Spelling suggestions: "subject:"microelectromechanical lemsystems(MEMS)"" "subject:"microelectromechanical atemsystems(MEMS)""
31 |
One-photon 3D Nanolithography using Controlled Initiator DepletionShih-hsin Hsu (13171584) 28 July 2024 (has links)
<p> </p>
<p>3D printing techniques have been applied in many fields to provide a potential for complex fabrication, and photopolymerization methods are the current possible path to fabricate nanoscale 3D structures. Multi-photon lithography is the most common tool to reach below 100-nm resolution. These methods require femtosecond lasers to reliably create sophisticated 3D polymeric nanostructures using nonlinear photopolymerization of a light-sensitive resin. Though these methods provide high accuracy and flexibility in advanced fabrication, they are essentially limited by their cost and throughput. Therefore, in this work, multiple approaches were examined to develop new methods for one-photon nonlinear 3D printing. </p>
<p>By controlling multiple competing processes in the radical polymerization scheme, a nonlinear photopolymerization effect is achieved using a one-photon absorption process with the assistance of inhibition radicals and controlled diffusion. This work makes use of this nonlinear response to fabricate 2D/3D structures using a continuous-wave diode laser, demonstrating a significantly more cost-efficient source for 3D nanolithography. In addition, a numerical model was constructed with the highly nonlinear response by actively controlling the consumption of the initiators with the assistance of these inhibitors, and it shows the same trend of nonlinearity from experiments. We use this model to study this dosage-based nonlinear response driven by the laser intensity in several 1D and 2D scenarios with different inputs and predicted the polymerization results in a confined voxel in the resin to support the observations from the experiments. Besides the demonstration of current one-photon nonlinear 3D printing, this work also involves some results of nonlinear response by operating local oxygen concentration and a two-step absorption nonlinear photoinitiator. These results help us to further study the potential of increasing the throughput of the one-photon nonlinear 3D printing process. </p>
<p>In conclusion, a new one-photon-based dose nonlinear process is introduced in this dissertation to achieve nanoscale 3D printing with a low-cost-405-nm diode laser operating at milliwatt level. By controlling the activation and transport of initiating and inhibiting radicals, we achieve patterning of the nanoscale features at a high scanning speed.</p>
|
32 |
MEMS TUNABLE SI-BASED EVANESCENT-MODE CAVITY FILTERS: DESIGN, OPTIMIZATION AND IMPLEMENTATIONZhengan Yang (5930441) 16 August 2019 (has links)
<div>The allocated frequency bands for the incoming fifth generation (5G) wireless communication technologies spread broadly from sub 6 GHz to K and potentially W bands. The evolution of the future generations toward higher frequency bands will continue and presents significant challenges in terms of excessive system complexity, production and maintenance costs. Reconfigurable radio architecture with frequency-tunable components is one of the most feasible and cost-effective solutions to meet such challenges. Among these technologies, evanescent-mode (EVA) cavity tunable resonator have demonstrated many of the needed features such as wide tunability, low loss and high linearity. Such a technology typically employs a movable membrane that controls the resonant frequency of a post-loaded cavity. </div><div><br></div><div>The first part of this work focuses on advancing such technology into the mm-wave frequency bands and beyond. Manufacturing tolerance and tuner performance are the two main limiting factors addressed here. This work develops a cost-effective micro-fabrication and package assembly flow which addresses the manufacturing related limitations. On the other hand, introducing micro-corrugated diaphragms and gold-vanadium co-sputtered thin film deposition technology, significantly reduces (4 times) the tuning voltage and enhances tuning stability (7 times). We demonstrate a tunable two-pole band-pass filter (BPF) prototype as the first EVA cavity tunable filter operating in the K-Ka band. </div><div><br></div><div>The second part of this work extensively discusses an optimal RF design flow based on the developed manufacturing technology. It considers all technology constrains and allows the actualization of a high Q transfer function with minimum bandwidth variation within an octave tuning range. Moreover, a new fully passive input/output feeding mechanism that facilitates impedance matching over the entire tuning range is presented. The devised RF methodology is validated through the design and testing of a two-resonator BPF. Measurements demonstrate a tuning range between 20-40 GHz, relative bandwidth of 1.9%-4.7%, and impedance matching over the entire tuning range which is upto 2 times better than previously reported state-of-the-art MEMS tunable filters of this type.</div><div><br></div><div>The third part of this work further advances the technology by proposing the first MEMS-based low-power bi-directional EVA tuning approach that employs both the main bias circuitry as well as a new corrective biasing technique that counteracts viscoelastic memory effects. The two key enabling technologies are extensively discussed: a) a new metal-oxide-metal (MOM) sealed cavity that maintains high quality without requiring complicated metal bonding; and b) a new electrostatic bi-directional MEMS tuner that implements the needed frequency tuning without lowering the resonator quality factor. </div><div><br></div><div>Furthermore, we explore important design and fabrication trade-offs regarding sensitivity to non-ideal effects (residual stress, fabrication imperfections). Measurement of the new prototype bi-directional design, prove that this technology readily corrects residual post-bias displacement of 0.1 um that shifts the frequency by over 1 GHz with less than 2.5 V. It takes over 100 seconds to recover this error in the uni-directional case. This correction does not adversely affect the filter performance.</div>
|
33 |
Ionic Liquid-Mediated Sol-Gel Sorbents for Capillary Microextraction and Challenges in Glass MicrofabricationShearrow, Anne M 18 May 2009 (has links)
Three ionic liquids (ILs), trihexyltetradecylphosphonium tetrafluoroborate (TTPT), N-butyl-4-methylpyridinium tetrafluoroborate (BMPT), and 1-methyl-3- octylimidazolium tetrafluoroborate (MOIC), were utilized to prepare sol- gel sorbent coatings. Non-polar polydimethylsiloxane (PDMS) and polar poly(ethylene glycol) (PEG), poly(tetrahydrofuran) (PolyTHF) and bis[(3-methyldimethoxy-silyl)propyl] polypropylene oxide (BMPO) polymers were employed to develop novel ionic liquidmediated sol- gel hybrid organic- inorganic sorbents. The novel sorbents were first tested as coatings for capillary microextraction off-line hyphenated to gas chromatography. To gain an understanding of the role of the ionic liquids in the sol-gel process, the preconcentration abilities of these novel coatings were investigated for several classes of compounds utilizing CME-GC. This was accomplished by comparing GC peak areas of a series of analytes extracted on the ionic liquid mediated sol-gel CME coatings with that of analogous peak areas obtained on sol- gel coatings prepared without the ionic liquid. The morphology of these coatings was compared using scanning electron microscopy (SEM) imaging data. Overall, the ionic liquid-mediated sol- gel coatings had more porous morphologies than the sol-gel coatings prepared without ionic liquid. The PDMS andBMPO sol-gel coatings prepared with ionic liquid in the sol solution provided enhanced extraction sensitivity reflected in higher preconcentration effects and lower detection limits than the sol- gel coatings prepared without the ionic liquid. The polar IL-mediated BMPO sol- gel sorbent was further investigated by exploring the extraction profile and thermal stability of these coatings. A further application of ionic liquid-mediated sol-gel sorbents could be as stationary phases in a microchip-based separation system. Towards this goal, microfluidic channels were fabricated in glass substrates using microelectromechanical engineering. Spiral and serpentine channels were etched in Pyrex and fused silica wafers using wet and deep reactive ion etching (DRIE) techniques. Microfabrication protocols such as the use of hard mask and etching times were investigated for both techniques. DRIE produced microfluidic channels that had an etch quality that was superior to wet etched channels. Thus, the ultimate microchip-based separation system should by fabricated using DRIE.
|
34 |
Data Acquisition and Processing Pipeline for E-Scooter Tracking Using 3D LIDAR and Multi-Camera SetupSiddhant Srinath Betrabet (9708467) 07 January 2021 (has links)
<div><p>Analyzing
behaviors of objects on the road is a complex task that requires data from
various sensors and their fusion to recreate movement of objects with a high
degree of accuracy. A data collection and processing system are thus needed to
track the objects accurately in order to make an accurate and clear map of the
trajectories of objects relative to various coordinate frame(s) of interest in
the map. Detection and tracking moving objects (DATMO) and Simultaneous
localization and mapping (SLAM) are the tasks that needs to be achieved in
conjunction to create a clear map of the road comprising of the moving and
static objects.</p>
<p> These computational problems are commonly
solved and used to aid scenario reconstruction for the objects of interest. The
tracking of objects can be done in various ways, utilizing sensors such as
monocular or stereo cameras, Light Detection and Ranging (LIDAR) sensors as
well as Inertial Navigation systems (INS) systems. One relatively common method
for solving DATMO and SLAM involves utilizing a 3D LIDAR with multiple
monocular cameras in conjunction with an inertial measurement unit (IMU) allows
for redundancies to maintain object classification and tracking with the help
of sensor fusion in cases when sensor specific traditional algorithms prove to
be ineffectual when either sensor falls short due to their limitations. The
usage of the IMU and sensor fusion methods relatively eliminates the need for
having an expensive INS rig. Fusion of these sensors allows for more effectual
tracking to utilize the maximum potential of each sensor while allowing for
methods to increase perceptional accuracy.
</p>
<p>The
focus of this thesis will be the dock-less e-scooter and the primary goal will
be to track its movements effectively and accurately with respect to cars on
the road and the world. Since it is relatively more common to observe a car on
the road than e-scooters, we propose a data collection system that can be built
on top of an e-scooter and an offline processing pipeline that can be used to
collect data in order to understand the behaviors of the e-scooters themselves.
In this thesis, we plan to explore a data collection system involving a 3D
LIDAR sensor and multiple monocular cameras and an IMU on an e-scooter as well
as an offline method for processing the data to generate data to aid scenario
reconstruction. </p><br></div>
|
35 |
Ordnungsreduktion in der MikrosystemtechnikGugel, Denis 23 January 2009 (has links)
Die vorliegende Arbeit befasst sich mit der Methode der modalen Superposition als Ordnungsreduktionsverfahren in der Mikrosystemtechnik. Typische Anwendungsgebiete sind Inertialsensoren und dabei im Besonderen Drehratensensoren, für die die Simulation von zeitabhängigen Phänomenen von entscheidender Bedeutung ist.
Im Rahmen der Weiterentwicklung der Ordnungsreduktion nach der Methode der modalen Superposition ist es gelungen für typische lineare Kräfte eine auf analytischen Gleichungen basierende Beschreibung im reduzierten Raum zu finden. Für die Beschreibung von nichtlinearen Kräften ist im Rahmen dieser Arbeit ein Verfahren entwickelt worden, das es erlaubt, bestehende Modelle im Finite-Elemente-Raum in der modalen
Beschreibung zu nutzen.
In dieser Arbeit werden die theoretischen Grundlagen zur Berücksichtigung von Einflüssen der Aufbau- und Verbindungstechnik in ordnungsreduzierten Modellen dargestellt. Neben der Einkopplung äußerer Kräfte und der Veränderung der mechanischen Randbedingungen wird auch der Einfluss der Aufbau- und Verbindungstechnik auf die elektrostatischen Eigenschaften untersucht.
Die Parametrisierung des Verfahrens der modalen Superposition über Fit- und Interpolationsverfahren erlaubt es, parametrisierte ordnungsreduzierte Modelle für die zeitabhängige Systemsimulation zu generieren. Damit wird die Durchführung von Designoptimierung und die Berücksichtigung von Fertigungs- und Prozessschwankungen in ordnungsreduzierten Modellen auf Systemebene möglich.
|
36 |
Integrated Electronic Interface Design for Chemiresistive and Resonant Gas SensorsJoseph R Meseke (12879041) 15 June 2022 (has links)
<p>To facilitate indoor air quality (IAQ) monitoring, the research described herein develops and implements methods for the electronic integration of two types of gas sensor, each functionalized with a polymer blend tailored for CO<sub>2</sub> detection. A highly sensitive and tunable electronic chemiresistive sensor interface was developed and experimentally validated. This device achieved analog-to-digital conversion (ADC) through a pulse width modulated (PWM) signal, temporary data storage with an efficient data buffering system, and noise reduction and signal amplification utilizing an instrumentation amplifier integrator circuit. These techniques can used beyond CO<sub>2</sub>-specific applications to compensate for certain undesirable chemiresistive sensor characteristics, such as low response magnitude and signal noise. Additionally, resonant mass sensing circuitry was combined with an on-chip field programmable gate array (FPGA) implemented frequency counter. Hz-level resolution was achieved with an Alorium Snō FPGA board and a Verilog data acquisition and communication program. This device can monitor up to 16 sensor channels simultaneously and has a straightforward interface with a controllable output. Furthermore, the functionality of each integrated sensor was experimentally validated. With additional work, these integrated designs have the potential to be inexpensive, low-power, highly sensitive devices that are suitable for practical use in IAQ monitoring applications.</p>
|
37 |
Deformation Mechanisms in Unirradiated and Irradiated Iron Chromium Aluminum Identified by TEM in situ Tensile TestingGeorge A Warren (11154630) 20 July 2021 (has links)
FeCrAl alloys are being investigated as candidate materials for replacing zirconium based alloys as nuclear reactor fuel cladding because of their superior high temperature oxidation resistance in steam environments. Unirradiated FeCrAl as well as Fe<sup>2+</sup> ion irradiated FeCrAl to a peak dose of 20DPA were mechanically tested and compared against each other. Nanohardness tests were performed on both the unirradiated and irradiated conditions and it was found that the irradiated alloy was about 1GPa harder than its unirradiated counterpart. TEM <i>in situ</i> tensile tests were performed using the Bruker push to pull device alongside a PI95 Picoindenter on single crystals with grain orientations 001, 011 and 111. The unirradiated 001 grains tended to fail without yielding in a brittle manner while the irradiated 001 grain yielded and reached an ultimate tensile strength before failure. The unirradiated 011 grains behaved in a mixed manner, where one failed without yielding and one slipped many times before failing. The irradiated 011 grain yielded and failed quickly thereafter. The unirradiated 111 grain yielded, slipped and twinned before failing and both irradiated 111 grains slipped. Two general trends were observed. One, each unirradiated single grain was stronger than its irradiated counterpart. This trend is indicative of the ion irradiated microstructure facilitating bulklike mechanical behavior in the irradiated samples whereas the unirradiated samples exhibited mechanical size effects due to either the total lack of preexisting defects or the ability for existing defects to escape easily to the surface of the sample resulting in a pristine, defect free sample. Two, regardless of irradiation condition, the 001 grain orientation was brittle, the 011 grain orientation deformed in a mixed brittle/ductile manner and the 111 grain orientation was ductile through all tests. These results are indicative of the geometry of the BCC crystal structure and the slip system involving these orientations.
|
38 |
Force-compensated hydrogel-based pH sensorDeng, Kangfa, Gerlach, Gerald, Guenther, Margarita 06 September 2019 (has links)
This paper presents the design, simulation, assembly and testing of a force-compensated hydrogel-based pH sensor. In the conventional deflection method, a piezoresistive pressure sensor is used as a chemical-mechanical-electronic transducer to measure the volume change of a pH-sensitive hydrogel. In this compensation method, the pH-sensitive hydrogel keeps its volume constant during the whole measuring process, independent of applied pH value. In order to maintain a balanced state, an additional thermal actuator is integrated into the close-loop sensor system with higher precision and faster dynamic response. Poly (N-isopropylacrylamide) (PNIPAAm) with 5 mol% monomer 3-acrylamido propionic acid (AAmPA) is used as the temperature-sensitive hydrogel, while poly (vinyl alcohol) with poly (acrylic acid) (PAA) serves as the pH-sensitive hydrogel. A thermal simulation is introduced to assess the temperature distribution of the whole microsystem, especially the temperature influence on both hydrogels. Following tests are detailed to verify the working functions of a sensor based on pH-sensitive hydrogel and an actuator based on temperature-sensitive hydrogel. A miniaturized prototype is assembled and investigated in deionized water: the response time amounts to about 25 min, just half of that one of a sensor based on the conventional deflection method. The results confirm the applicability of the compensation method to the hydrogel-based sensors.
|
39 |
RATIONAL DESIGN OF VERTICAL SILICON NANONEEDLES FOR OCULAR DRUG DELIVERY AND INTRACELLULAR RECORDINGWoohyun Park (15307423) 17 April 2023 (has links)
<p>The use of silicon nanoneedles provides a unique and versatile biointerface for a range of biomedical applications. In this work, we propose a rational design for vertical Si nanoneedles that are printed on a polymer substrate for ocular drug delivery, intracellular recording, and intra-organoid sensing. To enable minimally invasive and long-term sustained delivery of ocular drugs, we integrate vertical Si nanoneedles with a tear-soluble contact lens for ocular drug delivery. We demonstrate the effectiveness of this platform in treating corneal neovascularization in an in vivo rabbit model, surpassing the current gold standard surgical therapy. This platform has the potential to revolutionize the management of various chronic ocular diseases without causing significant side effects.</p>
<p>To enable intracellular recording, we present a unique platform consisting of vertical Si nanoneedles coated with a thin, transparent network of Au-Ag nanowires. This platform is held in place and enclosed by a soft, transparent elastomer, providing simultaneous intracellular recording and live imaging with applications in neuroscience, cardiology, muscle physiology, and drug screening. To demonstrate the utility of this platform, we monitored electrical potentials from cardiomyocyte cells and cardiovascular organoids. Additionally, we propose an intra-organoid sensing platform with vertical Si nanoneedles transfer printed into a soft scaffold. This platform can be adjusted and tailored for various organoids and tumor tissues of interest, or used to deliver bioactive molecules of interest into organoids in response to external stimuli.</p>
<p>Our proposed designs of vertical Si nanoneedles based platforms demonstrate their significant potential for a broad range of biomedical applications, including ocular drug delivery, intracellular recording, and intraorganoid sensing. These platforms have the potential to revolutionize current approaches and pave the way for future developments in biomedical research and clinical applications, offering new possibilities for the diagnosis and treatment of a wide range of diseases.</p>
|
40 |
Desenvolvimento de cateter implantável de monitorização de pressão intracranianaRosario, Jeferson Cardoso do 18 January 2019 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2019-03-25T11:56:58Z
No. of bitstreams: 1
Jeferson Cardoso do Rosario_.pdf: 3523684 bytes, checksum: 6d033c623e7ef74a93692efd6ca37e8e (MD5) / Made available in DSpace on 2019-03-25T11:56:58Z (GMT). No. of bitstreams: 1
Jeferson Cardoso do Rosario_.pdf: 3523684 bytes, checksum: 6d033c623e7ef74a93692efd6ca37e8e (MD5)
Previous issue date: 2019-01-18 / Nenhuma / O traumatismo cranioencefálico (TCE) é atualmente a terceira maior causa de óbitos no âmbito mundial. Estudos recentes têm demonstrado que a monitorização de pressão intracraniana (PIC), como forma de cálculo da pressão de perfusão cerebral (PPC) é uma ferramenta importante para avaliação do fluxo sanguíneo cerebral (FSC), provocando sensível redução nas taxas de mortalidade. Além do TCE, outras patologias ou situações neurocirúrgicas tem utilizado a técnica de monitorização de PIC. A monitorização desse parâmetro foi proposta já na década de 50, onde um tubo com fluido em contato com o líquido cefalorraquidiano (LCR) era introduzido no espaço intracraniano e conectado a um transdutor de pressão externo. Com a evolução da indústria microeletrônica e dos sistemas microeletromecânicos, foi possível colocar os transdutores na ponta do cateter, permitindo uma monitorização menos invasiva, com menos riscos de infecções. Os cateteres atuais com micro transdutor na ponta podem ser divididos em três grupo: straingauge, fibra óptica e pneumático. Cada grupo possui suas características, entretanto o primeiro tem se demonstrado como solução mais robusta e confiável, com boa relação custo benefício. No presente trabalho foi proposto o desenvolvimento de um cateter implantável de monitorização de pressão intracraniana do tipo micro transdutor strain-gauge. Foram construídos protótipos funcionais e submetidos a ensaios de desempenho, especificados em norma técnica para monitorização de pressão sanguínea, a influência da temperatura na medição de pressão, bem como a exatidão das medições. Os processos empregados no trabalho são utilizados comumente na indústria de encapsulamento de semicondutores, porém foram levadas em consideração as especificidades da aplicação, adequando as técnicas disponíveis às geometrias e materiais empregados, considerando a necessidade de utilização de materiais biocompatíveis. / The traumatic brain injury (TBI) is nowadays the third cause of death in the world. Recent studies have shown the intracranial pressure (ICP) monitoring as an important tool for cerebral perfusion pressure (CPP) calculation and cerebral blood flow (CBF) assestment, reducing significantly the mortality statistics. Besides TBI, several others pathologies and neurosurgery conditions have been using the ICP monitoring technique. The proposal of ICP monitoring first appeared on the 50’s, where a tube fulfilled with fluid in contact with cerebrospinal fluid (CSF) was introduced into the intracranial space and connected to an external pressure transducer. With the waves of the microelectronics and microelectromechanical systems (MEMS) industry evolution, it was possible to put the transducer and all the electronics inside the catheter tip, allowing a less invasive monitoring, decreasing the risk of infection. The state of art catheters with micro transducer on the tip can be divided into three groups: strain-gauge, optical fiber and pneumatic. Each group has it’s own characteristics, however the first has been demonstrated as the rugged solution, being reliable, cost effective and with good accuracy. In the present work, it was proposed the development of an strain-gauge micro transducer implantable catheter for intracranial pressure monitoring. Functional prototypes were built and submitted to performance tests, according to the technical standards in the medical equipment area, the temperature influence over the pressure measurements was evaluated, as well as the accuracy. The adopted processes are commonly used in the semiconductor packaging industry, however it was considered the application special requirements, adapting the processes to the geometry and materials used, considering the needs of biocompatible materials.
|
Page generated in 0.3108 seconds