.
13

Modelling the Flow and Allocation of Materials from Battery Recycling through Production / Modellerande av flödet och allokeringen av material från batteriåtervinning genom produktion

Kraft, Cecilia, Laving, Daniel January 2021 (has links)
With the current shift towards renewable energy sources, the demand for batteries is expected to follow an exponential increase in the future, and lithium-ion batteries will be the bulk of it. In order to reduce carbon dioxide emissions from battery production and to secure future availability of critical metals, more batteries will need to be recycled. To incentivize this, the European Union will impose regulations on recycling efficiencies as well as recycled content in produced batteries. The purpose of this study was twofold. Firstly, it was to construct a model in Microsoft Excel which could follow the flow of materials from recycling through production and keep track of an inventory which could be allocated to customers as needed. Moreover, the model had to be able to calculate values such as recycled content in produced battery cells and take into account losses from production etc. Secondly, this thesis aimed to use the model to determine how many old cells would have to be recycled in order to produce a modern cell with a certain percentage of recycled content, as well as to determine which recycled active cathode metals there might be surpluses and shortages of. This was done as a case study at the company Northvolt AB, by gathering data from literature, interviews, and site visits. The model was then built iteratively, based on a material flow analysis approach. Finally, the model was used in a methodical manner to test the conversion rates and to determine how big the shortages and surpluses of materials would be. This thesis argues that there is no truly relevant literature on building a material flow and allocation model such as the one required here. However, using the method described above, it was possible nonetheless to construct the novel model. The model consists of several sheets with distinct functions and is scalable while also adaptable to other companies and industries. Among other things, it keeps track of inventory levels with a scalable time axle and helps the user set values to reach target recycled weight percentages. The model can also be used to perform the analyses required for the second half of the purpose of this thesis. The key outcome from that, was that recycling old batteries and producing new ones is far from a 1:1 process and that higher requirements on recycling efficiencies could greatly improve that. Moreover, the active cathode metals which would require the largest amounts of batteries to be recycled in order to produce new cells with recycled content at certain levels, were identified as bottlenecks. When using the required recycling efficiencies from the European Union in 2025 and 2030, the bottleneck metals were lithium and nickel if the new batteries were to contain 100 % recycled active cathode metals. However, if the recycled content should be in line with European Union regulations, the bottlenecks would be cobalt and nickel instead. This could shift the demand for virgin active cathode metals in favor of cobalt and nickel. / Med dagens skifte till förnybara energikällor förväntas efterfrågan på batterier följa en exponentiell ökning i framtiden, och litiumjonbatterier kommer stå för merparten av den. För att minska koldioxidutsläppen från batteriproduktion och för att säkra framtida tillgång till kritiska material kommer fler batterier behöva återvinnas. För att ge incitament till detta, kommer Europeiska unionen införa regleringar på återvinningseffektiviteter och återvunnet innehåll i nya batterier. Syftet med denna studie var tvåfaldigt. Det första syftet var att bygga en modell i Microsoft Excel som kunde följa materialflöden från återvinning genom produktion och hålla kolla på ett lager som kunde allokeras till kunder efter behov. Dessutom behövde modellen kunna räkna ut värden såsom återvunnet innehåll i producerade battericeller samt ta hänsyn till förluster i produktion etc. Det andra syftet var att använda modellen till att bestämma hur många gamla celler som skulle behöva återvinnas för att producera en modern cell med vissa nivåer av återvunnet innehåll, såväl som att bestämma vilka återvunna aktiva katodmetaller det kan bli överskott och underskott av. Detta gjordes som en fallstudie på företaget Northvolt AB, genom att samla data från litteratur, intervjuer och studiebesök. Modellen byggdes sedan iterativt, baserat på en materialflödesanalys. Slutligen användes modellen på ett metodiskt sätt för att testa omvandlingseffektiviteter och bestämma hur stora underskotten och överskotten av material skulle bli. Denna avhandling menar att det inte finns någon riktigt relevant litteratur om att bygga en materialflödes- och allokeringsmodell som den som krävdes här. Med metoderna som beskrevs ovan var det dock möjligt att bygga modellen och bryta ny mark på vägen. Modellen består av flera ark med distinkta funktioner och är skalbar samtidigt som den kan anpassas till andra företag och industrier. Den håller bland annat reda på lagernivåer med en skalbar tidsaxel och hjälper användaren bestämma värden som behövs för att nå målen på återvunna viktprocent. Modellen kan också användas för att utföra de analyser som behövs för att uppfylla andra halvan av avhandlingens syfte. Huvudresultatet från det, är att återvinning av gamla batterier och produktion av nya är långt ifrån en 1:1 process och att högre krav på återvinningseffektiviteter skulle förbättra det markant. Vidare identifierades de aktiva katodmetallerna som skulle kräva de största mängderna återvunna batterier för att producera nya celler med vissa nivåer av återvunnet innehåll. De kallades flaskhalsar. Med Europeiska unionens krav på återvinningseffektiviteter för 2025 och 2030, var flaskhalsmetallerna litium och nickel om de nya batterierna skulle innehålla 100 % återvunna aktiva katodmetaller. Om det återvunna innehållet å andra sidan skulle vara i linje med Europeiska unionens regleringar, skulle flaskhalsarna vara kobolt och nickel istället. Detta skulle kunna skifta efterfrågan på nybrutna aktiva katodmetaller till fördel för kobolt och nickel.
14

Mathematical Models for Investigation of Performance, Safety, and Aging in Lithium-Ion Batteries

Zavalis, Tommy Georgios January 2013 (has links)
Rechargeable lithium-ion batteries have both the power and energy capabilities to be utilized in hybrid electric vehicles and other power demanding applications. However, there are obstacles primarily related to reliability in safety and lifetime. Additionally, there is still room for improvement in the battery performance. In this work, physics-based mathematical models have been successfully set-up and numerically solved to investigate performance, safety, and aging in lithium-ion battery systems. This modeling approach enabled a detailed analysis of the electrochemical processes related to these issues. As the models included many parameters and spatial resolution of several variables with time or frequency, strategies for investigation needed to be developed for most of the work. The accuracy of the investigation was consolidated by the utilization of parameters characterized from experimental work. The performance expressed in terms of polarization was determined for a power-optimized battery cell undergoing various operating conditions. A methodology that separated and quantified the contribution of each process to the polarization was set up, allowing the study of the contributions as a snapshot in time and as an average over a cycle. Mass transport in electrolyte was shown to be a crucial feature to improve especially if the battery is expected to undergo high current-loads for long periods of time. Safety-concerns when a battery cell is short-circuited were investigated for three types of short-circuit scenarios. All scenarios raised the temperature to the point where exothermic side reactions were initiated. The similarities between the scenarios in temperature increase were a result of the limiting current being reached. The differences, however small, were related to the placement of the short-circuit. Especially when the current collectors were not directly connected by the short circuit, an increased electronic resistance was observed which lowered both the generated current and heat. The aging of a battery cell was investigated by model analysis of electrodes harvested from fresh and aged cells. A methodology was used where a frequency-dependent model was fitted to three-electrode impedance experiments by tuning parameters associated to electrode degradation. For cycled cells, electrolyte decomposition products inhibiting the mass transport in the electrolyte and particle cracking in the positive electrode increased the impedance. A similar model was also set up for investigation of the lithium intercalation processes in PAN-based carbon fibers, showing it to have both good mass transport and kinetic capabilities. / Laddningsbara litiumjonbatterier har både ur energi- och effektsynpunkt möjligheten att kunna användas i elhybridfordon och inom andra effektkrävande tillämpningsområden. Batteriets säkerhet och livslängd är dock inte helt tillförlitliga. Dessutom finns det fortfarande utrymme för förbättringar av litiumjonbatteriets prestanda. I det här arbetet har matematiska modeller baserade på fysikaliska egenskaper framgångsrikt ställts upp och lösts numeriskt för att studera prestandan, säkerheten samt åldrandet hos litiumjonbatterisystem. Denna typ av modellering gjorde det möjligt att detaljerat analysera hur de elektrokemiska processerna bidrar. Eftersom modellerna omfattade ett stort antal parametrar och har variabler som förändras i åtminstone en dimension med tid eller frekvens, krävdes det att tydliga strategier för arbetet ställdes upp. Modelleringsstudiens noggrannhet stärktes av att flertalet av de använda parametrarna hade bestämts experimentellt. Polarisationen som ett mått på prestanda bestämdes för ett effektoptimerat batteri under olika laster. En metodik som separerar och beräknar hur mycket varje process bidrar till polarisationen skapades och användes för att studera bidragen över tid eller över en hel lastcykel. Resultaten visade att masstransporten i elektrolyten påverkar till stor del och bör förbättras om batteriet förväntas belastas med hög ström under lång tid. Säkerheten i samband med kortslutning av en battericell undersöktes för tre olika fall av kortslutningar. Alla fall uppvisade en temperaturökning som skulle kunna bidra till att exoterma reaktioner startas och termisk rusning uppstår. Temperaturökningen var liknande i samtliga kortslutningsfall och berodde på att gränsströmmen nåddes inom cellen. Skillnaderna mellan kortslutningsfallen var inte så betydande men kunde härledas till kortslutningens placering. Framförallt fallet då strömtilledarna inte kontakterades av kortslutningen observerades en ökad elektronisk resistans som sänkte både strömmen och värmeproduktionen. Åldringen i en battericell undersöktes genom modellanalys av elektroder som tagits från nya eller åldrade celler. Som metod användes en frekvensberoende modell som anpassades till tre-elektrod-impedansmätningar genom förändring av parametrar som beskriver elektrodnedbrytning. Då cellerna cyklats, visade förändringen av dessa parametrar att impedansen ökar på grund av nedbrytningsprodukter från elektrolyten som hindrar masstransporten och att det aktiva materialet i positiva elektroden spricker. En liknande modell användes också till att undersöka PAN-baserade kolfibrers förmåga att interkalera litium och resultaten visade på att den har mycket goda elektrokemiska egenskaper. / <p>QC 20130520</p>
15

Pulse Charging of Li-ion Batteries for Enhanced Life Performance / Pulsladdning av Li-ion-batterier för förbättrad livslängd

Strandberg, Josefin January 2023 (has links)
Det överhängande behovet av att minska utsläppen av växthusgaser för att uppfylla Parisavtalet har väckt ett ökat intresse för elektrifiering som en strategi för att mildra klimatförändringarna. Litiumjonbatterier spelar en central roll vid elektrifiering och har framträtt som det primära alternativet för batteridrivna elfordon. Batteriernas livstidsprestanda är dock en avgörande faktor för att bestämma deras kostnad och miljömässiga hållbarhet. Även om snabbladdning är ett gångbart alternativ för de kunder som vill maximera drifttiden så leder laddning vid höga strömmar till förhöjd åldring genom nedbrytning av elektrodmaterialet och elektrolyten. Nyligen genomförda studier har visat att pulsade laddningscykler kan förlänga livslängden för litiumjonbatterier. Mot bakgrund av detta har denna studie genomförts för att undersöka effekterna av pulsad laddning på bibehållande av kapacitet samt inre motstånd hos litiumjonbatterier. Cylindriska NMC-celler har cyklats med laddningsprofilen PPC-CV (Positive Pulsed Current-Constant Voltage) och deras prestanda har jämförts med motsvarande hos konventionell konstant ström-konstant spänning-laddning (CC-CV). En ny metod utvecklades och implementerades för att utföra en pulsad laddningsprofil inom ett definierat SoC-fönster (State-of-Charge). Testobjekten cyklades kontinuerligt under intervaller om 4 veckor med avbrott för standardiserade referensprestandatester (RPT) för att beräkna standardkapaciteten och det inre motståndet. Därutöver utfördes inkrementell kapacitetsanalys (ICA) och elektrokemisk impedansspektroskopi (EIS) för att utöka analysen. Enligt resultat visar de celler som cyklats med PPC-CV-profilen liknande eller något minskad kapacitetsminskning samt en lägre ökning av internt motstånd efter ungefär 700 ekvivalenta cykler. 0,01-Hz PPC-CV-profilen uppvisade en kapacitetsminskning på 3,65%, 1-Hz PPC-CV-profilen en på 3,75%, 100-Hz PPC-CV- profilen en på 4,06% och CC-CV-profilen en på 4,05%. De interna resistanserna förblev lägre än BOL-mätningarna i PPC-CV-testfallen, medan CC-CV-läget visar en snabbare ökning av internt motstånd. Batteriets hälsotillstånd (SoH) hade dock bara nått 95% under denna testfas, vilket innebär att ytterligare studier krävs för att dra definitiva slutsatser om pulsladdningens effekt på batteriets livslängd. För att ytterligare förstå effekten av pulsade laddningsprofiler på livslängden hos litiumjonbatterier kan textmatrisen utökas till ett bredare spektrum av testförhållanden, såsom temperatur, strömamplitud, arbetscykel och SoC-fönster. / The urgent need to reduce greenhouse gas emissions in order to comply with the Paris Agreement has sparked an increased interest in electrification as a strategy to mitigate climate change. Li-ion batteries play a crucial role in electrification, and have emerged as the primary option for battery electric vehicles. However, their lifetime performance is a critical factor in determining their cost and environmental sustainability. Although fast charging presents a viable option for customers wishing to maximize operational time, charging at high currents accelerate aging through degradation of the electrode material and the electrolyte. Recent studies have found that pulse charging protocols can extend the cycle life of Li-ion batteries. In light of this, this study has been conducted to investigate the effects of pulse charging on the capacity retention and internal resistance of Li-ion batteries. Prismatic NMC Li-ion battery cells were cycled using the Positive Pulsed Current-Constant Voltage (PPC-CV) charging mode, and their performance has been compared to that of conventional Constant Current-Constant Voltage (CC-CV) charging. A novel method was developed and implemented to execute a pulse charging profile within a defined State-of-Charge (SoC) window. The test objects were continuously cycled over intervals of 4 weeks with interruptions for standardized Reference Performance Tests (RPTs) to calculate the stan- dard capacity and internal resistance. In addition, Incremental Capacity Analysis (ICA) and Electrochemical Impedance Spectroscopy (EIS) were performed to ex- tend the analysis. According to results, cells cycled using the PPC-CV mode show similar or slightly reduced capacity fade and a lower increase in internal resistance after roughly 700 equivalent cycles. The 0.01-Hz PPC-CV mode exhibited a capacity fade of 3.65%, the 1-Hz PPC-CV mode 3.75%, the 100-Hz PPC-CV mode 4.06% and the CC-CV mode 4.05%. Internal resistances remained lower than the beginning of life measurements in the PPC-CV test cases, while the CC-CV mode shows a quicker increase in internal resistance. However, the battery State-of-Health (SoH) had only reached 95% during this testing phase, requiring further study to draw definitive conclusions regarding the impact of pulse charging on battery life performance. To further understand the impact of pulsed charging modes on Li-ion battery life performance, the text matrix may be extended to incorporate a broader range of test conditions, such as temperature, current amplitude, duty cycle and State-of-Charge (SoC) window.
16

Investigation of Battery Parameters for Li-ion Battery State of Health Estimation / Undersökning av batteriparametrar för uppskattning av litiumjonbatteriers hälsotillstånd

Söderhielm, Camilla January 2021 (has links)
Miljöpåverkan från konventionella förbränningsmotorer har bidragit till en övergång till elmotorer. I denna övergång spelar litiumjonbatterier en viktig roll som energilagringssystem, men på grund av sin reaktiva kemi kan de utgöra en säkerhetsrisk. I likhet med civilsamhället står Försvarsmakten inför ett skifte där förbränningsmotorer ska bytas ut mot el- och hybridmotorer. För en säker militär tillämpning är det därför viktigt att förstå hur litiumjonbatterier beter sig vid åldrande och bortom ramen för normal användning. Detta projekt syftar till att identifiera batteriparametrar (impedans, resistans, kapacitet och yttemperatur) att använda för bedömning av batteriets hälsotillstånd. Vidare syftar projektet till att värdera de identifierade batteriparametrarnas lämplighet för militära applikationer. Som en del av syftet undersöker detta projekt omgivningstemperaturens effekt på batteriparametrarna, samt använder batteriparametrarna för att uppskatta när ett batteri kan klassas som förbrukat. Kommersiella NMC/grafit-litiumjonbatterier åldrades genom full upp- och urladdning. Varje batteri utsattes för maximalt 250 upp- och urladdningscykler vid laddningsströmmar om 4 A och urladdningsströmmar om 10 A. Åldrandet övervakades genom regelbunden mätning av impedans, resistans, kapacitet och yttemperatur. Batterierna cyklades vid antingen 52 ± 3 °C, 21 ± 3 °C eller −15 ± 3 °C för att studera omgivningstemperaturens effekt på de undersökta batteriparametrarna. Impedansmätningar vid 980 Hz var stabilast med avseende på variationer i omgivningstemperatur samt batteriets laddningsnivå, och ansågs därför vara den lämpligaste batteriparametern att använda för uppskattning av batteriets hälsotillstånd när tillämpningen kräver stor flexibilitet. Förändringar i resistans och kapacitet vid givna omgivningstemperaturer ansågs å andra sidan bättre återspegla batteriets åldringsgrad. Därför ansågs resistans och kapacitet vara de lämpligaste batteriparametrarna för uppskattning av batteriets hälsotillstånd med avseende på precision. Mätning av yttemperatur gav otillräcklig information för att uppskatta batteriernas hälsotillstånd med precision. En sänkning av omgivningstemperaturen från 21 °C till −15 °C hade en stor påverkan på resistans och kapacitet; resistansen ökade medan kapaciteten minskade, vilket motsvarar en reducerad batteriprestanda. Med avseende på kapacitetsförlust så förbrukades inget av batterierna som förvarades i 21 °C under cyklingen. Batterier som förvarades i 52 °C och −15 °C var förbrukade efter 150–200 cyklingar. Med avseende på resistansökning var ett av batterierna som förvarades vid 21 °C förbrukat efter 200 cyklingar. Samtliga batterier förvarade vid 52 °C var förbrukade efter 150–200 cyklingar, medan batterier förvarade vid −15 °C var förbrukade efter 200–250 cyklingar. Slutligen, med avseende på impedansmätning vid 980 Hz så tog det 200 cyklingar tills dess att ett av batterierna som förvarades i 21 °C var förbrukat. Ett av batterierna som förvarades i 52 °C var förbrukat efter 150 cyklingar. Batterier förvarade vid −15 °C var förbrukade efter 200–250 cyklingar. / Environmental concerns associated with greenhouse gas emissions from conventional combustion engines have contributed to a transition towards electric mobility. In this transition, lithium-ion (Li-ion) batteries play an important part as an energy storage system. However, Li-ion batteries can pose a safety risk due to their reactive chemistry. The Swedish Armed Forces are approaching a transition towards electric mobility, therefore, understanding Li-ion battery behavior with regard to non-normal use and ageing is critical for safe military applications. This project aimed to identify and evaluate battery parameters (impedance, resistance, capacity and surface temperature) suitable for State of Health (SOH) estimation of Li-ion batteries in military applications. Furthermore, this project aimed to investigate the ambient temperature’s effect on battery parameters, and identify the battery’s end of life (EOL) based on battery parameter tracking. Commercial NMC/graphite Li-ion batteries were exposed to ageing through repeated charge and discharge cycles. A critical application was mimicked, where the batteries operated at 1C charge rate (4 A) and 2.5C discharge rate (10 A) between 100 % and 0 % state of charge, for up to 250 charge/discharge cycles. The ageing process was tracked through regular measurements of impedance, resistance, capacity and surface temperature. In order to investigate the ambient temperature’s effect on the investigated battery parameters, the batteries were aged at either 52 ± 3 °C, 21 ± 3 °C or −15 ± 3 °C. Impedance measured at 980 Hz was the most stable battery parameter with respect to variations in state of charge and temperature, and was therefore regarded as the most suitable parameter for SOH estimation with respect to flexibility. Measurements of resistance and capacity at given temperatures were likely reflecting electrochemical ageing phenomena more accurately, hence the most suitable battery parameters for SOH estimation with respect to accuracy. Tracking of surface temperature provided insufficient information for accurate estimation of the batteries SOH. Decreasing the ambient temperature from 21 °C to −15 °C had a major effect on capacity and resistance; the resistance increased and the capacity decreased, corresponding to a decrease in battery performance. With respect to capacity fade, neither of the batteries aged at 21 °C reached their EOL within 250 cycles, while batteries aged at 52 °C or −15 °C reached their EOL after 150–200 cycles. With respect to resistance, one battery kept at 21 °C reached their EOL after 200 cycles, all batteries kept at 52 °C reached their EOL after 150–200 cycles, and batteries kept at −15 °C reached their EOL between 200–250 cycles. Finally, with respect to impedance measured at 980 Hz, one battery kept at 21 °C reached their EOL after 200 cycles, one battery kept at 52 °C reached their EOL after 150 cycles, and batteries kept at −15 °C reached their EOL between 200–250 cycles.
17

Utformning av returflödet för litiumjonbatterier : En fallstudie på ett stort svenskt återvinningsbolag / Design of the reversed logistics for lithium-ion batteries : A case study on a large Swedish recycling company

Dahlström, Casper, Harbrecht, Phillip January 2022 (has links)
Syfte – Syftet med studien är att Identifiera förbättringsmöjligheter och kritiska faktorer genom att studera returflödet för litiumjonbatterier ur ett miljöperspektiv. Genom att studera returflödet för litiumjonbatterier kan det hjälpa till att ta reda på hur flödet kan se ut för att minimera miljöpåverkan. Detta görs för att bidra med kunskap till återvinningsbranschen om hur returflödet för litiumjonbatterier ser ut idag och hur det förbättras i framtiden.  För att uppnå syftet med studien har två frågeställningar tagits fram:  [1] Hur kan returflödet för litiumjonbatterier förbättras ur ett miljöperspektiv?  [2] Vilka kritiska faktorer kan beaktas vid utformningen av returflödet för litiumjonbatterier?  Metod – Studien har utförts som en fallstudie på ett av Sveriges största återvinningsbolag. Forskarna startade med en förstudie i form av en ostrukturerad observation på fallföretagets återvinningsstation. Vidare hölls en ostrukturerad workshop med den strategiska logistikchefen och en affärsutvecklare inom batterier på fallföretaget. Förstudien gav forskarna en fördjupad kunskap i det aktuella ämnet och därpå kunde ett teoretiskt ramverk byggas upp för att stödja studien. För att uppfylla studiens syfte och besvara frågeställningarna har kvalitativ datainsamling i form av tre intervjuer och dokumentationsstudie utförts. För att besvara studiens syfte har det teoretiska ramverket och den insamlade empirin analyserats och ställts mot varandra.  Resultat – Returflödet för litiumjonbatterier kan förbättras genom att utforma ett navsystem. Navsystemet innebär i praktiken att det kan anläggas mellanlagringstationer där litiumjonbatterierna plockas isär och djupurladdas. Mellanlagringen minimerar avståndet som litiumjonbatterierna behöver fraktas innan de är djupurladdade vilket bidrar till att enklare emballage kan användas och ökad fyllnadsgrad vid transport. Enklare emballage och ökad fyllnadsgrad bidrar till att minska miljöpåverkan i returflödet för litiumjonbatterier. En optimeringsmodell kan användas för att minimera antalet tonkilometer som krävs för att transportera litiumjonbatterier mellan flödets alla delar. Vidare identifierades kritiska faktorer som påverkar returflödets utformning. De kritiska faktorerna som identifierades var:  - Ökade volymer  - Farligt gods  - Skadade batterier  - Nytt forskningsområde  - Osäkerhet i varifrån LIB kommer in i flödet  Studien har bidragit med kunskap för återvinningsbranschen genom att besvara frågeställningarna och därför anses studiens syfte uppnått.  Implikationer – Studiens resultat kan användas av återvinningsbranschen för att förstå returflödet av litiumjonbatterier och hur flödet kan förbättras. Resultatet kan även ge indikationer på vilka kritiska faktorer som behöver tas hänsyn till vid utformning av returflödet för litiumjonbatterier. Studien bidrar med kunskap till vidare forskning inom området för hanteringen av litiumjonbatterier.  Begränsningar – Det kan ifrågasättas om studien kan generaliseras för alla parter i återvinningsbranschen då studien bygger sitt resultat på endast ett fall. Studiens ämne är outforskat och därmed inte helt okomplicerat att studera på grund av brist på kunskap och tidigare forskning. Det studerade ämnet består av processer som inte finns på plats idag och således kan studiens resultat inte valideras då scenariot är en bit bort i framtiden. / Purpose – The purpose of the study is to identify opportunities for improvement and critical factors by studying the return flow of lithium-ion batteries from an environmental perspective. By investigating the return flow of lithium-ion batteries, it can help to find out what the flow might look like to minimize the environmental impact. This is done to contribute knowledge to the recycling industry about what the return flow for lithium-ion batteries looks like today and how it can be improved in the future.  To achieve the purpose of the study, two research questions have been raised:  [1] How can the reverse logistics for the collection of lithium-ion batteries be improved from an environmental perspective?  [2] What critical factors can be considered in the design of reverse logistics for lithium-ion batteries?  Method – The study was carried out as a case study at one of Sweden's largest recycling companies. The researchers started with a pilot study in the form of an unstructured observation at the case company recycling station. Furthermore, an unstructured workshop was held with the strategic logistics manager and a battery business developer at the case company. The pilot study gave the researchers an in-depth knowledge of the current subject and then a theoretical framework could be built up to support the study. In order to fulfil the purpose of the study and answer the research questions, qualitative data collection in the form of three interviews and documentation studies has been performed. To answer the purpose of the study the theoretical framework and the collected empirical data have been analysed and set against each other.  Findings –The reverse logistics when collecting lithium-ion batteries can be improved by designing a hub and spoke system. The hub and spoke system are in practice that intermediate storage stations can be built where the lithium-ion batteries are disassembled and deep discharged. The intermediate storage minimizes the distance that the lithium-ion batteries need to be transported before they are deep discharged, which contributes to simpler packaging being used and an increased degree of filling during transport. Simpler packaging and an increased degree of filling help to reduce the environmental impact of the reverse logistics for lithium-ion batteries. An optimization model can be used to minimize the number of tonne-kilometres required to transport lithium-ion batteries between all parts of the flow. Furthermore, critical factors were identified that affect the design of the reverse logistics. The critical factors identified were:  - Growing volumes  - Dangerous goods  - Damaged batteries  - New phenomenon  - Uncertainty in where lithium-ion batteries come into the flow  The study has contributed knowledge for the recycling industry by answering the questions and therefore the purpose of the study is considered to have been achieved.  Implications – The results of the study can be used by the recycling industry to understand the reverse logistics of lithium-ion batteries and how the flow can be improved. The result can also give indications of which critical factors need to be considered when designing the return flow for lithium-ion batteries. The study contributes with knowledge to further research in the field of handling lithium-ion batteries.  Limitations – It can be questioned whether the study can be generalized for all parties in the recycling industry as the study bases its results on only one case. The subject of the study is unexplored and thus not completely uncomplicated to study due to lack of knowledge and previous research. The studied subject consists of processes that are not in place today and therefor the results of the study cannot be validated as the scenario is a bit far in the future.
18

Early-Stage Prediction of Lithium-Ion Battery Cycle Life Using Gaussian Process Regression / Prediktion i tidigt stadium av litiumjonbatteriers livslängd med hjälp av Gaussiska processer

Wikland, Love January 2020 (has links)
Data-driven prediction of battery health has gained increased attention over the past couple of years, in both academia and industry. Accurate early-stage predictions of battery performance would create new opportunities regarding production and use. Using data from only the first 100 cycles, in a data set of 124 cells where lifetimes span between 150 and 2300 cycles, this work combines parametric linear models with non-parametric Gaussian process regression to achieve cycle lifetime predictions with an overall accuracy of 8.8% mean error. This work presents a relevant contribution to current research as this combination of methods is previously unseen when regressing battery lifetime on a high dimensional feature space. The study and the results presented further show that Gaussian process regression can serve as a valuable contributor in future data-driven implementations of battery health predictions. / Datadriven prediktion av batterihälsa har fått ökad uppmärksamhet under de senaste åren, både inom akademin och industrin. Precisa prediktioner i tidigt stadium av batteriprestanda skulle kunna skapa nya möjligheter för produktion och användning. Genom att använda data från endast de första 100 cyklerna, i en datamängd med 124 celler där livslängden sträcker sig mellan 150 och 2300 cykler, kombinerar denna uppsats parametriska linjära modeller med ickeparametrisk Gaussisk processregression för att uppnå livstidsprediktioner med en genomsnittlig noggrannhet om 8.8% fel. Studien utgör ett relevant bidrag till den aktuella forskningen eftersom den använda kombinationen av metoder inte tidigare utnyttjats för regression av batterilivslängd med ett högdimensionellt variabelrum. Studien och de erhållna resultaten visar att regression med hjälp av Gaussiska processer kan bidra i framtida datadrivna implementeringar av prediktion för batterihälsa.
19

Lithium-ion battery modeling and SoC estimation

Xu, Ruoyu January 2023 (has links)
The energy crisis and environmental pollution have become increasingly prominent in recent years. Lithium batteries have attracted extensive attention due to their high energy density, safety, and low pollution. To further study how the battery works, it is necessary to establish an accurate model conforming to the battery characteristics. As the core function of a battery management system(BMS), accurate state of charge(SoC) estimation dramatically improves battery life and performance. This thesis selects a ternary lithium battery in the centre for advanced life cycle engineering(CALCE) dataset for a study of cell modeling and SoC estimation. The second-order Thevenin equivalent circuit model is selected as the cell model due to a trade-off between model complexity and accuracy. The parameters to identify include OCV, internal ohmic resistance, polarized internal resistance and capacitance. They were obtained with the MATLAB toolbox at various SoC state points under different temperatures. The ‘terminal voltage comparison’ method is utilized to verify the identification's accuracy. The simulation results turn out to be satisfactory. Then cell SoC can be estimated after cell modeling. First, the principles of the Coulomb counting method, OCV method and EKF method are analyzed. The state space equations required in SoC estimation are determined by discretizing the non-linear equivalent circuit model. The simulation results are compared with the experimental results in the HPPC discharge experiment. Furthermore, the robustness of the EKF algorithm is further investigated. The results prove that the EKF algorithm has high precision, fast convergence speed and strong anti-interference capability. Last but not least, the research on battery pack SoC estimation was continued. How to expand a single cell into a battery pack is analyzed, including aggregating cells into a pack and scaling a cell model to a pack. In addition, battery pack SoC is individually estimated by the 'Big cell' method and 'Short board effect' method. The result is not so good, indicating that further work can be done to improve the SoC estimation accuracy. / Energikrisen och miljöföroreningarna har blivit allt mer framträdande de senaste åren. Litiumbatteri har väckt stor uppmärksamhet på grund av sin höga energitäthet, säkerhet och låga föroreningar. För att ytterligare studera hur batteriet fungerar är det nödvändigt att etablera en exakt modell som överensstämmer med batteriets egenskaper. Som kärnfunktionen hos BMS förbättrar noggrann SoC-uppskattning dramatiskt batteriets livslängd och prestanda. Denna avhandling väljer ett ternärt litiumbatteri i CALCE-datauppsättningen för forskning. Dessutom slutförs cellmodellering och SoC-uppskattning baserat på det. Den andra ordningens Thevenins ekvivalenta kretsmodell väljs som cellmodell på grund av en avvägning mellan modellens komplexitet och noggrannhet. Parametrarna som måste identifieras inkluderar OCV, intern ohmsk resistans, polariserad intern resistans och kapacitans. De erhölls med MATLAB-verktygslådan vid olika SoC-tillståndspunkter under olika temperaturer. Metoden "terminalspänningsjämförelse" används för att verifiera identifieringens noggrannhet. Simuleringsresultaten visar sig vara tillfredsställande. Sedan kan cell SoC uppskattas efter cellmodellering. Först analyseras principerna för Coulomb-räknemetoden, OCV-metoden och EKF-metoden. Tillståndsrymdsekvationerna som krävs vid SoC-uppskattning bestäms genom att diskretisera den icke-linjära ekvivalenta kretsmodellen. Simuleringsresultaten jämförs med de experimentella resultaten i HPPC-utsläppsexperimentet. Dessutom, robustheten hos EKF-algoritmen undersöks ytterligare. Resultaten bevisar att EKF-algoritmen har hög precision, snabb konvergenshastighet och stark anti-interferensförmåga. Sist men inte minst fortsatte forskningen kring SoC-uppskattning av batteripaket. Hur man expanderar ett enskilt batteri till ett batteripaket analyseras, inklusive aggregering av celler till ett paket och skalning av en cellmodell till ett paket. Dessutom uppskattas batteripaketets SoC individuellt med "Big cell"-metoden och "Short board effect"-metoden. Resultatet är inte så bra, vilket indikerar att ytterligare arbete kan göras för att förbättra SoC-uppskattningens noggrannhet.
20

Hur förhåller sig svenska rederier till avsaknaden av ett regelverk för transport av elbilar som ro-ro last / How do Swedish shipping companies relate to the lack of a regulatory framework for the transport of electric cars as ro-ro cargo

Brehmer, Philip, Boestad, Hjalmar January 2023 (has links)
Syftet med denna studie är att forska i hur olika rederier och besättningar förhåller sig till avsaknaden av regelverk gällande transport av fordon med litiumjonbatterier. Tidigare forskning visar att bränder i litiumjonbatterier skiljer sig från bränder i konventionella bilar då det finns risk för att termisk rusning initieras i cellerna vilket medför att återantändningsrisken är stor och branden svårsläckt med begränsade mängder vatten. Metoden som har använts är semistrukturerade intervjuer i syfte att få en dialog med välutvecklade svar mellan respondenten och forskarna genom en intervjuguide. En rederirepresentant och en befälhavare från tre olika ro-ro rederier som vartdera trafikerar tre olika fartområden intervjuades. Resultatet visar att det råder delade meningar från branschen om regelverk och risken med att transportera elbilar beroende på vilket fartområde och typ av ro-ro fartyg som transporten bedrivs på. Fortsatt forskning inom effektiva släckmetoder med fokus på släckning av elbilar ombord på ro-ro fartyg rekommenderas. / The purpose of this study is to research how different shipping companies and crews relate to the absence of regulations. Previous research shows that fires in lithium-ion batteries differ from fires in conventional cars because there is a risk of thermal runaway being initiated in the cells, which means that the risk of re-ignition is high, and the fire is difficult to extinguish with limited amounts of water. The method used is a semi-structured interview aimed at creating a dialogue with well-developed responses between the respondent and the researchers through an interview guide. A shipping company representative and a captain from three different ro-ro shipping companies with three different trafficked zones were interviewed. The results show that there are differing opinions within the industry regarding regulations and the risk of transporting electric cars depending on the speed range and type of ro-ro vessel used for transportation. More research on how to effectively extinguish fires in electric cars onboard ro-ro ships is recommended.

Page generated in 0.0588 seconds