• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 19
  • 13
  • 9
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 141
  • 141
  • 59
  • 37
  • 30
  • 30
  • 30
  • 29
  • 26
  • 26
  • 25
  • 24
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Ion-beam induced changes of magnetic and structural properties in thin Fe films / Ionenstrahl induzierte Modifikation magnetischer und struktureller Eigenschaften dünner Eisenfilme

Müller, Georg Alexander 20 January 2004 (has links)
No description available.
122

Morphology-Induced Magnetic Phenomena Studied by Broadband Ferromagnetic Resonance

Körner, Michael 05 November 2013 (has links) (PDF)
In the present work, the influence of the morphology of thin ferromagnetic films on their static as well as dynamic magnetic properties was investigated by means of broadband ferromagnetic resonance (FMR). Using an ion beam erosion process the surface of the substrates was periodically modulated (ripples), where the modulation wavelength is determined by the ion energy. In this way a well-controllable roughness profile evolves ranging from a few ten up to several hundreds of nanometers in wavelength. The substrate’s surface profile in turn is repeated by films grown on top offering an easy and fast approach to investigate morphology influences on the magnetic properties. This work aims on modifications of the magnetic anisotropy as well as the FMR linewidth of the magnetic relaxation process. Prior to magnetic investigations the existing FMR setup was extended to measure FMR spectra at a fixed microwave frequency while sweeping the external magnetic field. Furthermore, a software toolbox was developed to perform the data processing and evaluation. Starting with the morphology influence on the magnetic anisotropy 10 nm thin Fe, Co, and Ni81Fe19 (Permalloy ≡ Py) films were deposited on rippled Si substrates. Due to Si displacements during ion erosion and natural oxidation the rippled Si substrates exhibit an amorphous surface causing a polycrystalline material growth. This leads to a suppression of magneto-crystalline anisotropy leaving only morphology-induced anisotropy contributions. Here, a uniaxial magnetic anisotropy (UMA) was observed that aligns its easy axis with the ripple ridges, whereas its strength decays with increasing ripple wavelength for all materials. From thickness-dependent measurements two characteristic regions were determined with competing uniaxial volume and surface anisotropy contributions. Underlined by micromagnetic simulations a dominant volume contribution was found in the thin region accompanied by magnetic moments nearly following the surface corrugation. In the thick region the UMA is controlled by dipolar stray fields at the surface. In contrast to Si, ion eroded MgO keeps its crystal structure offering epitaxial growth of 10 nm thin single-crystalline Fe films. Consequently, a superposition of morphology-induced UMA and magneto-crystalline cubic anisotropy was observed. The direction of the ripple ridges is predetermined by the incident ion beam, which allows to freely orient the UMA’s direction with respect to the cubic anisotropy, offering a possibility for anisotropy engineering. In comparison to the planar reference case rippled magnetic films exhibit lower intrinsic and extrinsic relaxation contributions. For the final part, 30 nm Py was grown on rippled Si covering modulation wavelengths λ ranging from 27 to 432 nm. Using magnetic force microscopy and holography measurements the dipolar stray fields above and inside the magnetic layer were characterized. For λ ≥ 222 nm, the stray fields act as scattering centers for spin waves triggering two-magnon scattering (TMS). This causes an apparent line broadening generating distinct peaks in the frequency-dependent linewidth whose position can be tuned by altering λ. These effects are understood in the framework of a perturbation theory of spin waves in periodically perturbed films recently presented in the literature. Furthermore, the in-plane angular dependence of the linewidth revealed a two-fold symmetry, which is not present for vanishing TMS at small λ. / In Rahmen dieser Arbeit wurde der Einfluss der Morphologie eines dünnen ferromagnetischen Films auf dessen statische und dynamische Eigenschaften mittels breitbandiger ferromag- netischer Resonanz (FMR) untersucht. Durch Ionenstrahl-Erosion wurde die Oberfläche des verwendeten Substrats periodisch moduliert (Ripple), wobei die Wellenlänge der Modulation durch die Ionenenergie bestimmt ist. Dies ermöglicht die kontrollierte Herstellung rauer Oberflächen mit Wellenlängen zwischen wenigen zehn bis zu einigen hundert Nanometern. Werden auf diesen Oberflächen Filme abgeschieden, übernehmen diese die Modulation. Somit ergibt sich eine einfache und schnelle Untersuchungsmöglichkeit der magnetischen Filmeigenschaften in Hinblick auf die Morphologie. Das Ziel dieser Arbeit ist die Untersuchung von Morphologieeinflüssen auf die magnetische Anisotropie sowie FMR-Linienbreite. Im Vorfeld der magnetischer Untersuchungen wurde der bestehende FMR-Aufbau um einen Messmodus erweitert, sodass Messungen bei fester Mikrowellenfrequenz und gleichzeitigem Durchfahren eines externen magnetischen Feldes möglich wurden. Weiterhin wurde ein Softwarepaket für die Datenauswertung entwickelt. Beginnend mit dem Morphologieeinfluss auf die magnetische Anisotropie wurden 10 nm dünne Fe, Co und Ni81Fe19 (Permalloy ≡ Py) Filme auf periodisch moduliertem Si abgeschieden. Durch Versetzungen während der Ionenstrahl-Erosion und Bildung einer natürlichen Oxidschicht bildet sich bei den verwendeten Substraten eine amorphe Oberfläche, was zu polykristallinem Schichtwachstum führt. Dadurch wird die magneto-kristalline Anisotropie unterdrückt und morphologie-induzierte Beiträge bestimmen die Anisotropie. Beobachtet wurde eine induzierte uniaxiale magnetische Anisotropie (UMA), deren leichte Richtung sich entlang der Ripple-Wellenzüge ausrichtet. Mittels schichtdickenabhängigen Messungen wurden zwei charakteristische Regionen mit konkurrierender uniaxialer Volumen- und Oberflächenanisotropie ermittelt. Dabei ist die Volumenkomponente im Bereich dünner Schichten vorherrschend und die magnetischen Momente richten sich entlang der Oberflächenmodulation aus. Für dickere Schichten ist die UMA dahingegen durch dipolare Streufelder bestimmt. Die experimentellen Funde werden in beiden Bereichen durch mikromagnetische Simulationen untermauert. Im Gegensatz zu erodiertem Si behält MgO seine Kristallstruktur, was epitaktisch gewachsene, einkristalline Fe-Schichten von 10 nm Dicke ermöglicht. Folglich wurde eine Überlagerung aus induzierter und kristalliner Anisotropie beobachtet. Dadurch, dass die Richtung der Ripple durch die Richtung des Ionenstrahls während der Erosion vorgegeben wird, lässt sich die UMA frei gegen die kristalline Anisotropie drehen, was wiederum Möglichkeiten zur gezielten Beeinflussung der Anisotropie bietet. Im Hinblick auf die dynamischen magnetischen Eigenschaften führen Ripple zu einer Verringerung der intrinsischen und extrinsischen Relaxationsbeiträge. Für den letzten Teil der Arbeit wurde 30 nm dünnes Py auf Si-Ripple gewachsen, wobei ein Wellenlängenbereich von λ = 27 nm bis 432 nm abgedeckt wurde. Mit Hilfe von magnetischer Kraftmikroskopie und Holographie wurden die dipolaren Streufelder über und in den Filmen untersucht. Ab λ ≥ 222 nm ermöglichen diese dipolaren Felder eine Streuung von Spinwellen, sodass Zwei-Magnonen-Streuung (TMS) auftritt. Dies führt zu einer scheinbaren Linienverbreiterung und äußert sich durch einzelne Peaks in der frequenzabhängigen Linienbreite. Letztere lassen sich in ihrer Frequenzposition durch die Wellenlänge des Substrates beeinflussen und können mittels einer kürzlich in der Literatur veröffentlichten Störungstheorie für Spinwellen in periodisch gestörten Filmen erklärt werden. Weiterhin wurde in der winkelabhängigen Linienbreite eine zweifache Symmetrie beobachtet, welche durch die TMS hervorgerufen wird und folglich nicht bei kleinen Wellenlängen zu beobachten ist.
123

Präparation und Charakterisierung nanostrukturierter Magnetwerkstoffe unter besonderer Berücksichtigung des Exchange Bias Effekts

Schletter, Herbert 27 February 2014 (has links) (PDF)
Der Einsatz nanostrukturierter Magnetmaterialien als Speicherschichten in Festplatten stellt ein vielversprechendes Konzept zur weiteren Erhöhung der erreichbaren Speicherdichten im Vergleich zu den heute eingesetzten granularen Medien dar. Für die Realisierung dieses Konzeptes ist eine detaillierte Kenntnis der Struktureigenschaften und deren Einfluss auf das magnetische Verhalten der einzusetzenden Schichten erforderlich. Für die vorliegende Arbeit wurden drei verschiedene magnetische Materialien ausgewählt und insbesondere mit elektronenmikroskopischen Methoden in struktureller Hinsicht untersucht. Dazu zählen ferromagnetische (FePt)(100-x)Cu(x) -Schichten, ferromagnetische [Co/Pt]n -Multilagen sowie ferrimagnetische Fe(100-x)Tb(x) -Schichten. Der Schwerpunkt der Untersuchungen lag dabei auf der Korrelation zwischen strukturellen und magnetischen Eigenschaften sowie im Einfluss der Nanostrukturierung auf das magnetische Verhalten der Schichten. In dieser Hinsicht wurden Aspekte der durch die Struktur bedingten magnetischen Anisotropie in Form von magnetokristalliner und Grenzflächenanisotropie betrachtet. Zudem wurde das Kopplungsverhalten zwischen einzelnen Strukturelementen in nanostrukturierten Schichten untersucht. Aufbauend auf die Untersuchung der drei genannten Materialien wurden [Co/Pt]n und Fe(100-x)Tb(x) ausgewählt zum Aufbau eines Systems mit zwei magnetischen Komponenten: Fe(80)Tb(20) / [Co/Pt]10. Die Untersuchungen konzentrierten sich dabei auf die Morphologie der Grenzfläche zwischen den beiden Bestandteilen und deren Einfluss auf den Exchange Bias, der in diesem System vorliegt.
124

自旋波在磁性奈米線中的微磁模擬 與 鈷/鉑,鈷/鈀,鉑/鈀多層膜的電、磁特性 / Micromagnetic simulations of spin waves in magnetic nanowires and electrical, magnetic properties of Co/Pt, Co/Pd, and Pt/Pd multilayers

謝智勛, Hsieh, Chih Hsun Unknown Date (has links)
本論文分為兩部分,第一部分探討使用OOMMF磁性材料模擬軟體來模擬奈米線波導中的自旋波特性,除了以往文獻所熱門的水平異向性薄膜合金中的自旋波,還模擬了垂直異向性的材料,我們模擬了在奈米線一端施加0 ~ 100 GHz外加磁場的自旋波響應。在模擬的結果中,我們發現了水平異向性與垂直異向性的重要差別,垂直異向性比水平異向性波導在頻率小於10 GHz時,少了複雜的自旋波傳遞。而在改變線寬的條件中,我們發現了垂直異向性波導在線寬夠大時,會因退磁場的效應,使得磁矩翻轉,形成許多磁壁,而水平異向性材料則不會,從水平異向性波導大於120 nm線寬的波型中,則會發現自旋波在波導中產生破碎的相位改變。而模擬具有水平寬度變化與垂直厚度變化的週期性邊界,則發現兩者所具有的濾波效果非常相似,而濾波的三個頻段,則是水平寬度變化所截止的頻段,寬於垂直厚度變化的頻段。 第二部分為 ,使用離子濺鍍製成總厚度200 nm,改變交錯層數的(Co/Pt)×N、(Co/Pd) ×N與(Pt/Pd) ×N,三種多層膜的磁性電性分析。Co/Pt與Co/Pd多層膜在Co厚度小於1 nm時為熱門垂直異向性材料,而本實驗專注於Co厚度大於1 nm時介面的特性以及兩種材料的差別。在磁阻的量測上面,得到不同於一般異向性磁阻的規律,一般的異向性磁阻的現象為,平行於電流施加磁場比垂直電流施加磁場所量測的電阻,前者電阻較大(ρ_(H∥I)>ρ_(H⊥I)),但是同為垂直於電流的平行於膜面磁場的電阻(ρ_(H⊥I,in-plane H))與垂直膜面磁場(ρ_(H⊥I,H perpendicular to plane))則呈現了不一樣的行為,尤其為垂直加場的部分,在某些條件的多層膜,會有明顯的垂直方向的異向性磁阻,是為介面所造成額外的垂直方向異向性磁阻,稱作”異向性介面磁阻”(Anisotropic Interface Magnetoresistance)。異向性磁阻與異性向介面磁阻都具有高電阻軸與垂直此軸的低電阻平面,而兩者差別在於異向性磁阻為電流方向軸,而異向性介面磁阻為膜面法向量軸,對於本實驗的量測方法來說,兩軸相差90度角,也因此可辨析兩者不同現象間的差異,並且在我們的分析之中發現,異向性介面磁阻在Co厚度為7 nm以下,才會明顯的顯現。 / The thesis is divided into two main parts. The first part discusses the properties of spin waves propagation in magnetic nanowire waveguide by micromagnetic simulation software OOMMF. In addition to in-plane magnetic anisotropy (IMA) in the thin film alloys, we simulate the perpendicular magnetic anisotropy (PMA) of the material. A transverse magnetic field is applied at one end of the waveguide wire and the frequency range is from 0 to 100 GHz. When frequency is less than 10 GHz, we observed that complex modes were generated in the IMA waveguide but there is no spin wave propagates in the PMA waveguide. We also studied the spin wave propagations in wires with different width. Irregular domain wall was generated by demagnetizing field in wider PMA waveguide but IMA waveguide does not have this behavior. In width-modulated and thickness-modulated waveguide spin wave simulations, these two filters have similar results with three band gaps from 0 to 100 GHz and the band gaps in width-modulated wire is wider than in thickness-modulated one. The second part is experimental measurements of the electrical and magnetic properties of (Co/Pt)×N, (Co/Pd) ×N, and (Pt/Pd) ×N multilayers, which are deposited by sputtering and the total thickness is 200nm. Co/Pt and Co/Pd were popular PMA materials when Co thickness is less than 1 nm. We focused on the multilayers with Co thicker than 1nm and the difference between these multilayers. In magnetoresistance measurement, the R-H curve is different from normal anisotropic magnetoresistance (AMR). AMR effect has different resistivity when H∥I or H⊥I, but the measurement results show that ρ_(H⊥I,in-plane H) and ρ_(H⊥I,H perpendicular to plane) also have different MR ratio in specific multilayer configuration. The effect is caused by the interface so it is anisotropic interface magnetoresistance (AIMR) as discussed in the literature. AMR and AIMR have both high resistivity axis and low resistivity plane which is perpendicular to the axis. The difference of two MRs is that the high resistivity axis is parallel to current in AMR and perpendicular to plane in AIMR. In the analysis, the AIMR effect is observed in multilayer with Co thickness less than 7 nm.
125

L'anisotropie magnétique perpendiculaire induite par oxydation et recuit thermique : de la structure au magnétisme / The magnetic anisotropy induced by oxidation and thermal annealing : From structure to magnetism

Mohamed Garad, Houmed 03 April 2012 (has links)
Dans le domaine des couches minces (épaisseur~Å) associant un métal magnétique (Fe, Co, Ni) et un élément non magnétique (essentiellement métallique ou isolant), de remarquables propriétés physiques (aimantation, transport) nécessitent des caractérisations structurales fines. En particulier, citons le cas de jonctions tunnel (métal/isolant/métal) à aimantation perpendiculaire qui sont en cours d'étude au laboratoire Spintec (UMR8191 (CEA/CNRS/UJF). Ces nanomatériaux sont déposés par voie physique (pulvérisation cathodique) au sein de ce laboratoire. Ces nanostructures sont également sondées par diffraction aux rayons X au sein de l'Institut Néel (UPR 2940) via une collaboration entre Spintec et une équipe de cet Institut (Surface, interfaces et nanostructures du Département MCMF, Matière Condensée, Matériaux, et Fonctions). Ces mesures de réflectivité X constituent la sonde privilégiée de choix dans la cadre de cette thèse. D'autres voies sont également exploitées: à l'aide des moyens de rayonnement synchrotron tels que la spectroscopie d'absorption de rayons X : EXAFS, XANES et XMCD. La thèse aura pour but d'étudier expérimentalement ces phénomènes en couches continues sur ces empilements à jonction tunnel avec aimantation perpendiculaire. Plus précisément, le travail de thèse permettra de comprendre les mesures magnétiques (effectuées à l'institut Néel notamment par magnétométrie SQUID et HALL à basse température) grâce à une batterie de mesures structurales (diffraction aux rayons X, rasant, figures de pôles, réflectivité, absorption X …). Notamment, l'influence des paramètres de dépôt (types de couches, épaisseurs, recuits) du matériau sont étudiées via la collaboration entre les différents groupes de recherche précédemment cités. Cette thématique s'inscrit d'une part dans le cadre de travaux menés à Spintec et dédiés à la recherche de nouveaux matériaux à forte valeur ajoutée industrielle (sur le stockage d'information à ultrahaute densité sur media discrets par exemple). Elle s'inscrit d'autre part dans le renforcement de liens entre recherches fondamentales (laboratoire propre du CNRS comme l'institut Néel) et appliquées (CEA), avec un recours aux solides compétences en caractérisations structurales et magnétiques de l'Institut Néel. / In the domain of thin film (thickness ~ Å) combining a magnetic metal (Fe, Co, Ni) and a non-magnetic (largely metal or insulator), remarkable physical properties (magnetization, transport) require fine structural characterization. In particular, include the case of tunnel junctions (metal / insulator / metal) with perpendicular magnetization which are being studied in the laboratory Spintec (UMR8191 (CEA / CNRS / UJF). These nanomaterials are deposited by physical (sputtering) in this laboratory. These nanostructures are probed by X-ray diffraction in the Neel Institute (UPR 2940) via collaboration between Spintec and a team of the Institute (Surface, Interfaces and Nanostructures Department MCFP, Condensed Matter Materials and Functions). These reflectivity measurements X are the preferred sensor of choice in the context of this thesis. Other routes are also used: using means such as synchrotron radiation absorption spectroscopy X-ray: EXAFS, XANES and XMCD. The thesis will aim to study these phenomena experimentally in continuous layers on the tunnel junction stacks with perpendicular magnetization. Specifically, the thesis will include the magnetic measurements (performed at the Institut Néel SQUID magnetometry including HALL and low temperature) through a battery of structural. This theme is part of a share in the context of work carried Spintec and dedicated to research of new materials with high added value industries (information storage on ultra-high density of discrete media for example). It registers on the other hand in strengthening links between basic research (CNRS own laboratories as Neel Institute) and applied (ECA), with strong skills in use of structural and magnetic characterization of the Institute Neel.
126

Spin Hall Effect Mediated Current Induced Magnetization Reversal in Perpendicularly Magnetized Pt/Co/Pt Based Systems

Vineeth Mohanan, P January 2016 (has links) (PDF)
In the present thesis, magnetization reversal in both out-of-plane and in-plane magnetized thin lms and in devices fabricated out of those lms are explored. Pt/Co/Pt stacks with ultrathin Co layer were in-estimated initially for understanding their magnetic properties in this thesis. These perpendicular magnetized systems are good candidates for magnetic hard disc drives due to their large anisotropy, which may allow miniaturization of magnetic data storage devices. The spin Hall e ect mediated current-induced magnetization reversal in patterned Pt/Co/Pt devices were extensively investigated. Investigation of the magnetization reversal by means of a current instead of a magnetic eld is necessary to explore the possibilities of solid state magnetic memory devices. This is the primary motivation behind the investigation of current-induced magnetization reversal in Pt/Co/Pt system, in this thesis. Another important proposal for magnetic data storage is the race track memory, where the domain walls separating magnetic domains (in in-plane or out-of-plane magnetized materials) are moved by using a current. This involves a great deal of understanding of the domain wall motion in Nano-conduits under applied magnetics ends, and currents and also its interaction with engineered geometrical features. In this thesis work, magnetic led-driven domain wall pinning and deepening experiments on in-plane magnetized nanowires of perm alloy were performed to un-distend this interaction and the e act of domain wall chirality. In chapter 1, a general introduction to di errant data storage technologies and the current progress in the leg of spintronic is presented. This will highlight a perspective of this thesis work with respect to the present day research in spintronic and magnetization reversal studies. In chapter 2, a basic background of magnetism using the micromag-netic framework is illustrated. A brief introduction to magnetic domain walls is also presented. The Landau-Lifshitz-Gilbert dynamical equation is discussed and some case studies applied to a single domain particle with uniaxial anisotropy under the effect of spin-orbit torque are illu trated. The basics of spin-orbit coupling leading to spin Hall e ect is also explain In chapter 3, most of the essential experimental tools along with their basic working principles are described. Extensive e orts have been in-vested in designing and building the experimental tools. These include custom designs of a sputter deposition system, an ultra-high vacuum chamber for pulsed laser ablation, a magneto-optic Kerr e ect magne-tometer, a Kerr imaging system and a magneto-transport setup. All of these experimental setups have been automated, details of which are brie y discussed in this chapter. The Kerr imaging system was designed to measure hysteresis loops, observe domain wall motion and to measure domain wall velocity under applied magnetic elds and electric current. The magneto-transport setup was used for studying the domain wall pinning and depinning experiments in permalloy nanowires. In chapter 4, the optimization process for obtaining perpendicular mag-netic anisotropy in Pt/Co/Pt lms is described. The spin reorientation transition with varying thickness of Co (from 1.5 nm down to 0.35 nm) was studied. The magnetization easy axis direction changes from in-plane to out-of-plane as the thickness of Co is reduced. The dependence of Curie temperatures of ultrathin Co lms, with thickness as low as 0.35 nm, on the underlayer Pt thickness and its crystallinity was studied in detail. The e act of Ta but err layer on the texture of the Pt lm, and on the Curie temperature of the Pt/Co/Pt system was evaluated. To gain further insight of the role of the bottom Pt/Co and the top Co/Pt interfaces, ultrathin Cu lbs were inserted at the respective interfaces, and the anisotropy and magnetization reversal behaviour of these lbs were investigated. In chapter 5, studies on current-induced magnetization reversal in mi-corn sized wires of Pt/Co/Pt trilete is presented. The spin Hall e act assisted spin-orbit torque was used to reversibly switch the magnetization of these devices with and without the help of an external magnetic led. Since both the top and bottom layers are Pt, any contribution from Rashia e act towards spin-orbit torque could be ignored. By preparing devices with unequal top and bottom Pt thicknesses, a net spin-orbit torque could be applied to the magnetization of the Co layer. The thickness gradient/induced anisotropy in the Co layer was utilized to experimentally investigate current-induced deterministic switching. Sin-gel domain simulations with spin-orbit torque were also carried out to understand the mechanism of deterministic switching of magnetization in Pt/Co/Pt devices. This study is expected to have made sign cant contributions and to open up the possibilities of further investigation in the studies of spin-orbit torque in Pt/Co/Pt systems for solid state magnetic memory devices. In chapter 6, magnetic led-induced reversal in systems with in-plane magnetic anisotropy is presented. Here the e act of the width of a Nanos-trip on the anisotropy of a soft magnetic material like perm alloy was in-estimated. By introducing a nucleation pad to one end of the perm alloy nanowire, a single domain wall was generated at the junction with apple-cation of a proper magnetic led sequence. This domain wall could be in-jested into the nanowire by a magnetic led and pinned at a geometrical constriction inside the nanowire. The statistics of domain wall pinning and deepening processes indicated two di errant types of domain walls involved in the reversal process. With the assistance of micro magnetic simulations the domain walls were ident end as vortex walls of di errant chirality’s. Thus the interaction of domain walls with a Nano constriction and its dependence on the chirality of domain walls are understood. In chapter 7, a brief summary of the results obtained during the course of investigations is presented. An outlook presented at the end will help the readers of this thesis to understand the important research problems in this area and their potential future aspects.
127

Structure, Microstructure and Magnetic Properties of Fe-Ga and R-Fe based Magnetostrictive Thin Films

Basumatary, Himalay January 2016 (has links) (PDF)
Magnetostrictive materials belong to an important class of smart magnetic materials which have potential applications as ultrasonic transducers, sensors, actuators, delay lines, energy harvesting devices etc. Although, magnetostrictive property is exhibited by almost all ferro and ferrimagnetic materials, the R-Fe type (R represents rare earth elements) intermetallic compounds display maximum promise owing to the large magnetostriction exhibited by them at ambient temperature. Among the several R-Fe type compounds, Tb-Fe and Sm-Fe alloys are found to exhibit maximum room temperature positive and negative magnetostriction respectively. Recently, Fe-Ga based alloys have gained significant interest as newly emerging magnetostrictive material due to a good combination of magnetic and mechanical properties. These magnetostrictive materials in thin film form are of interests for several researchers both from fundamental and applied perspectives. Currently, many researchers are exploring the possibility of using magnetostrictive thin films in micro- and nano-electromechanical systems (MEMS and NEMS). Three material systems viz. Fe-Ga, Tb-Fe and Sm-Fe in thin film form have been chosen for our investigations. DC magnetron sputtering and e-beam evaporation techniques were used for deposition of these thin films on Si (100) substrates. Several aspects such as evolution of microstructure, film surface morphology, structure and change in film composition with different processing conditions were investigated in detail, as the existing literature could not provide a clear insight. Further, detailed magnetic characterizations of these films were carried out and established a process-structure-property correlation. The thesis is divided into seven chapters. The first chapter presents a brief introduction of magnetostrictive phenomena and the physics behind its origin. A brief history of evolution of magnetostrictive materials with superior properties is also brought out. Introduction to the material systems considered for the present study has also been presented. Discussions on various aspects like crystal structures, magnetic properties, and phase diagrams of these material systems are also included in this chapter. Magnetostriction in thin films and its importance in current technological applications are discussed in short. Further, a summary of existing literature on thin films of these materials has been narrated to highlight the perspective of the work done in subsequent chapters. In addition to this, a clear picture of the grey area for further investigations has been provided. Formulation of detailed scope of work for this study is also provided in this chapter. Details of different experimental techniques used in this study for deposition and characterization of these films are given in chapter 2. In the third chapter of the thesis a detailed study on the structural, microstructural and magnetic properties of Fe-Ga films deposited using dc magnetron sputtering technique are presented. The effect of sputtering parameters such as (i) Ar pressure, (ii) sputtering power, (iii) substrate temperature and (iv) deposition time/film thickness on the magnetic properties of the films are discussed in detail. All the films are found to be polycrystalline in nature with A2 type structure as evidenced from grazing incidence X-ray diffraction (GIXRD) and transmission electron microscope (TEM) studies. Surface morphology of the films are found to be affected with processing conditions considerably. Thermomagnetic behaviour of the films studied using a Superconducting Quantum Interference Device (SQUID) magnetometer under zero field cooled (ZFC) and field cooled (FC) conditions are also presented. The sputtering parameters are also found to influence the magnetic properties of the films through modifications in microstructure, surface morphology and film compositions. Irrespective of the sputtering parameters, room temperature (RT) deposited Fe-Ga films are found to exhibit large magnetic coercively and large saturation magnetic field as compared to the bulk alloy of similar compositions which are not desirable for micromagnetic device applications. A significant improvement in the magnetic properties of the films was obtained in the films deposited at higher substrate temperatures and is correlated with modifications in grain size and film surface roughness. These films are also found to exhibit better magnetostriction than the RT deposited films. Further, the magnetic properties of Fe-Ga films as a function of film thickness in the range 2 – 480 nm are also presented. The nature of variation of coercively with film thickness was correlated with grain size effect and explained successfully with the help of random anisotropy model. In the fourth chapter, studies on the microstructural and magnetic properties of Tb-Fe films were presented. It was reported earlier that TbxFe100-x films exhibit in-plane magnetic anisotropy for the films with x > 42 at.% of Tb and out-of-plane anisotropy for the composition 28 < x < 42. Presence of these anisotropies is technologically important for different applications. We have studied the magnetic properties of Tb-Fe films in these two composition range. TbxFe100-x films with 54  x  59 were prepared using dc magnetron sputtering technique under varying Ar pressure and sputtering power and the details about microstructural and magnetic properties are presented in this chapter. All the films are found to be amorphous in nature. While the composition of the film is found to remain constant with sputtering power, the Fe concentration in the film is found to be depleted with increase in Ar pressure. Magnetic properties are found to change from superparamagnetic to ferromagnetic behaviour with increase in sputtering power. Curie temperature of the films are found to be low (below RT) and is explained based on sperimagnetic ordering of magnetic sub-lattices. The perpendicular magnetic anisotropy (PMA) or out-of-plane anisotropy behaviour of Tb-Fe films were not studied in detail as a function of film thickness. We have successfully prepared TbxFe100-x films with 29  x  40 using e-beam evaporation technique using alloy target composition of TbFe in order to study the PMA behaviour as a function of film thickness. The thickness of the films was varied from 50 to 800 nm. All the films are found to be amorphous and columnar growth structure with fine channels of voids are observed from the TEM studies. Detailed magnetization and thermomagnetic measurements were carried out using SQUID magnetometer at different temperatures. The out-of-plane magnetic coercivity of the films was found to increase with film thickness and then decreases with further increase in thickness. Maximum coercivity of ~ 20 kOe has been obtained for the 400 nm thick film. Magnetic domain patterns were studied using magnetic force microscopy (MFM) technique and the observed magnetic properties are correlated with domain pattern and microstructures. Although there are several reports on device applications of Sm-Fe thin films which exhibit negative magnetostriction, a comprehensive study on the effect of different process parameters on the magnetic properties and its correlation with structure and microstructure is still elusive. Hence, Sm-Fe films were deposited on Si (100) substrate using dc magnetron sputtering technique under varying Ar pressure and sputtering power. Effect of these parameters on the microstructural and magnetic properties of the films was studied in detail and is presented in chapter 5. The curie temperature of the films was found to increase with increase in sputtering power and Ar pressure. This was attributed to increase in film thickness and size of islands (atomic clusters). Coercivity as low as 30 Oe has been achieved in the film deposited at 15 mTorr Ar pressure. The Curie temperature for the films deposited at higher Ar pressure (10 and 15 mTorr) are found to be above RT. Maximum saturation magnetostriction of ~ - 390 -strains has been achieved in the film deposited at 15 mTorr Ar pressure. Rapid thermal processing (RTP) experiments were also carried out to increase the magnetic ordering in the films deposited at low Ar pressure (5 mTorr) by imparting structural ordering. Large improvement in magnetization and Curie temperature of the film was observed after RTA. However, this could be attributed to the formation of nano-crystalline Fe phase as evidenced from the TEM studies and thermomagnetic measurements. An overall summary of the experimental results has been presented in chapter 6. The scope of work for further study in future has also been highlighted in chapter 7.
128

Pulsed Laser Ablated Dilute Magnetic Semiconductors and Metalic Spin Valves

Ghoshal, Sayak January 2013 (has links) (PDF)
Spintronics (spin based electronics) is a relatively new topic of research which is important both from the fundamental and technological point of view. In conventional electronics charge of the electron is manipulated and controlled to realize electronic devices. Spintronics uses charge as well as the spin degree of freedom of electrons, which is completely ignored in the charge based devices. This new device concept brings in a whole new set of device possibilities with potential advantages like higher speed, greater efficiency, non-volatility, reduced power consumption etc. The first realization of the spintronic device happened in 1989, owing to the discovery of the Giant Magneto-resistive (GMR) structure showing a large resistance change by the application of an external magnetic field. Nobel Prize in Physics is awarded for this discovery in 2007. In less than ten years, such devices moved from the lab to commercial devices, as read head sensors in hard disc drives. This new sensor led to an unprecedented yearly growth in the area l density of bits in a magnetic disc drive. Since 2005, another spintronic device known as Magnetic Tunnel Junction (MTJ) which shows a better performance replaced the existing GMR structures in the read heads. Another device which can potentially replace Si based Dynamic Random Access Memory (DRAM) is Magneto-resistive Random Access Memory (MRAM). Being magnetic it is non-volatile, which means not only it retains its memory with the power turned off but also there is no constant power required for frequent refreshing. This can save a lot of power(~ 10-15 Watts in a DRAM), which is quite significant amount for any portable device which runs under battery. Prototype of a commercial MRAM is also made during 2004-2005 by Infineon and Freescale Semiconductors. Recent development has shown switching of magnetic moment by spin-polarised currents (known as spin transfer torque), electric fields, and photonic fields. Instead of Oersted field switching in the conventional MRAM devices, spin torque effect can also be used to switch a magnetic element more efficiently. Recently Spin-Torque MRAM has gained lot of interest due to it’s less power consumption during the writing process. A continuous research effort is going on in realizing other proposed spintronic devices, such as Spin Torque Oscillator, Spin Field Effect Transistor , Race Track Memory etc. which are yet to get realized or yet to make their entry in the commercial devices. Spintronics can be divided in to two broad subfields viz.(1) Semiconductor Spintronics and (2) Metallic Spintronics. Most of the devices belong to the second class whereas the former one is rich in fundamental science and not yet cleared its path towards the world of application. Any spintronic device requires ferromagnetic material which is generally the source of spin polarized electrons. For semiconductor spintronic devices, the main obstacle is the non-existence of the ferromagnetic semiconductor above room temperature (RT). So the development in this direction is very much dependent on the material science research and discovery of novel material systems. Almost a decade back, Dilute Magnetic Semiconductors (DMS) are proposed to behaving RT ferromagnetism. As a result an intense theoretical and experimental research is being carried out since then on these materials. Still a general consensus is lacking both in terms of theory as well as experiment. There are many methodologies and thin film deposition protocols have been followed by different research groups to realize spintronic device concepts. The deposition techniques such as magnetron sputtering, molecular beam epitaxy have been found very efficient for growing metallic spintronic devices. For semiconductor spintronics especially in the area of Dilute Magnetic Semiconductors (DMS) pulsed laser ablation is also considered to be a viable technique. Even though pulsed laser ablation is a very powerful technique to prepare stoichiometric multi-component oxide films, it’s viability for the growth of metallic films and multilayer is considered to be limited. In this regard, we have used pulsed laser ablation to prepare pure and Co doped ZnO films, to examine the magnetic and magneto-transport behavior of these oxides. In addition extensive work has been carried out to optimize and reproducibly prepare metallic multilayer by Pulsed Laser Deposition to realize Spin Valve (SV) effect, which proves the viability of this technique for making metallic multilayer. This thesis deals with the study of Pulsed Laser Deposition(PLD) deposited DMSs and metallic SVs. The thesis is organized into seven chapters as described below: • Chapter:1 This chapter gives an introduction to Spintronics and the different device structures. It is followed by a brief description of the motivation of the present work. Since magnetism is at the heart of the spintronics, next we attempt to introduce some of the basic concepts in magnetism, which are related to the topics discussed in the following chapters. We discuss about various exchange interactions responsible for the long range ferromagnetic ordering below Curie temperature in different compounds. Other magnetic properties are also discussed. Then another important phenomenon called magnetic anisotropy is brought in. We discuss the origin of different types of anisotropy in materials. These anisotropies are also responsible for magnetic domain formation. Then a description of the different types of domain walls are introduced. Unlike conventional electronics, spintronics deals with spin polarized current. A short description of spin polarization from the band picture and concept of half-metal is introduced. The next part (Section-I) of this chapter gives an overview of the challenges in semiconductor spintronics. The spin injection efficiency from a ferromagnetic metal to a semiconductor is found to be poor. This problem is attributed to the conductivity mismatch at the interface. DMS materials can be potential candidates in order to solve this problem. Ferromagnetism in these proposed materials cannot be explained in terms of the standard exchange mechanisms. A model was first proposed for the hole doped system based on Zener model. A more apt model for the n-doped high dielectric materials is then proposed based on Bound Magnetic Polarons (BMP). These models for the unusual ferromagnetism are briefly discussed. Although ferromagnetism is observed by different groups, often questions are raised about the intrinsic origin of this behavior and the topic is still under debate. In this study we have tried to correlate the magnetic property with the transport property as the transport properties are generally not affected much by the presence of external impurities and probes the intrinsic property of the material. Transport and the magneto-transport in disordered materials in general are discussed. A specific model proposed for degenerate semiconductors, which is used for fitting our experimental data is explained. As the ferromagnetism in these materials are generally found to be related to the defects, different types of possible defects are described. Section-II deals with the metallic SV devices. In the history of spintronics, this is one of the most basic and most studied structures, but still having a lot of interest both fundamentally and technologically. A brief history of this discovery and a chronological progress in the device structure is discussed. Our work focuses on the metallic spin valve (SV) structures. Different types of SVs and their properties are explained. In a SV structure one of the ferromagnets (FM) is pinned using an adjuscent antiferromagnetic layer by an effect called exchange bias. A brief description of exchange bias and the effects of different parameters is given. This is followed by a discussion about the theory of GMR which deals with the spin dependent scattering at the bulk and at the interfaces, their relative contributions, effect of the band matching etc. A simple resistor model is used to explain the qualitative behavior of these SVs. The chapter is concluded with a brief summery and applications. • Chapter:2 This chapter provides a brief description of some of the experimental apparatus that are used to perform various experiments. The chapter is organized according to the general functionality of the techniques. This includes different thin film deposition techniques which are used depending on the requirements and also for comparing the properties of the samples, grown by different techniques. Structural, spectroscopic, magnetic and different microscopy techniques which are extensively used throughout, are discussed and their working principles are explained. This work also involves nano/microstructuring of devices. Mainly two structuring techniques are used viz. e-beam lithography and optical lithography by laser writer. In this section we will be discussing about these two techniques and other associated techniques like lift-off, etching etc. Effect of different parameters on the device structures are highlighted. • Chapter:3 Chapter-3 deals with the synthesis and characterization of the pure and 5% Co doped ZnO bulk samples. First a brief introduction about the ZnO crystal structure, band structure and other properties are given followed by the synthesis technique followed in our study. Synthesis is done by low temeperature in organic co-precipitation method. This liquid phase synthesis gives better homogeniety. As-grown sample is also sintered at a higher temperature. Structural study confirms the proper synthesis of the intended compound. Spectroscopic as well as magnetic study of the bulk doped sample indicates the presence of Co nano clusters in the low temperature synthesized sample, whereas after sintering indication of Co2+ is observed which reflects in the magnetic property as well. These samples are used as target material for laser ablation. • Chapter:4 Chapter-4 presents the results of the pure and Co doped ZnO thin film samples. Thin films are grown by PLD method on r-plane Sapphire substrates. Details of the growth technique and the deposition parameters are explained. Our result shows that 5% Co doped ZnO thin film is ferromagnetic in nature as expected in a DMS material, although the film is grown using a paramagnetic target. We also report that pure ZnO grown in an oxygen deficient condition giving ferromagnetic behavior. Not only that, the obtained saturation moment is much higher compared to the Co doped sample. We have demonstrated that the FM can be tuned by tuning the oxygen content and FM disappears when the film is annealed in an oxygen environment .But for the Co doped sample magnetic property could not be tuned much as Co doping stabilizes the surface states. To exclude the possibilities of the extrinsic origin we have done a detailed magneto-transport study for both doped and undoped films. For ZnO, we have shown a one to one correlation of the magnetic and magneto-transport data which further supports the fact that the obtained magnetic behavior is intrinsic. Fitting of the magnetorsistance (MR) data for the pure and Co doped ZnO samples is done using a semi-empirical formula, consisting of both positive and negative MR terms originally proposed for degenerate semiconductors .Excellent agreement of the experimental data is found with the formula. For pure ZnO sample we have extracted the mobility, carrier concentration etc .by Hall measurement. The fabrication steps of Hall bar sample which involves optical lithography and ion beam etching are discussed. 3D e-e interaction induced transport mechanism is found to be dominant in case of oxygen deficient pure ZnO. • Chapter:5 Chapter-5 demonstrates the tuning of band gap of ZnO by alloying with MgO. By changing the ZnO:MgO ratio in PLD grown films, we could tune the band gap over a wide range. Composition alanalysis is done by Rutherford Back-Scattering. Structural and spectroscopic studies are carried out, which shows tuning of band gap upon alloying with MgO. We could tune ZnO band gap from 3.3eV to 3.92eV by30% MgO alloying, while retaining the Wurtzite crystal structure. • Chapter:6 Chapter-6 demonstrates the metallic Pseudo Spin Valve (PSV) structures grown by sputtering and by PLD. Main focus of this chapter is to show that, PLD can be aviable technique for making metallic PSV and Spin Valve (SV) structures. This is almost an unexplored technique for growing metallic thin film SVs, as it is evident in the literature. NiFe and Co are used as the soft and hard FM layers respectively, Au and Cu are used as the spacer layer. FeMn is used for pinning the Co layer in case of the SV structures. The first section describes the properties of these materials and then substrate preparation, deposition parameters etc. are explained in details. Properties of sputter deposited PSV structures are also described. Thickness variation of different layers, double PSV structure and angular variation of the MR properties are presented. Generally two measurement geometries are followed for the SV measurements viz.(1) Current In Plane (CIP) and (2) Current Perpendicular to Plane(CPP). We have carried out MR studies in both the measurement geometries. Measurement in CPP geometry is much more involved than CIP and need structuring with multiple lithography steps. CPP measurement geometry scheme and the process steps are discussed. For this measurement a special ac bridge technique is followed which is also discussed. In the next part we have demonstrated PSV and SV structures, grown, using PLD in an Ultra High Vacuum (UHV) system. Not only that, we have obtained a CIPMR as high as 3.3%. PLD is generally thought to be a technique for oxide deposition and metallic multilayers are not deposited due to particulate formation, high enegy of the adatom species which can lead to inter-mixing at the interface etc. But in this study we have shown that by properly tuning the deposition parameters, it is possible to grow SVs using PLD. We have found the roughness of the PLD grown films are much lower compared to the sputtered films. For top SV structures we have obtained exchange bias even in the absence of applied field during deposition. This effect is observed by performing magnetic and magneto-resistance measurements. Effect of different layer thicknesses, field annealing etc. are discussed. Two different spacer layers are used and their properties are compared. We have found that the interface engineered structures are giving highest MR among the different samples. Then a conclusion of our study is presented followed by a discussion on the difficulties and challenges faced for optimizing the PLD grown SVs. • Chapter:7 Finally, in Chapter-7, various results are summarized and a broad outlook is given. Perspectives for the continuation of the present work is also given.
129

Rapid thermal annealing of FePt and FePt/Cu thin films

Brombacher, Christoph 10 January 2011 (has links)
Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO2 particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L10 phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L10 order, rapid thermal annealing can lead to the formation of chemically ordered FePt fifilms with (001) texture on amorphous SiO2/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneuosly to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 °C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO2 particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemcial ordering for annealing temperatures T < 600 °C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated using e-beam and nanoimprint lithography have been investigated.
130

Magnetische Anregungen und Achsenkonversion in NdCu2

Kramp, Sirko 15 December 2000 (has links)
Die Arbeit beinhaltet eine Untersuchung der magnetischen Anregungen in NdCu2 mittels inelastischer Neutronenstreuung. Die Zielsetzung besteht darin, die zur Beschreibung der magnetischen Eigenschaften notwendige Austauschwechselwirkung zu charakterisieren. Dazu wurden die Spinwellendispersionsrelationen in mehreren magnetischen Phasen gemessen (ferro-, ferri-, antiferromagnetisch; magnetische Momente parallel b). Die Lage der in der ferromagnetischen Phase F3 erwarteten zwei Dispersionszweige konnte vollständig bestimmt werden. Auffälligstes Merkmal ist ein ausgeprägtes Minimum an der Stelle q=(0.35,0,0), welches eine Energielücke im Anregungsspektrum definiert. Die Lage des Minimums fällt mit keinem der in NdCu2 beobachteten magnetischen Ordnungsvektoren zusammen, wodurch die starke magnetischen Anisotropie des Systems zum Ausdruck kommt. An die experimentell ermittelte Spinwellendispersion in der Phase F3 wurde ein MF-RPA-Modell angepaßt, welches einen Satz magnetischer Kopplungsparameter liefert. Durch Anwendung dieser Kopplungsparameter auf andere Verbindungen der RCu2-Reihe lassen sich Aussagen zum magnetischen Ordnungsprozeß in diesen Verbindungen machen. Werden die magnetischen Momente durch Anlegen eines starken Magnetfeldes in c-Richtung ausgerichtet, so läßt sich die Austauschkopplung innerhalb der ab-Ebene untersuchen. Die magnetischen Anregungen wurden bei µ0Hc=12T und T=2K gemessen. Das Minimum im Anregungsspektrum liegt jetzt bei q=(0.6,0,0) und damit im Bereich der magnetischen Ordnungsvektoren. Ein besonders interessantes Phänomen innerhalb der RCu2-Reihe ist die sogenannte Achsenkonversion. Mittels elastischer Neutronenstreuung konnte erstmals gezeigt werden, daß eine Achsenkonversion auch in RCu2-Verbindungen auftritt, in denen die leichte Magnetisierungsrichtung parallel zur orthorhombischen b-Achse liegt. In NdCu2 deuten starke magnetostriktive Effekte und das Zusammenbrechen eines Bragg-Reflexes bei µ0Hc=12.5T und T=2K auf einen strukturellen Phasenübergang hin. Im abnehmenden äußeren Magnetfeld relaxieren die strukturellen Änderungen bis zum Erreichen des Nullfeldes nicht. Nach der Konversion wurde zwischen µ0Hc=0T und 6T eine neue antiferromagnetische Phase beobachtet. Die Rückkonversion in den Ausgangszustand erfolgt durch Erwärmung der Probe auf T=130K.

Page generated in 0.1141 seconds