• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 184
  • 67
  • 58
  • 19
  • 19
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 421
  • 223
  • 172
  • 105
  • 98
  • 78
  • 72
  • 55
  • 50
  • 49
  • 45
  • 37
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Tumour-stroma Signalling in Cancer Cell Motility and Metastasis

Luga, Valbona 10 January 2014 (has links)
The tumour-associated stroma, consisting of fibroblasts, inflammatory cells, vasculature and extracellular matrix proteins, plays a critical role in tumour growth, but how it regulates cancer cell migration and metastasis is poorly understood. The Wnt-planar cell polarity (PCP) pathway regulates convergent extension movements in vertebrate development. However, it is unclear whether this pathway also functions in cancer cell migration. In addition, the factors that mobilize long-range signalling of Wnt morphogens, which are tightly associated with the plasma membrane, have yet to be completely characterized. Here, I show that fibroblasts secrete membrane microvesicles of endocytic origin, termed exosomes, which promote tumour cell protrusive activity, motility and metastasis via the exosome component Cd81. In addition, I demonstrate that fibroblast exosomes activate autocrine Wnt-PCP signalling in breast cancer cells as detected by the association of Wnt with Fzd receptors and the asymmetric distribution of Fzd-Dvl and Vangl-Pk complexes in exosome-stimulated cancer cell protrusive structures. Moreover, I show that Pk expression in breast cancer cells is essential for fibroblast-stimulated cancer cell metastasis. Lastly, I reveal that trafficking in cancer cells promotes tethering of autocrine Wnt11 to fibroblast exosomes. These studies further our understanding of the role of the tumour-associated stroma in cancer metastasis and bring us closer to a more targeted approach for the treatment of cancer spread.
232

Tumour-stroma Signalling in Cancer Cell Motility and Metastasis

Luga, Valbona 10 January 2014 (has links)
The tumour-associated stroma, consisting of fibroblasts, inflammatory cells, vasculature and extracellular matrix proteins, plays a critical role in tumour growth, but how it regulates cancer cell migration and metastasis is poorly understood. The Wnt-planar cell polarity (PCP) pathway regulates convergent extension movements in vertebrate development. However, it is unclear whether this pathway also functions in cancer cell migration. In addition, the factors that mobilize long-range signalling of Wnt morphogens, which are tightly associated with the plasma membrane, have yet to be completely characterized. Here, I show that fibroblasts secrete membrane microvesicles of endocytic origin, termed exosomes, which promote tumour cell protrusive activity, motility and metastasis via the exosome component Cd81. In addition, I demonstrate that fibroblast exosomes activate autocrine Wnt-PCP signalling in breast cancer cells as detected by the association of Wnt with Fzd receptors and the asymmetric distribution of Fzd-Dvl and Vangl-Pk complexes in exosome-stimulated cancer cell protrusive structures. Moreover, I show that Pk expression in breast cancer cells is essential for fibroblast-stimulated cancer cell metastasis. Lastly, I reveal that trafficking in cancer cells promotes tethering of autocrine Wnt11 to fibroblast exosomes. These studies further our understanding of the role of the tumour-associated stroma in cancer metastasis and bring us closer to a more targeted approach for the treatment of cancer spread.
233

Adoptive T cell therapy of breast cancer: defining and circumventing barriers to T cell infiltration in the tumour microenvironment.

Martin, Michele 03 November 2011 (has links)
In the era of personalized cancer treatment, adoptive T cell therapy (ACT) shows promise for the treatment of solid cancers. However, partial or mixed responses remain common clinical outcomes due to the heterogeneity of tumours. Indeed, in many patients it is typical to see a response to ACT in one tumour nodule, while others show little or no response. Thus, defining the tumour features that distinguish those that respond to ACT from those that do not would be a significant advance, allowing clinicians to identify patients that might benefit from this treatment approach. The first chapter of this thesis provides the necessary background to understand the principals behind and components of ACT. This chapter also offers selected historical advances contributing to the current state of the field. The second chapter introduces a novel murine model of breast cancer developed to investigate the tumour-specific mechanisms associated with immune evasion in an ACT setting. The third chapter describes the in vivo characterization of mammary tumour cell lines derived from our mouse model that reliably showed complete, partial or no response to ACT. Using these cell lines, we were able to characterize in vivo tumour-specific differences in cytotoxic T cell trafficking, infiltration, activation, and proliferation associated with response to ACT. In the fourth chapter, we used bioinformatics approaches to develop a preliminary predictive gene signature associated with response to ACT in our mammary tumour model. We used this signature to predict outcome and then test a number of murine mammary tumours in vivo, with promising results, wherein 50% of tumours responded to ACT as predicted based upon gene expression. Thus, using an innovative model for breast cancer, these results suggest that there are tumour-specific features that can be used a priori to predict how a tumour will respond to adoptive T cell therapy. Importantly, these findings might facilitate the design of immunotherapy trials for human breast cancer. / Graduate
234

Posttransplant Lymphoproliferative Disorders : Studies of Epstein-Barr Virus, Regulatory T Cells and Tumor Origin

Kinch, Amelie January 2014 (has links)
Epstein-Barr virus (EBV) infects almost all humans and establishes lifelong latency in B cells. Posttransplant lymphoproliferative disorder (PTLD) is a rare but serious complication after transplantation triggered by immunosuppression and often related to EBV infection. The aim of this thesis was to study the role of EBV in relation to clinical and histological features of PTLD, regulatory T cells (Tregs), and donor or recipient origin of PTLD. EBV surveillance after allogeneic hematopoietic stem cell transplantation (allo-HSCT) showed that EBV reactivations were common, but that symptomatic EBV disease (including PTLD) only occurred in the high-risk group (unrelated or mismatched related grafts, reduced-intensity conditioning). A threshold of 1000 copies/ml plasma distinguished EBV disease from asymptomatic reactivations. In a population-based cohort of 135 PTLDs/lymphomas after solid organ transplantation (SOT) almost half were EBV–. EBV+ PTLDs were associated with B cell phenotype, non-germinal center subtype of diffuse large B cell lymphoma (DLBCL), early-onset, graft involvement, antithymocyte globulin treatment, and younger age. EBV– PTLDs were associated with T cell phenotype, bone marrow involvement, and hepatitis C. Most PTLDs displayed few or no intratumoral Tregs with the marker FoxP3, possibly due to heavy immuno­suppres­sion. Half of both FoxP3+ and FoxP3– PTLDs were EBV+. FoxP3+ PTLDs were associated with B cell phenotype and hepatitis C. All PTLDs for which tumor origin could be determined were recipient-derived and half of them were EBV+. Eight of twelve recipient-derived graft PTLDs were disseminated outside the graft. T cell PTLD and hepatitis C were independently associated with inferior overall survival, whereas subtype of DLBCL, FoxP3-expression, and EBV-status did not influence survival. In conclusion, monitoring of EBV DNAemia in high-risk patients after allo-HSCT and pre-emptive therapy is valuable for prevention of PTLD. Use of anti­thymocyte globulin increases the risk for EBV+ PTLDs after allo-HSCT and SOT. With long follow-up time, a large proportion of PLTDs after SOT are EBV– with a different clinical presentation. Tregs are rare in PTLD and do not affect survival. The vast majority of PTLDs after SOT is of recipient origin. Graft PTLDs are more likely recipient-derived if disseminated. EBV-status is not associated with intratumoral Tregs or PTLD of recipient origin.
235

Stem κύτταρα και μικροπεριβάλλον στον καρκίνο των ωοθηκών

Βίτσας, Χαράλαμπος 29 July 2011 (has links)
Τα stem κύτταρα είναι ένας υποπληθυσμός κυττάρων με δύο κύριες ιδιότητες: αυτοανανέωση και διαφοροποίηση. Τα stem κύτταρα διαμένουν σε ένα εξειδικευμένο μικροπεριβάλλον, την φωλεά, η οποία παίζει σημαντικό ρόλο στη διατήρηση της ισορροπίας μεταξύ της αυτοανανέωσης και της διαφοροποίησης. Τελευταία δεδομένα εισηγούνται ότι ο καρκίνος αναπτύσσεται από ένα υποσύνολο κυττάρων με ιδιότητες ανάλογες αυτών των φυσιολογικών stem κυττάρων. Τα κύτταρα αυτά αποκαλούνται καρκινικά stem κύτταρα. Η θεωρία των καρκίνικών stem κυττάρων υποστηρίζει ότι τα καρκινικά stem κύτταρα εγκαινιάζουν και συντηρούν την ανάπτυξη και εξέλιξη του όγκου, ευθύνονται για την κυτταρική ετερογένεια των καρκίνικών κυττάρων του όγκου, είναι υπεύθυνα για τις μεταστάσεις και παραμένουν στους ασθενείς παρά τη χρήση των συμβατικών χημειοθεραπευτικών παραγόντων. Πρόσφατα δεδομένα πιστοποιούν την ύπαρξη καρκινικών stem κυττάρων στην ωοθήκη. / Stem cells are a subpopulation of cells with two key properties: self-renewal and differentiation. Stem cells reside in a specialized microenvironment, i.e. niche, which plays an important role in the balance between self-renewal and differentiation. Recent data suggest that cancer develops from a subset of cells with properties similar to those of normal stem cells. These cells are called cancer stem cells. Cancer stem cell hypothesis suggest that cancer stem cells initiate and preserve the growth of tumor, they are responsible for cellular heterogeneity and metastasis of tumor and they are, finally, drug-resistant.Latest data suggest the presence of cancer stem cells in the ovary.
236

Engineering PNIPAAm Biomaterial Scaffolds to Model Microenvironmental Regulation of Glioblastoma Stem-Like Cells

January 2017 (has links)
abstract: Following diagnosis of a glioblastoma (GBM) brain tumor, surgical resection, chemotherapy and radiation together yield a median patient survival of only 15 months. Importantly, standard treatments fail to address the dynamic regulation of the brain tumor microenvironment that actively supports tumor progression and treatment resistance. Moreover, specialized niches within the tumor microenvironment maintain a population of highly malignant glioblastoma stem-like cells (GSCs). GSCs are resistant to traditional chemotherapy and radiation therapy and are likely responsible for near universal rates of tumor recurrence and associated morbidity. Thus, disrupting microenvironmental support for GSCs could be critical to more effective GBM therapies. Three-dimensional (3D) culture models of the tumor microenvironment are powerful tools for identifying key biochemical and biophysical inputs that may support or inhibit malignant behaviors. Here, we developed synthetic poly(N-isopropylacrylamide-co-Jeffamine M-1000® acrylamide) or PNJ copolymers as a model 3D system for culturing GBM cell lines and low-passage patient-derived GSCs in vitro. These temperature responsive scaffolds reversibly transition from soluble to insoluble in aqueous solution by heating from room temperature to body temperature, thereby enabling easy encapsulation and release of cells in a 3D scaffold. We also designed this system with the capacity for presenting the cell-adhesion peptide sequence RGD for adherent culture conditions. Using this system, we identified conditions that promoted GBM proliferation, invasion, GSC phenotypes, and radiation resistance. In particular, using two separate patient-derived GSC models, we observed that PNJ scaffolds regulated self-renewal, provided protection from radiation induced cell death, and may promote stem cell plasticity in response to radiation. Furthermore, PNJ scaffolds produced de novo activation of the transcription factor HIF2α, which is critical to GSC tumorigenicity and stem plasticity. All together, these studies establish the robust utility of PNJ biomaterials as in vitro models for studying microenvironmental regulation of GSC behaviors and treatment resistance. / Dissertation/Thesis / Doctoral Dissertation Biomedical Engineering 2017
237

An Interleukin-12-Expressing Oncolytic-Virus Infected Autologous Tumor Cell Vaccine Generates Potent Anti-Tumor Immune Responses

Khan, Sarwat Tahsin 30 July 2018 (has links)
No description available.
238

Microenvironnement médullaire et résistance des LAM FLT3-ITD aux inhibiteurs de tyrosine kinase : Rôle pivot du récepteur TAM AXL / Microenvironment favors FLT3-ITD AML resistance to FLT3-TKI through hypoxia- and STAT5- dependent upregulation of AXL

Dumas, Pierre-Yves 10 October 2017 (has links)
La duplication interne en tandem au sein du gène du Fms-like tyrosine kinase 3 (FLT3) est l’une des mutations les plus fréquemment observées dans les leucémies aiguës myéloblastiques (LAM). Elle est corrélée à un mauvais pronostic. Des inhibiteurs de tyrosine kinase anti-FLT3 (FLT3-ITK) sont en cours de développement mais les premiers essais cliniques ont été décevants. Les rémissions sont de courte durée, et si une clairance leucémique sanguine est observée, la LAM persiste au sein de la moelle osseuse. Dans ce travail, nous avons démontré que les cytokines activatrices de STAT5, telles que l’interleukine-3 et la thrombopoïétine, et les basses pressions en oxygène, telles que celles observées au sein de la niche hématopoïétique augmentent l’expression et l’activité du récepteur tyrosine kinase AXL qui protège les cellules de LAM FLT3-ITD de l’apoptose induite par le FLT3-ITK quizartinib (AC220). Nous avons démontré dans un modèle murin que les cellules de LAM FLT3-ITD « knock-down » pour AXL sont plus sensibles au quizartinib, et que cette différence se révèle spécifiquement dans un modèle de prise de greffe hématopoïétique. La combinaison de stratégies inhibitrices du FLT3-ITD et d’AXL permettra d’améliorer l’efficacité des FLT3-ITK en atteignant la fraction de cellules responsable des rechutes, nichée dans son microenvironnement. A l’issue, nous avons démontré que le gilteritinib (ASP2215), double FLT3/AXL-ITK est plus efficace que le quizartinib pour atteindre ces cellules leucémiques médullaires. Enfin, nous avons démontré que la combinaison d’un anticorps monoclonal anti-AXL avec un FLT3-ITK ou de la cytarabine était une stratégie thérapeutique prometteuse dans les LAM FLT3-ITD ou sauvage. / Internal tandem duplication in Fms-like tyrosine kinase 3 gene (FLT3-ITD) is the most frequent mutation observed in acute myeloid leukemia (AML), and correlates with poor prognosis. FLT3 tyrosine kinase inhibitors (FLT3-TKI) have been promising for therapeutic strategies but clinical trials have revealed rarely long-lasting remission with persistent leukemic cells present in the bone marrow. In this work, we show that the hematopoietic niche microenvironment protects FLT3-ITD AML cells from FLT3-TKI quizartinib (AC220) through convergent up-regulation of AXL expression and activity. Cytokine-dependent activation of STAT5 enhances AXL gene transcription and expression, while low O2 concentration up-regulates AXL protein levels. Moreover, cytokines such as thrombopoietin or interleukin-3 directly activate AXL. RNA interference-based inhibition of AXL expression in FLT3-ITD AML cells allowed a selective purge of leukemic cells within their microenvironment when combined with FLT3-TKI in immuno-compromised mice. Altogether, our data support a strategy combining FLT3-TKI and anti-AXL therapy to eradicate FLT3-ITD AML cells, including those protected by the hematopoietic niche. In such a setting, we performed a study to test the efficacy of gilteritinib (ASP2215) and we showed in vitro and in vivo that this dual FLT3/AXL-TKI is more efficient to eradicate leukemic cells in their microenvironment than quizartinib which is a more specific FLT3-TKI. Finally, we also studied an anti-AXL monoclonal antibody on primary AML cells and showed that its efficacy could be interesting with FLT3-TKI and cytarabine in both FLT3-wild type and FLT3-ITD AML.
239

Progressão tumoral de melanoma B16 em camundongos sobreviventes à sepse. Possível papel de macrófagos associados ao tumor através da via CXCR4/CXCL12 / Tumor progression of melanoma B16 in mice survivors to sepsis. Possible role of macrophages associated with tumor through CXCR4/CXCL12

José Mauricio Segundo Correia Mota 30 November 2015 (has links)
Introdução: Indivíduos sobreviventes à sepse apresentam maior mortalidade à longo prazo e maior risco de apresentar infecções oportunistas. Existem evidências clínicas e experimentais de desregulação imune no estado pós-sepse. Essas alterações apresentam semelhança com aquelas encontradas no microambiente tumoral, estando relacionadas à imunossupressão. O presente trabalho avaliou o papel de macrófagos associados ao tumor (TAM) em modelo de progressão tumoral em camundongos sobreviventes à sepse. Materiais e Métodos: Camundongos C57/BL6 foram submetidos a ligadura e punção cecal (CLP) e tratados com ertapenem (20 mg/kg, i.p., 6 horas após CLP e 12/12 h por 3 dias). Os animais sobreviventes de sepse eram inoculados com células de melanoma B16-F10 (30 mil, s.c., 15 dias após a CLP). Animais naïve foram usados como controle. Foram avaliadas a progressão tumoral, sobrevida e formação de metástases espontâneas à distância. No D+14, animais foram sacrificados para mensuração do acúmulo de TAM por citometria de fluxo (CD45+F4/80+CD206+) e de citocinas no soro e no tumor por ELISA (IFN-?, IL-10, TNF-?, TGF-?, CCL2, CXCL12). Macrófagos derivados de medula óssea de animais pós-CLP ou naïve foram coinoculados com células B16 para avaliação de progressão tumoral e sobrevida. TAM de animais naïve ou pós-CLP foram isolados através de gradiente de Percoll seguido de adesão seletiva e o RNA foi isolado para análise diferencial de expressão gênica por microarray. Para avaliação da participação da via CXCL12/CXCR4 foi realizada sua inibição com o AMD3100, antagonista de CXCR4 (5 mg/kg, i.p., D+10 e D+14). Foi avaliada a progressão tumoral, sobrevida, acúmulo de TAM e proliferação extramedular de TAM no D+14. Resultados: Animais sobreviventes de sepse apresentaram aumento de progressão tumoral (após 15, 30 e 60 dias da CLP), aumento da carga de metástases (após 15 dias da CLP) e redução de sobrevida. Foi detectado o aumento de TAM nos animais pós-CLP, associado a maior marcação de Ki67, em comparação com animais naïve no D+14. Verificamos aumento das concentrações séricas de TGF-?, CXCL12, CCL2 e TNF-?. Camundongos naïve que coinoculados com macrófagos derivados de medula óssea de animais pós-CLP apresentaram aumento de progressão tumoral e redução de sobrevida em comparação com o grupo controle. TAM de animais pós-CLP apresentaram menor expressão de genes relacionados ao MHC-II e genes relacionados à ativação leucocitária. A inibição de CXCL12/CXCR4 preveniu a progressão tumoral induzida por sepse, com menor acúmulo de TAM e menor presença de TAM Ki67+. Conclusões: O estado pós-sepse promove a progressão tumoral de melanoma B16 em camundongos, o qual foi associado a aumento de 12 TAM. A via CXCL12/CXCR4 participa do processo de acúmulo de TAM nesse modelo experimental. / Background: Survivors from sepsis present higher long-term mortality and increased risk of opportunistic infections. There is clinical and experimental evidence for an immunosuppressive immune dysregulation in post-sepsis. These alterations are similar to those found in tumor microenvironment. The present work assessed the role of tumorassociated macrophage (TAM) in a model of tumor progression in sepsis-surviving mice. Materials and Methods: C57/BL6 mice were submitted to cecal ligation and puncture (CLP) and treated with ertapenem (20 mg/kg, ip. - 6 h after CLP and then each 12 h for 3 days). Sepsis surviving mice were inoculated with B16-F10 melanoma cells (30,000, sc., 15 days after CLP). Naïve mice were used as controls. Tumor progression, survival and distant spontaneous metastasis were evaluated. Mice were killed at D+14 for TAM measurement through flow cytometry (CD45+F4/80+CD206+) and for cytokines (IFN-?, IL-10, TNF-?, TGF-?, CCL2, CXCL12) quantification by ELISA. Bone marrow-derived macrophage (BMDM) were isolated and co-inoculated together with B16 melanoma cells for tumor progression and survival evaluation. TAM from naïve or post-sepsis mice were isolated through Percoll gradient (70/30) followed by selective adhesion. The RNA was isolated for gene expression analysis using microarray assay. To evaluate the role of CXCL12/CXCR4, we used the specific antagonist AMD3100 (5 mg/kg, ip., at D+10 and D+14) and assessed tumor progression, survival and TAM accumulation at D+14. Results: Sepsis-surviving mice showed increased tumor progression (15, 30 or 60 days after CLP), higher metastatic burden (15 days after CLP), and less overall survival. TAM were increased in post-sepsis mice at D+14. We found increased serum levels of TGF-?, CXCL12, CCL2 e TNF-?. Naïve mice inoculated with BMDM from post-sepsis and B16 cells showed higher tumoral progression and less survival, when compared to the control group. TAM from post-sepsis showed decreased expression of MHC-II related genes and genes related to leukocyte activation. The inhibition of CXCL12/CXCR4 prevented the post-sepsis-induced tumor progression, with less TAM accumulation and reduced expression of Ki67 in TAM. Conclusions: The post-sepsis state promotes the progression of B16 melanoma in mice, which was associated with an increase in TAM accumulation. CXCL12/CXCR4 mediates TAM accumulation in this experimental model.
240

Envolvimento das galectinas na angiogênese tumoral em modelo de melanoma murino e associação com o microambiente tumoral via receptores toll-like / Involvement of galectins in tumor angiogenesis in a murine melanoma model and association with tumor microenvironment through toll-like receptors

Camila Morais Melo 09 October 2015 (has links)
O melanoma é a forma mais letal entre os cânceres de pele. Essa neoplasia freqüentemente apresenta-se resistente a abordagens terapêuticas. A angiogênese associada ao tumor representa um crítico passo da tumorigênese, resultado da ação de diferentes citocinas e fatores de crescimento como VEGF produzidos no microambiente tumoral. As galectinas extracelulares participam de múltiplos processos biológicos incluindo angiogênese tumoral e metástases, sua interação com as células presentes no microambiente tumoral pode ocorrer via receptores toll-like sugerindo seu envolvimento nos processos pro-inflamatórios e na secreção de citocinas. Recentemente mostramos que a ausência de gal-3 no estroma e parênquima tumoral diminui a angiogênese por interferir na resposta de macrófagos via VEGF e/ou TGFbeta1. Entretanto, o envolvimento de galectinas extracelulares na angiogênese e na modulação do sistema imune no microambiente tumoral ainda não está esclarecido. Assim, este estudo visa buscar respostas ao envolvimento das galectinas no crescimento tumoral e angiogênese contribuindo ao combate do melanoma maligno. Nossos resultados mostram a participação das galectinas 1 e 3 no crescimento tumoral e seu envolvimento com macrófagos via receptores toll-like, além de coordenarem a modulação do perfil de polarização de macrófagos derivados da medula óssea de camundongos wild-type. Dessa forma, podemos inferir que essas galectinas agem como coordenadoras de mudança de perfil dos macrófagos, uma vez que inibidas extracelularmente promovem uma diminuição do crescimento tumoral em camundongos wild-type, inoculados com células de melanoma murino e uma manutenção do perfil de macrófagos M1 in vitro. Assim, concluimos que as galectinas 1 e 3 extracelulares são importantes para o crescimento tumoral de melanomas murinos pois promovem o crescimento tumoral e são coordenadoras da mudança do perfil de macrófagos / Melanoma is the most aggressive form of skin cancer. This tumor often presents itself resistant to therapeutic approaches. The tumor-associated angiogenesis is a critical step in tumorigenesis and the result of the action of several cytokines and growth factors such as VEGF produced in the tumor microenvironment. The extracellular galectins participate in multiple biological processes including tumor angiogenesis and metastasis, their interaction with cells present in the tumor microenvironment may occur via toll-like receptors suggesting their involvement in pro-inflammatory processes and the secretion of cytokines. We have recently shown that the absence of Gal-3 the stroma and tumor parenchyma decreases angiogenesis by interfering with the macrophage response by VEGF and / or TGFbeta1. However, the involvement of extracellular galectins on angiogenesis modulation of the immune system in the tumor microenvironment is not yet clear. This study aims is to find answers to the involvement of galectins on tumor growth and angiogenesis contributing to the study of the malignant melanoma. Our results demonstrate the involvement of galectin 1 and 3 on tumor growth and its involvement in macrophage by toll-like receptors pathway, and coordinating the modulation of the polarization profile in wild-type mice bone marrow derived macrophages. Therefore, we show these galectins act as coordinators of macrophages profile change, since inhibited extracellularly promote a reduction in tumor growth in wild-type mice inoculated with murine melanoma cells and macrophages M1 maintenance of profile in vitro. Thus, we conclude that galectins 1 and 3 extracellular are important for tumor growth of murine melanomas because they promote tumor growth and are coordinators of change macrophages profile

Page generated in 0.0501 seconds