Spelling suggestions: "subject:"markov codels"" "subject:"markov 2models""
271 |
Ψηφιακή επεξεργασία και αυτόματη κατηγοριοποίηση περιβαλλοντικών ήχωνΝταλαμπίρας, Σταύρος 20 September 2010 (has links)
Στο κεφάλαιο 1 παρουσιάζεται μία γενική επισκόπηση της αυτόματης αναγνώρισης
γενικευμένων ακουστικών γεγονότων. Επιπλέον συζητάμε τις εφαρμογές της τεχνολογίας αναγνώρισης ακουστικού σήματος και δίνουμε μία σύντομη περιγραφή του state of the art. Τέλος, αναφέρουμε τη συνεισφορά της διατριβής.
Στο κεφάλαιο 2 εισάγουμε τον αναγνώστη στο χώρο της επεξεργασίας ακουστικών
σημάτων που δε περιλαμβάνουν ομιλία. Παρουσιάζονται οι σύγχρονες προσεγγίσεις
όσον αφορά στις μεθοδολογίες εξαγωγής χαρακτηριστικών και αναγνώρισης προτύπων.
Στο κεφάλαιο 3 προτείνεται ένα καινοτόμο σύστημα αναγνώρισης ήχων ειδικά
σχεδιασμένο για το χώρο των ηχητικών γεγονότων αστικού περιβάλλοντος και αναλύεται
ο σχεδιασμός της αντίστοιχης βάσης δεδομένων. Δημιουργήθηκε μία ιεραρχική
πιθανοτική δομή μαζί με δύο ομάδες ακουστικών παραμέτρων που οδηγούν σε υψηλή
ακρίβεια αναγνώρισης.
Στο κεφάλαιο 4 ερευνάται η χρήση της τεχνικής πολλαπλών αναλύσεων όπως
εφαρμόζεται στο πρόβλημα της διάκρισης ομιλίας/μουσικής. Στη συνέχεια η τεχνική
αυτή χρησιμοποιήθηκε για τη δημιουργία ενός συστήματος το οποίο συνδυάζει
χαρακτηριστικά από διαφορετικά πεδία με στόχο την αποδοτική ανάλυση online
ραδιοφωνικών σημάτων.
Στο κεφάλαιο 5 προτείνεται ένα σύστημα το οποίο εντοπίζει μη-τυπικές καταστάσεις σε
περιβάλλον σταθμού μετρό με στόχο να βοηθήσει το εξουσιοδοτημένο προσωπικό στην
συνεχή επίβλεψη του χώρου.
Στο κεφάλαιο 6 προτείνεται ένα προσαρμοζόμενο σύστημα για ακουστική
παρακολούθηση εν δυνάμει καταστροφικών καταστάσεων ικανό να λειτουργεί κάτω
από διαφορετικά περιβάλλοντα. Δείχνουμε ότι το σύστημα επιτυγχάνει υψηλή απόδοση
και μπορεί να προσαρμόζεται αυτόνομα σε ετερογενείς ακουστικές συνθήκες.
Στο κεφάλαιο 7 ερευνάται η χρήση της μεθόδου ανίχνευσης καινοτομίας για ακουστική
επόπτευση κλειστών και ανοιχτών χώρων. Ηχογραφήθηκε μία βάση δεδομένων
πραγματικού κόσμου και προτείνονται τρεις πιθανοτικές τεχνικές.
Στο κεφάλαιο 8 παρουσιάζεται μία καινοτόμα μεθοδολογία για αναγνώριση
γενικευμένου ακουστικού σήματος που οδηγεί σε υψηλή ακρίβεια αναγνώρισης. Εκμεταλλευόμαστε τα πλεονεκτήματα της χρονικής συγχώνευσης χαρακτηριστικών σε
συνδυασμό με μία παραγωγική τεχνική κατηγοριοποίησης. / The dissertation is outlined as followed:
In chapter 1 we present a general overview of the task of automatic recognition of sound
events. Additionally we discuss the applications of the generalized audio signal
recognition technology and we give a brief description of the state of the art. Finally we mention the contribution of the thesis.
In chapter 2 we introduce the reader to the area of non speech audio processing. We
provide the current trend in the feature extraction methodologies as well as the pattern recognition techniques.
In chapter 3 we analyze a novel sound recognition system especially designed for
addressing the domain of urban environmental sound events. A hierarchical probabilistic
structure was constructed along with a combined set of sound parameters which lead to high accuracy.
chapter 4 is divided in the following two parts: a) we explore the usage of
multiresolution analysis as regards the speech/music discrimination problem and b) the previously acquired knowledge was used to build a system which combined features of
different domains towards efficient analysis of online radio signals.
In chapter 5 we exhaustively experiment on a new application of the sound recognition
technology, space monitoring based on the acoustic modality. We propose a system
which detects atypical situations under a metro station environment towards assisting the authorized personnel in the space monitoring task.
In chapter 6 we propose an adaptive framework for acoustic surveillance of potentially hazardous situations under environments of different acoustic properties. We show that the system achieves high performance and has the ability to adapt to heterogeneous environments in an unsupervised way.
In chapter 7 we investigate the usage of the novelty detection method to the task of
acoustic monitoring of indoor and outdoor spaces. A database with real-world data was
recorded and three probabilistic techniques are proposed.
In chapter 8 we present a novel methodology for generalized sound recognition that
leads to high recognition accuracy. The merits of temporal feature integration as well as multi domain descriptors are exploited in combination with a state of the art generative classification technique.
|
272 |
Sélection de paramètres acoustiques pertinents pour la reconnaissance de la parole / Relevant acoustic feature selection for speech recognitionHacine-Gharbi, Abdenour 09 December 2012 (has links)
L’objectif de cette thèse est de proposer des solutions et améliorations de performance à certains problèmes de sélection des paramètres acoustiques pertinents dans le cadre de la reconnaissance de la parole. Ainsi, notre première contribution consiste à proposer une nouvelle méthode de sélection de paramètres pertinents fondée sur un développement exact de la redondance entre une caractéristique et les caractéristiques précédemment sélectionnées par un algorithme de recherche séquentielle ascendante. Le problème de l’estimation des densités de probabilités d’ordre supérieur est résolu par la troncature du développement théorique de cette redondance à des ordres acceptables. En outre, nous avons proposé un critère d’arrêt qui permet de fixer le nombre de caractéristiques sélectionnées en fonction de l’information mutuelle approximée à l’itération j de l’algorithme de recherche. Cependant l’estimation de l’information mutuelle est difficile puisque sa définition dépend des densités de probabilités des variables (paramètres) dans lesquelles le type de ces distributions est inconnu et leurs estimations sont effectuées sur un ensemble d’échantillons finis. Une approche pour l’estimation de ces distributions est basée sur la méthode de l’histogramme. Cette méthode exige un bon choix du nombre de bins (cellules de l’histogramme). Ainsi, on a proposé également une nouvelle formule de calcul du nombre de bins permettant de minimiser le biais de l’estimateur de l’entropie et de l’information mutuelle. Ce nouvel estimateur a été validé sur des données simulées et des données de parole. Plus particulièrement cet estimateur a été appliqué dans la sélection des paramètres MFCC statiques et dynamiques les plus pertinents pour une tâche de reconnaissance des mots connectés de la base Aurora2. / The objective of this thesis is to propose solutions and performance improvements to certain problems of relevant acoustic features selection in the framework of the speech recognition. Thus, our first contribution consists in proposing a new method of relevant feature selection based on an exact development of the redundancy between a feature and the feature previously selected using Forward search algorithm. The estimation problem of the higher order probability densities is solved by the truncation of the theoretical development of this redundancy up to acceptable orders. Moreover, we proposed a stopping criterion which allows fixing the number of features selected according to the mutual information approximated at the iteration J of the search algorithm. However, the mutual information estimation is difficult since its definition depends on the probability densities of the variables (features) in which the type of these distributions is unknown and their estimates are carried out on a finite sample set. An approach for the estimate of these distributions is based on the histogram method. This method requires a good choice of the bin number (cells of the histogram). Thus, we also proposed a new formula of computation of bin number that allows minimizing the estimator bias of the entropy and mutual information. This new estimator was validated on simulated data and speech data. More particularly, this estimator was applied in the selection of the static and dynamic MFCC parameters that were the most relevant for a recognition task of the connected words of the Aurora2 base.
|
273 |
Microbe-Environment Interactions in Arctic and Subarctic SystemsZayed, Ahmed Abdelfattah 30 September 2019 (has links)
No description available.
|
274 |
Modélisation des données financières par les modèles à chaîne de Markov cachée de haute dimensionMaoude, Kassimou Abdoul Haki 04 1900 (has links)
La classe des modèles à chaîne de Markov cachée (HMM, Hidden Markov Models) permet, entre autres, de modéliser des données financières. Par exemple, dans ce type de modèle, la distribution du rendement sur un actif financier est exprimée en fonction d'une variable non-observée, une chaîne de Markov, qui représente la volatilité de l'actif. Notons que les dynamiques de cette volatilité sont difficiles à reproduire, car la volatilité est très persistante dans le temps. Les HMM ont la particularité de permettre une variation de la volatilité selon les états de la chaîne de Markov. Historiquement, ces modèles ont été estimés avec un nombre faible de régimes (états), car le nombre de paramètres à estimer explose rapidement avec le nombre de régimes et l'optimisation devient vite difficile. Pour résoudre ce problème une nouvelle sous-classe de modèles à chaîne de Markov cachée, dite à haute dimension, a vu le jour grâce aux modèles dits factoriels et à de nouvelles méthodes de paramétrisation de la matrice de transition. L'objectif de cette thèse est d'étendre cette classe de modèles avec de nouvelles approches plus générales et de montrer leurs applications dans le domaine financier.
Dans sa première partie, cette thèse formalise la classe des modèles factoriels à chaîne de Markov cachée et étudie les propriétés théoriques de cette classe de modèles. Dans ces modèles, la dynamique de la volatilité dépend d'une chaîne de Markov latente de haute dimension qui est construite en multipliant des chaînes de Markov de dimension plus faible, appelées composantes. Cette classe englobe les modèles factoriels à chaîne de Markov cachée précédemment proposés dont les composantes sont de dimension deux. Le modèle MDSV (Multifractal Discrete Stochastic Volatility) est introduit afin de pouvoir considérer des composantes de dimension supérieure à deux, généralisant ainsi les modèles factoriels existants. La paramétrisation particulière de ce modèle lui offre suffisamment de flexibilité pour reproduire différentes allures de décroissance de la fonction d'autocorrélation, comme celles qui sont observées sur les données financières. Un cadre est également proposé pour modéliser séparément ou simultanément les données de rendements financiers et de variances réalisées. Une analyse empirique sur 31 séries d'indices financiers montre que le modèle MDSV présente de meilleures performances en termes d'estimation et de prévision par rapport au modèle realized EGARCH.
La modélisation par l'entremise des modèles factoriels à chaîne de Markov cachée nécessite qu'on définisse le nombre N de composantes à multiplier et cela suppose qu'il n'existe pas d'incertitude lié à ce nombre. La seconde partie de cette thèse propose, à travers une approche bayésienne, le modèle iFHMV (infinite Factorial Hidden Markov Volatility) qui autorise les données à déterminer le nombre de composantes nécessaires à leur modélisation. En s'inspirant du processus du buffet indien (IBP, Indian Buffet Process), un algorithme est proposé pour estimer ce modèle, sur les données de rendements financiers. Une analyse empirique sur les données de deux indices financiers et de deux actions permet de remarquer que le modèle iFHMV intègre l'incertitude liée au nombre de composantes pour les estimations et les prévisions. Cela lui permet de produire de meilleures prévisions par rapport à des modèles de référence. / Hidden Markov Models (HMMs) are popular tools to interpret, model and forecast financial data. In these models, the return dynamics on a financial asset evolve according to a non-observed variable, a Markov chain, which generally represents the volatility of the asset. This volatility is notoriously difficult to reproduce with statistical models as it is very persistent in time. HMMs allow the volatility to vary according to the states of a Markov chain. Historically, these models are estimated with a very small number of regimes (states), because the number of parameters to be estimated grows quickly with the number of regimes and the optimization becomes difficult. The objective of this thesis is to propose a general framework to construct HMMs with a richer state space and a higher level of volatility persistence.
In the first part, this thesis studies a general class of high-dimensional HMMs, called factorial HMMs, and derives its theoretical properties. In these models, the volatility is linked to a high-dimensional Markov chain built by multiplying lower-dimensional Markov chains, called components. We discuss how previously proposed models based on two-dimensional components adhere to the factorial HMM framework. Furthermore, we propose a new process---the Multifractal Discrete Stochastic Volatility (MDSV) process---which generalizes existing factorial HMMs to dimensions larger than two. The particular parametrization of the MDSV model allows for enough flexibility to reproduce different decay rates of the autocorrelation function, akin to those observed on financial data. A framework is also proposed to model financial log-returns and realized variances, either separately or jointly. An empirical analysis on 31 financial indices reveals that the MDSV model outperforms the realized EGARCH model in terms of fitting and forecasting performance.
Our MDSV model requires us to pre-specify the number of components and assumes that there is no uncertainty on that number. In the second part of the thesis, we propose the infinite Factorial Hidden Markov Volatility (iFHMV) model as part of a Bayesian framework to let the data drive the selection of the number of components and take into account the uncertainty related to the number of components in the fitting and forecasting procedure. We also develop an algorithm inspired by the Indian Buffet Process (IBP) to estimate the iFHMV model on financial log-returns. Empirical analyses on two financial indices and two stocks show that the iFHMV model outperforms popular benchmarks in terms of forecasting performance.
|
275 |
Enhanching the Human-Team Awareness of a RobotWåhlin, Peter January 2012 (has links)
The use of autonomous robots in our society is increasing every day and a robot is no longer seen as a tool but as a team member. The robots are now working side by side with us and provide assistance during dangerous operations where humans otherwise are at risk. This development has in turn increased the need of robots with more human-awareness. Therefore, this master thesis aims at contributing to the enhancement of human-aware robotics. Specifically, we are investigating the possibilities of equipping autonomous robots with the capability of assessing and detecting activities in human teams. This capability could, for instance, be used in the robot's reasoning and planning components to create better plans that ultimately would result in improved human-robot teamwork performance. we propose to improve existing teamwork activity recognizers by adding intangible features, such as stress, motivation and focus, originating from human behavior models. Hidden markov models have earlier been proven very efficient for activity recognition and have therefore been utilized in this work as a method for classification of behaviors. In order for a robot to provide effective assistance to a human team it must not only consider spatio-temporal parameters for team members but also the psychological.To assess psychological parameters this master thesis suggests to use the body signals of team members. Body signals such as heart rate and skin conductance. Combined with the body signals we investigate the possibility of using System Dynamics models to interpret the current psychological states of the human team members, thus enhancing the human-awareness of a robot. / Användningen av autonoma robotar i vårt samhälle ökar varje dag och en robot ses inte längre som ett verktyg utan som en gruppmedlem. Robotarna arbetar nu sida vid sida med oss och ger oss stöd under farliga arbeten där människor annars är utsatta för risker. Denna utveckling har i sin tur ökat behovet av robotar med mer människo-medvetenhet. Därför är målet med detta examensarbete att bidra till en stärkt människo-medvetenhet hos robotar. Specifikt undersöker vi möjligheterna att utrusta autonoma robotar med förmågan att bedöma och upptäcka olika beteenden hos mänskliga lag. Denna förmåga skulle till exempel kunna användas i robotens resonemang och planering för att ta beslut och i sin tur förbättra samarbetet mellan människa och robot. Vi föreslår att förbättra befintliga aktivitetsidentifierare genom att tillföra förmågan att tolka immateriella beteenden hos människan, såsom stress, motivation och fokus. Att kunna urskilja lagaktiviteter inom ett mänskligt lag är grundläggande för en robot som ska vara till stöd för laget. Dolda markovmodeller har tidigare visat sig vara mycket effektiva för just aktivitetsidentifiering och har därför använts i detta arbete. För att en robot ska kunna ha möjlighet att ge ett effektivt stöd till ett mänskligtlag måste den inte bara ta hänsyn till rumsliga parametrar hos lagmedlemmarna utan även de psykologiska. För att tyda psykologiska parametrar hos människor förespråkar denna masteravhandling utnyttjandet av mänskliga kroppssignaler. Signaler så som hjärtfrekvens och hudkonduktans. Kombinerat med kroppenssignalerar påvisar vi möjligheten att använda systemdynamiksmodeller för att tolka immateriella beteenden, vilket i sin tur kan stärka människo-medvetenheten hos en robot. / <p>The thesis work was conducted in Stockholm, Kista at the department of Informatics and Aero System at Swedish Defence Research Agency.</p>
|
Page generated in 0.0408 seconds