• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 178
  • 67
  • 58
  • 19
  • 19
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 411
  • 215
  • 165
  • 102
  • 96
  • 78
  • 72
  • 55
  • 50
  • 47
  • 45
  • 37
  • 33
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Simultaneous Optical and MR Imaging of Tissue Within Implanted Window Chamber: System Development and Application in Measuring Vascular Permeability

Shayegan Salek, Mir Farrokh January 2013 (has links)
Simultaneous optical imaging and MRI of a dorsal skin-fold window chamber mouse model is investigated as a novel methodology to study the tumor microenvironment. Simultaneous imaging with two modalities allows for cross-validation of results, integration of the capabilities of the two modalities in one study and mitigation of invasive factors, such as surgery and anesthesia, in an in-vivo experiment. To make this investigation possible, three optical imaging systems were developed that operated inside the MRI scanner. One of the developed systems was applied to estimate vascular kinetic parameters of tumors in a dorsal skin-fold window chamber mouse model with simultaneous optical and MRI imaging. The target of imaging was a molecular agent that was dual labeled with both optical and MRI contrast agents. The labeling of the molecular agent, characteristics of the developed optical systems, the methodologies of measuring vascular kinetic parameters using optical imaging and MRI data, and the obtained results are described and illustrated.
122

Untangling Intercellular Communication Using Optical Manipulation in 3D Models of Tumor Microenvironment

Orsinger, Gabriel V. January 2014 (has links)
The tumor microenvironment is a tangled web of multiple cell types, extracellular matrix components, and a multitude of cell signaling pathways frequently contribute to poor outcomes, which make cancer the second leading killer in the United States. A better understanding of how these constituents interact will inevitably facilitate development of novel cancer therapeutics and diagnostics. To advance scientific discovery towards this goal, innovative experimental techniques are required. In this dissertation, new research methods for probing cell communication at a single to multi cell level within 3D models of the tumor microenvironment are presented. Optical trapping, composite nanocapsules (i.e., gold-coated liposomes), and 3D cell culture models were the foundation for the development of these research tools. The first aim of this dissertation was to optimize our ability to optically manipulate gold-coated liposomes for the purpose of delivering molecular content to cells. The second aim was to apply optical manipulation of gold-coated liposomes to quantitatively deliver signaling molecules into a single cell to activate communication. The third aim was to develop a 3D model of the tumor microenvironment and demonstrate cell communication within this physiologically accurate architecture. The basis for this work was gold-coated liposomes' strong plasmon resonance with visible to near infrared (NIR) wavelengths of light, which enabled photo-thermal conversion and optical trapping. To identify preferred conditions for optical manipulation of gold-coated liposomes for delivering content into cells, gold-coated liposomes made with different dielectric properties were optically trapped under various laser modulation schemes and thoroughly characterized, enabled by high speed (kHz) imaging. Application of this technique was realized by precise delivery of molecular agents into a single cell (i.e., optical injection). As a demonstration of optical injection, the NIR trapping beam was utilized to propel gold-coated liposomes encapsulating inositol trisphosphate (IP3) into a single cell to initiate calcium (Ca²⁺) signaling. In another method for intracellular delivery, cells were preloaded with similar gold-coated liposomes, internalized by macropinocytosis, and then exposed to on-resonant laser light to trigger on-demand release of IP3 to activate Ca²⁺ signaling. Lastly, a 3D cell culture model of ovarian cancer microenvironment was developed as a platform for interrogating cell signaling. The in vitro model comprised human ovarian cancerous epithelial cells grown upon a collagen and human fibroblast stroma recapitulating architecture of human tissue. Gold-coated liposomes encapsulating signaling molecules, optical manipulation, and a 3D model of ovarian cancer, a trio of versatile experimental tools opens new opportunities for studying the tumor microenvironment.
123

The saguaro tree-hole microenvironment in southern Arizona; II, Summer

Soule, Oscar Hommel, 1940- January 1964 (has links)
No description available.
124

Die Rolle der residenten monozytären Zellen sowie Tumorzell-spezifischer Faktoren bei der Metastasierung des Mammakarzinoms / The role of monocytic cells and tumor cell-specific factors during breast cancer metastasis

Rietkötter, Eva 17 October 2012 (has links)
Das Auftreten von Metastasen ist die Haupttodesursache bei Krebspatienten und kennzeichnet den Wendepunkt jeder Tumorerkrankung, nach dem eine Heilung nur noch in Ausnahmefällen erfolgen kann. Eine wesentliche neue Erkenntnis in der Erforschung innovativer Therapieansätze zur Prävention der Metastasierung war, dass eingewanderte Immunzellen nicht nur die ersten Schritte der Tumorprogression fördern, sondern auch im Prozess der Metastasierung von Bedeutung sind. In diesem Zusammenhang konnten vor allem die Makrophagen als Vermittler der Migration und Invasion von Tumorzellen und deren Kolonisation in einem entfernten Organ identifiziert werden. Bisphosphonate (BPs) sind bekanntermaßen sehr potente Inhibitoren von Makrophagen. Dennoch erklärt die Mehrzahl der Studien ihre Tumor hemmenden Eigenschaften mit direkten Effekten auf z.B. Migrations- und Invasionseigenschaften der Tumorzellen und berücksichtigt nicht die Auswirkungen auf das Tumorstroma. Diese Arbeit zeigt, dass Makrophagen sehr viel sensitiver gegenüber dem stickstoffhaltigen BP Zoledronat (ZA) sind als Mammakarzinom-Zelllinien. Weiterhin wird verdeutlicht, dass die Makrophagen-induzierte Invasion sowie die Mikroglia-assistierte Kolonisation von MCF-7 im Hirngewebe durch ZA gehemmt werden, während die Migrations- und Invasionseigenschaften der Tumorzellen nicht beeinflusst werden. Für einen weiteren Makrophageninhibitor, einen CSF-1 Antikörper (5A1), wird in dieser Arbeit gezeigt, dass er die Depletion von Knochenmarksmakrophagen (BMDMs) induziert, jedoch keine Auswirkung auf die Viabilität von Mikroglia hat. Während 5A1 die Mikroglia-induzierte Invasion von MCF-7 wenig hemmt, induziert er eine starke Hemmung der BMDM-induzierten Invasion. Neben den benignen Zellen des Tumorstromas können auch Eigenschaften der Tumorzellen die Metastasierung induzieren. So konnte vor einiger Zeit der Transkriptionsfaktor LEF1 als Faktor der zerebralen Metastasierung des Lungenadenokarzinoms identifiziert werden. Diese Arbeit verdeutlicht, dass die Expression von LEF1 in einer Subgruppe zerebraler Metastasen nachgewiesen werden kann und ebenfalls charakteristisch für invasive Mammakarzinom-Zelllinien ist. Während die Überexpression von LEF1 in der wenig invasiven MCF-7 keinen Einfluss auf die Proliferation, die Migration oder die Sensitivität gegenüber Chemotherapie oder Bestrahlung hat, steigert sie die Invasivität der Zellen und induziert die Angiogenese im Tumor. Diese Effekte sind unabhängig von der direkten Bindung des Transkriptionsfaktors an die DNA und scheinen durch einen β-Catenin-unabhängigen Mechanismus zu erfolgen.
125

Generation of Cell-laden Biopolymer Microgels with Tunable Mechanical Properties for Cancer Cell Studies

Kumachev, Alexander 20 November 2012 (has links)
This thesis describes the development of a high-throughput approach towards the encapsulation of cancer cells in biopolymer microgels with tunable mechanical properties. In particular, this thesis is focused on: i) the high-throughput generation of biopolymer microgels with tunable mechanical properties ii) the measurement of the mechanical properties of the microgels, and iii) the high-throughput encapsulation of a cancer cell line within biopolymer gels. The microgels will be generated by (i) introducing in a microfluidic device two distinct streams of biopolymer solutions; (ii) mixing the streams; (iii) emulsifying the biopolymer and (iv) using thermosetting to transform the droplets in situ into microgels. By applying a compression force to the hydrogel microbead and measuring its deformation, the Young’s modulus and relaxation time of the microgel can be examined. The properties of cells were examined within the gels using various spectroscopic techniques such as absorption (UV-Vis) and fluorescence microscopy (fluorescent microscopy, confocal microscopy).
126

Generation of Cell-laden Biopolymer Microgels with Tunable Mechanical Properties for Cancer Cell Studies

Kumachev, Alexander 20 November 2012 (has links)
This thesis describes the development of a high-throughput approach towards the encapsulation of cancer cells in biopolymer microgels with tunable mechanical properties. In particular, this thesis is focused on: i) the high-throughput generation of biopolymer microgels with tunable mechanical properties ii) the measurement of the mechanical properties of the microgels, and iii) the high-throughput encapsulation of a cancer cell line within biopolymer gels. The microgels will be generated by (i) introducing in a microfluidic device two distinct streams of biopolymer solutions; (ii) mixing the streams; (iii) emulsifying the biopolymer and (iv) using thermosetting to transform the droplets in situ into microgels. By applying a compression force to the hydrogel microbead and measuring its deformation, the Young’s modulus and relaxation time of the microgel can be examined. The properties of cells were examined within the gels using various spectroscopic techniques such as absorption (UV-Vis) and fluorescence microscopy (fluorescent microscopy, confocal microscopy).
127

Profiling and Targeting Microenvironment-Induced Changes in the Cancer Epigenome

Skowronski, Karolina 26 June 2012 (has links)
The tumor microenvironment consists of multiple cells types, including endothelial cells that line the tumor vasculature. Tumor vasculature is often abnormal and results in development of tissue ischemia, another contributing factor to the tumor microenvironment. Previous studies have demonstrated that ischemia influences epigenetic programming, but the mechanisms remained unclear and required further investigation. First, we profiled DNA methyltransferase (DNMT) expression and activity in human colorectal cancer cells (HCT116) under hypoxia or hypoglycaemia (mimicking ischemia). We found that DNMT1 and DNMT3b were significantly downregulated by hypoxia and hypoglycaemia, and DNMT3a was downregulated by hypoglycaemia. However, DNMT1 downregulation was p53-dependent. To examine if the changes in DNMT expression and activity translated to changes in DNA methylation patterns, we used bisulfite sequencing and examined the promoter region of p16. Hypoglycaemia significantly demethylated this region in both p53 wild-type and p53-null cells. Next, we used a genome-wide approach to discover what additional genes are hypomethylated by ischemia. Methylated DNA was immunoprecipitated and analysed with an Affymetrix promoter array, in parallel with an expression array. Ingenuity pathway analysis software revealed that a significant proportion of genes which were hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. We believe that hypoxia and hypoglycaemia may be driving changes in DNA methylation through dysregulation of DNMTs, resulting in cells acquiring a more mobile phenotype in ischemic regions. DNMT and histone deacetylase inhibitors are commonly used in research and some cancer therapies. Modifying epigenetic patterning with these inhibitors has been widely studied in cancer cells, but only briefly explored in the tumor’s vascular endothelium. We profiled the effect of these inhibitors on endothelial cell (EC) behaviour, and tested if combining them with a targeted anti-angiogenic therapy would augment the inhibition of angiogenesis. When the DNMT inhibitor 5-aza-2’-deoxycytidine was combined with sunitinib, inhibition of EC proliferation was enhanced compared to treatment with sunitinib alone. EC migration was also inhibited by the combination of these two inhibitors, but not in an additive manner. These studies have improved our understanding of how altering epigenetic patterning with ischemia and therapeutic inhibitors can influence colorectal cancer and endothelial cell behaviour. / Canadian Cancer Society Research Institute. The Cancer Research Society.
128

Lactate Metabolism in Cancer Cell Lines

Kennedy, Kelly Marie January 2013 (has links)
<p>Pathophysiologic lactate accumulation is characteristic of solid tumors and has been associated with metastases and poor overall survival in cancer patients. In recent years, there has been a resurgence of interest in tumor lactate metabolism. In the past, our group has shown that lactate can be used as a fuel in some cancer cell lines; however, survival responses to exogenous lactate alone are not well-described. We hypothesized that lactate utilization and cellular responses to exogenous lactate were varied and dynamic, dependent upon factors such as lactate concentration, duration of lactate exposure, and of expression of the lactate transporter, monocarboxylate transporter 1 (MCT1). We hypothesized that pharmacological inhibition of MCT1 with a small molecule, competitive MCT1 inhibitor, &#945;-cyano-4-hydroxycinnamic acid (CHC), could elicit cancer cell death in high lactate conditions typical of that seen in breast cancer. </p><p>My work focused on defining: 1. Lactate levels in locally advanced breast cancer (LABC); 2. Lactate uptake and catabolism in a variety of cancer cell lines; 3. The effect of exogenous lactate on cancer cell survival; 4. Whether the lactate-transporters, MCT1 and MCT4 can be used as markers of cycling hypoxia. </p><p>Lactate levels in LABC biopsies were assessed ex vivo by bioluminescence. NMR techniques were employed extensively to determine metabolites generated from 13C-labeled lactate. Cell viability in response to extracellular lactate ( ± glucose and ± CHC) was measured with Annexin V / 7-AAD staining to assess acute survival responses and clonogenic assays to evaluate long-term colony forming ability after lactate treatment. MCT1 and MCT4 protein expression was evaluated in cancer cell lines with Western blots after exposure to chronic or cycling hypoxia. Immunofluorescence was employed to assess MCT1 and MCT4 expression in head and neck cancer biopsies, and the expression patterns of the transporters were correlated to areas of hypoxia, as indicated by hypoxia marker EF5. </p><p>Lactate concentrations in LABC biopsied ranged from 0 - 12.3 µmol/g of tissue. The LABC dataset was too small to derive statistical power to test if lactate accumulation in LABC biopsies was associated with poor patient outcome or other clinical parameters of known prognostic significance. All cell lines tested (normal and cancer) showed uptake and metabolism of labeled lactate, with dominant generation of alanine and glutamate; however, relative rates and the diversity of metabolites generated was different among cell lines. MCF7 cells showed greater overall lactate uptake (mean = 18mM) over five days than MDA-MB-231 cells (mean = 5.5mM). CHC treatment effectively prevented lactate uptake in cancer cells when lactate concentrations were &#8804;20mM. </p><p>Cell survival was dependent upon lactate concentration and glucose availability. Acute responses to exogenous lactate did not reflect the long-term consequences of lactate exposure. Acutely, HMEC and R3230Ac cells were tolerant of all lactate concentrations tested (0-40mM) regardless of presence or absence of glucose. MCF7 and MDA-MB-231 cells were tolerant of lactate within the concentration ranges seen in biopsies. Cytotoxicity was seen after 24 hr incubation with 40mM lactate (-glucose), but this concentration is three times higher than any measurement made in human biopsies of LABC. Similarly, HMEC and MCF7 cells showed significantly decreased colony formation in response to 40mM exogenous lactate (+ glucose) while R3230Ac and MDA-MB-231 cells showed no impairment in colony-forming abilities with any lactate concentration (+ glucose). 5mM CHC significantly increased cell death responses independent of lactate treatment, indicating off-target effects at high concentrations. </p><p>MCT1 was found to be expressed in a majority of the cell lines tested, except for MDA-MB-231 cells. Cancer cells exposed to exogenous lactate showed upregulation of MCT1 but not MCT4. Chronic hypoxia resulted in an increase in protein expression of MCT4 but a decrease in MCT1 expression in cancer cell lines. The time course of regulation of protein levels of each transporter suggested the possibility of expression of both transporters during cycling hypoxia. When cancer cells were exposed to cycling hypoxia, both transporters showed upregulation. In head and neck tumor biopsies, MCT1 expression was significantly positively correlated to aerobic tumor regions and inversely correlated to hypoxic tumor regions. </p><p>Cancer cell responses to exogenous lactate were not uniform. Some cell lines demonstrated a lactate-tolerant and/or a lactate-consuming phenotype while other cell lines demonstrated lactate-intolerant and/or non-lactate-consuming phenotype. My work indicates that exogenous lactate was well-tolerated at clinically relevant concentrations , especially in the presence of glucose. Evidence of glutamate metabolism from lactate indicated that exogenous lactate partially progresses through the TCA cycle, suggesting that lactate may be utilized for fuel. The cell death elicited from 5mM CHC treatment was not dependent upon presence of lactate, indicating that manipulation of lactate metabolism may not be the best option for targeting cancer metabolism. When attempting to manipulate lactate metabolism in tumors, microenvironmental factors, such as hypoxia and glucose, must be taken into account in order to ensure a predictable and favorable outcome. Together, these results illustrate the importance of characterizing tumor metabolism before therapeutic intervention.</p> / Dissertation
129

Extracellular vesicles as mediators of intercellular communication in human breast cancer progression

Menck, Kerstin 31 March 2014 (has links)
No description available.
130

CD40L Gene Therapy for Solid Tumors

Liljenfeldt, Lina January 2014 (has links)
Adenoviral CD40L gene therapy (AdCD40L) is a strong inducer of anti-tumor immune responses via its activation of dendritic cells (DCs). Activated DCs can in turn activate T cells, which are key players in an efficient anti-tumor response. This thesis includes three papers that focus on different aspects of AdCD40L gene therapy. In the first paper, the infiltration of suppressive CD11b+Gr-1+ cells in orthotopic MB49 bladder tumors was investigated and found to be significantly reduced while activated T cells were increased when the tumors had been treated with local AdCD40L gene therapy. Further, AdCD40L could tilt the cells in the tumor microenvironment in favor of an efficient anti-tumor immunity (M1 macrophages and activated T cells) instead of an immunosuppressive environment (CD11b+Gr-1int/low myeloid cells and M2 macrophages). Immunotherapy combined with chemotherapy has shown promising results, and the second paper investigates the combination of AdCD40L gene therapy together with the chemotherapeutic drug 5-Fluorouracil (5-FU). A synergistic effect of the combination treatment on orthotopic MB49 bladder tumors could be demonstrated. The combination therapy resulted in decreased tumor growth, increased survival and systemic MB49-specific immunity, whereas AdCD40L or 5-FU therapy alone had a poor effect on tumor growth. Efficient AdCD40L therapy is dependent on high transduction efficiency in both cancer cells and cells present in the tumor microenvironment. In an attempt to enhance the transduction efficiency, and thereby the therapeutic efficacy, a modified adenovirus was developed for paper three. This modified Ad5PTDf35(mCD40L) could, in comparison with the unmodified Ad5(mCD40L), demonstrate increased transduction capacity of a variety of murine cells. Further, the ability of antigen presenting cells (APCs) to present antigens to T cells was improved after transduction with Ad5PTDf35(mCD40L).

Page generated in 0.117 seconds