• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 9
  • Tagged with
  • 45
  • 38
  • 32
  • 22
  • 19
  • 19
  • 19
  • 11
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

How Kinesin-1 Deals With Roadblocks: Biophysical Description and Nanotechnological Application

Korten, Till 28 January 2010 (has links) (PDF)
Proteins have been optimized by evolution for billions of years to work on a nanometer scale. Therefore, they are extremely promising for nanotechnological applications. Cytoskeletal filaments propelled by surface-attached motor proteins have been recently established as versatile transport platforms for nano-sized cargo in molecular sorting and nano-assembly devices. However, in this gliding motility setup, cargo and motors share the filament lattice as a common substrate for their activity. Therefore, it is important to understand the influence of cargo-loading on transport properties. By performing single molecule stepping assays on biotinylated microtubules, it was shown that kinesin-1 motors first stop and then detach when they encounter a streptavidin obstacle on their path along the microtubule. Consequently, the deceleration of streptavidin coated microtubules in gliding assays could be attributed to an obstruction of kinesin-1's path on the microtubule rather than to "frictional" streptavidin-surface interactions. The insights gained by studying kinesin-1's behavior at obstacles were then used to demonstrate a novel sensing application: Using a mixture of two distinct microtubule populations that each bind a different kind of protein, the presence of these proteins was detected via speed changes in the respective microtubule populations. In future applications, this detection scheme could be combined with other recent advancements in the field, creating highly integrated lab-on-a-chip devices that use microtubule based transport to detect, sort and concentrate analytes. It has been envisioned that the kinesin-1-microtubule system could be used for even more complex appliances like nano-assembly lines. However, currently available control mechanisms for kinesin-1 based transport are not precise enough. Therefore, improved temporal control mechanisms for kinesin-1 were investigated: Using a polymer that changes its size in solution with temperature, starting and stopping of gliding microtubules was demonstrated. In combination with local heating by light, this effect could be used to control the gliding of single microtubules. Finally, a strategy to create photo-switchable kinesin-1 was developed and tested for feasibility using molecular modeling.
12

High performance photonic probes and applications of optical tweezers to molecular motors

Jannasch, Anita 23 November 2017 (has links) (PDF)
Optical tweezers are a sensitive position and force transducer widely employed in physics and biology. In a focussed laser, forces due to radiation pressure enable to trap and manipulate small dielectric particles used as probes for various experiments. For sensitive biophysical measurements, microspheres are often used as a handle for the molecule of interest. The force range of optical traps well covers the piconewton forces generated by individual biomolecules such as kinesin molecular motors. However, cellular processes are often driven by ensembles of molecular machines generating forces exceeding a nanonewton and thus the capabilities of optical tweezers. In this thesis I focused, fifirst, on extending the force range of optical tweezers by improving the trapping e fficiency of the probes and, second, on applying the optical tweezers technology to understand the mechanics of molecular motors. I designed and fabricated photonically-structured probes: Anti-reflection-coated, high-refractive-index, core-shell particles composed of titania. With these probes, I significantly increased the maximum optical force beyond a nanonewton. These particles open up new research possibilities in both biology and physics, for example, to measure hydrodynamic resonances associated with the colored nature of the noise of Brownian motion. With respect to biophysical applications, I used the optical tweezers to study the mechanics of single kinesin-8. Kinesin-8 has been shown to be a very processive, plus-end directed microtubule depolymerase. The underlying mechanism for the high processivity and how stepping is affected by force is unclear. Therefore, I tracked the motion of yeast (Kip3) and human (Kif18A) kinesin-8s with high precision under varying loads. We found that kinesin-8 is a low-force motor protein, which stalled at loads of only 1 pN. In addition, we discovered a force-induced stick-slip motion, which may be an adaptation for the high processivity. Further improvement in optical tweezers probes and the instrument will broaden the scope of feasible optical trapping experiments in the future.
13

Tubulin biochemistry confers intrinsic differences in microtubule dynamics and drug sensitivity between species

Hirst, William Graham 17 June 2021 (has links)
Mikrotubuli sind filamentöse intrazelluläre Polymere, die als grundlegende Bestandteile subzellulärer Strukturen in Eukaryoten dienen. Diese Studie verwendet einen vergleichenden Ansatz, um zu untersuchen, wie sich die intrinsischen dynamischen und biochemischen Eigenschaften von Tubulin zwischen verschiedenen Spezies unterscheiden, und zeigt ihre Konsequenzen in zwei verschiedenen physiologischen Kontexten: 1) Bestimmung der Spindelgröße bei Fröschen der Gattung Xenopus und 2) Spezifität von Mikrotubuli-Inhibitoren für Plasmodium falciparum-Mikrotubuli über denen ihres menschlichen Wirts. In den Eiern der Froschgattung Xenopus wird die Länge der meiotischen Spindel biochemisch festgelegt und erreicht unabhängig von räumlichen Einschränkungen eine Obergrenze. Messungen der Dynamik von Xenopus-Mikrotubuli zeigen, dass X. laevis-Mikrotubuli sowohl schneller wachsen als auch länger leben als die von X. tropicalis. Darüber hinaus spielt die Quantifizierung der Länge und Massenverteilung der Xenopus-Mikrotubuli zusammen mit den Reaktionen der Eiextrakt-Spindelanordnung eine Rolle für die intrinsische Dynamik der Mikrotubuli bei der Modulation der Spindellänge. Mikrotubuli sind auch Wirkstofftargets bei Pilz- und parasitären Helmintheninfektionen und haben in den letzten Jahrzehnten die Aufmerksamkeit als potenzielles Wirkstoffziel beim Malariaparasiten Plasmodium falciparum auf sich gezogen. Um die Dynamik und Medikamentspezifität von Mikrotubuli von P. falciparum zu charakterisieren, haben wir Tubulin direkt von den Parasiten gereinigt. Zum ersten Mal wurden hier dynamische P. falciparum-Mikrotubuli in vitro rekonstituiert und eine parasitenspezifische Unterdrückung der Dynamik von Mikrotubuli durch Oryzalin und Amiprofos-Methyl direkt nachgewiesen. Diese Studie legt einen experimentellen Rahmen fest, um direkt auf parasitenspezifische Hemmung von Mikrotubuli zu testen, die bisher unter Verwendung bestehender in-vitro-Ansätze nicht beobachtet wurden. / Microtubules are filamentous intracellular polymers that are fundamental components of subcellular structures including the spindle, the cytoskeleton, and flagella in eukaryotes. This study uses a comparative approach to investigate how the intrinsic dynamic and biochemical characteristics of tubulin vary between species and demonstrates their consequences in two different physiological contexts: 1) Spindle size control in Xenopus frogs, and 2) The specificity of microtubule inhibitors for Plasmodium falciparum microtubules over those of their human host. In Xenopus frog eggs, the length of the spindle is biochemically controlled and reaches an upper limit independent of spatial constraints. In this study, in vitro measurements of Xenopus microtubule dynamics show that X. laevis microtubules are both faster-growing and longer-lived X. tropicalis, independent of the influence of microtubule-associated proteins. Furthermore, quantification of Xenopus microtubule length and mass distributions, combined with egg extract spindle assembly reactions, establishes a role for intrinsic microtubule dynamics in modulating spindle length. Microtubules are also established drug targets in fungal and parasitic helminth infections and have in the past decades drawn attention as a potential drug target in the malaria parasite Plasmodium falciparum. In order to characterize P. falciparum microtubule dynamics, structure, and drug specificity, we have used an affinity chromatography-based approach to purify tubulin directly from blood-stage parasites. For the first time, dynamic P. falciparum microtubules have been reconstituted in vitro and parasite-specific suppression of microtubule dynamics by oryzalin and amiprofos methyl has been directly demonstrated. This study establishes an experimental framework to directly test for parasite-specific microtubule inhibition, microtubule structure, and interactions with MAPs that previously have not observed using existing in vitro approaches.
14

Leveraging the motor protein Kinesin to manipulate DNA molecules in synthetic environment

Dinu, Cerasela Zoica 24 May 2006 (has links)
Die vorliegende Doktorarbeit stammt aus (ist in) dem Bereich der NanoBioTechnologie. Ihr Ziel ist es, das Motorprotein Kinesin und Mikrotubuli einzusetzen, um DNS-Moleküle in einem synthetischen Umgebung zu manipulieren. Diese Doktorarbeit setzt sich aus fünf Kapiteln zusammen. In der Einführung wird die makromolekulare Struktur der Zelle beschrieben, z.B. das Zytoskelett und Kinesin, eins der Motorproteine, die auf Mikrotubuli entlang laufen können. Der Schwerpunkt dieses Kapitels liegt auf der Nützlichkeit biologischer Motoren für den Aufbau und die Organisation von Strukturen im technischen Umfeld. Das zweite Kapitel zeigt, wie Kinesin und Mikrotubulis in einem synthetischen Umfeld für den Transport verschiedener Frachten, z.B. Streptavidin, Quantum dots oder DNS-Molekülen, genutzt werden können. Hier liegt der Schwerpunkt auf der Manipulation der DNS-Moleküle durch motor-gesteuerte Mikrotubulis und wie dieser Fracht-Transport-Mechanismus prinzipiell als Basis für die Entwicklung neuer Konzepte im Bereich des Bioingenieurwesens dienen kann. Ein Beispiel für ein solches Konzept ist die auf DNS basierende Molekularelektronik, bei der die Bindung und Streckung von DNS-Molekülen zwischen leitfähigen Oberflächen notwendig ist. Das dritte Kapitel beschreibt den Einfluß der Oberflächeneigenschaften auf die DNS-Anbindung. Es bietet Antworten darauf, wie diese Eigenschaften erforscht, spezifisch gestaltet und vorbereitet werden können, so daß sie der wissenschaftlichen Zielsetzung angemessen sind. Auf die Betrachtung von komplexen Musteranordnungen, wie sie in der Nanoelektronik genutzt werden können, wird im vierten Kapitel eingegangen. Hier wird auf praktische Art und Weise deutlich gemacht, wie DNS-Moleküle an leitfähige Oberflächen gebunden und dort durch Motorproteine und Mikrotubulis manipuliert werden können. Die Vorteile der motor-basierten Manipulation gegenüber den konventionellen Methoden wie AFM oder der optischen Pinzette werden diskutiert. Das fünfte und letzte Kapitel zeigt, wie man das Kinesin-Mikrotubuli-System nutzen kann, um daraus Informationen über DNS-Moleküle abzuleiten. Dafür wurde das Verhalten der Mikrotubulis in Beziehung auf die von gebundenen DNS-Molekülen ausgeübten Kräfte untersucht. Zusammenfassend habe ich experimentelle Untersuchungen und Färbeprotokolle entwickelt, um den gesamten Manipulationsprozeß zu detektieren, visualisieren und kontrollieren. Weiterhin untersuchte ich seine Implikationen auf theoretische Analysen, sowie auf praktische Anwendungen im Nano-Ingenieurwesen. Meine Daten demonstrieren, das DNS-Moleküle im synthetischen Umfeld so manipuliert werden können, daß kontrollierte DNS-Bioschnittstellen entstehen; Schnittstellen, die sowohl für weitere nanoelektronische Anwendungen als auch für topologische DNS-Studien genutzt werden können. Es wird weiterhin erwartet, daß das Kinesin-Mikrotubuli-System für die 3D-Anordnung auf biomolekularer Ebene im technischen Umfeld eine ebenso wichtige Rolle spielen wird. Die Fähigkeit, Vorlagen von Biomolekülen und/oder Anordungen mit definierten Eigenschaften zu schaffen und gleichzeitig ihre biologische Aktivität zu erhalten, kann als Beweis dienen, daß biologische Motoren für die molekulare Fertigung genutzt werden können. - (Die Druckexemplare enthalten jeweils eine CD-ROM als Anlagenteil: QuickTimeMovies (ca. 86 MB)- Übersicht über Inhalte siehe Dissertation S. IX - XIII) / The work described in this thesis is in the field of NanoBioTechnology. Its goal is to leverage the motor protein kinesin and its microtubule track to manipulate DNA molecules in synthetic environment. This thesis contains five chapters. The first chapter describes macromolecular structures of the cell: i. e. the cytoskeleton and one of the motor proteins that move along it, kinesin. Emphasized is how biological motors might prove useful for organizing structures in engineered environments. The second chapter demonstrates how kinesin and microtubules can be used in synthetic environments to transport different cargos: i.e. streptavidin, quantum dots and DNA molecules. Special emphasis is placed on the manipulation of DNA molecules by the motor-driven microtubules. This cargo transport mechanism serves as a proof-of-principle for new bioengineering concepts such as DNA-based molecular electronics. The third chapter describes the influences of the surface properties on the DNA attachment and offers answers as how surface characteristics can be investigated, specifically designed and prepared so that they can serve the desired scientific purpose. The fourth chapter describes the manner in which DNA molecules can be attached to conductive surfaces and manipulated with motor proteins and microtubules. The complex DNA pattern formation that can be used for nanoelectronics is demonstrated. The advantages of motor-based manipulation over the conventional "one-by-one" methods (AFM, optical tweezers etc.) are discussed. The fifth and last chapter shows how one can use the kinesin-microtubule system to derive information about DNA molecules. For this, the response of the microtubules to forces exerted by attached DNA molecules has been studied. In summary, I have generated experimental assays and staining procedures to detect, visualize and control the entire manipulation process and to investigate its implications for theoretical analysis as well as for practical nano-engineered applications. My data demonstrated that DNA molecules can be manipulated in synthetic environment by kinesin and microtubules in such a way that controlled DNA biointerfaces can be generated. These biointerfaces can then be used for nanoelectronical application as well as for DNA topological studies. The kinesin-microtubule system is also expected to be equally important for 3D biomolecular assembly in engineered environments. The ability to generate templates of biomolecules and/or bioassemblies with well-defined features while maintaining their bioactivity, serves as proof-of-principle that biological motors can be used for molecular manufacturing. - (The pressure copies contain in each case a CD-ROM as component: QuickTimeMovies (ca. 86 MB)- To overview of contents see thesis P. IX - XIII)
15

Patterning planar surfaces with motor proteins: Towards spatial control over motile microtubules: Patterning planar surfaces with motor proteins: Towards spatial control over motile microtubules

Reuther, Cordula 11 June 2009 (has links)
A major challenge in nanotechnology is the spatially controlled transport of cargo on the nanometer scale. The use of a nanoscale transport system based on molecular motors and filaments of the cytoskeleton proved as a promising approach to this problem. Therefore, the objective of this work was to pattern planar surfaces with motor proteins in a way that allows controlled and guided movement of microtubule-shuttles. The first part of the work was in particular focused on generating nanometer–sized tracks of motor proteins on unstructured surfaces. Specifically, microtubules themselves were used as biological templates for the stamping and alignment of motor proteins. Compared to other soft lithography techniques like microcontact printing this approach circumvented protein denaturation due to drying and conformational changes caused by mechanical stress. Given the large persistence length of microtubules their encounters with the boundaries of the nanotracks are limited to shallow approach angles. This way, the generated structures proved very efficient for the guiding of microtubules without topographical barriers. Topography-free guiding, as demonstrated in this work, is expected to significantly ease the design and fabrication of microtubule-transport systems and opens up the possibility to transport cargo of unlimited size, i.e. without any constraints by the dimensions of topographic guiding channels. Moreover, the biotemplated patterning is a promising tool for in vitro studies on the individual and cooperative action of motor proteins. In particular it might be helpful for the reconstitution of complex subcellular machineries in synthetic environments. As an example, microtubule-microtubule sliding by the biomolecular motor ncd has been shown to induce directional sliding between antiparallel microtubules and static cross-linking between parallel ones. The second part of the work explored an in-situ patterning technique for motor proteins to enable user-defined pattern designs, and investigated the achievable resolution. Photothermal patterning, based on localized light-to-heat conversion combined with a thermoresponsive polymer layer, was presented as a novel method. Specifically, the conformation of poly(N-isopropylacrylamide) (PNIPAM) molecules in aqueous solution was switched between the swollen state at T < 30°C (protein-repelling conformation) to the collapsed state at T > 33°C (protein-binding conformation) by optical signals of visible light to generate heat in a highly-localized manner. Upon heating of a light-absorbing layer on the substrate, the surface-grafted PNIPAM molecules collapsed locally and allowed motor proteins in solution to bind in the illuminated areas. To confirm the successful patterning of kinesin-1 molecules and their functionality microtubule-based gliding motility assays were performed. It was shown that the microtubules bind to the patterned kinesin-1 molecules and are transported exclusively in the patterned areas. While the achieved pattern sizes were currently in the range of ten micrometers, finite element modeling (implemented in COMSOL) showed that increased optical intensities possibly combined with cooling of the sample allow to significantly scale down the pattern dimensions. The produced patterns can be reversibly activated and deactivated at high and low temperature, respectively. Moreover, sequential patterning of multiple kinds of proteins on the same surface will be possible in a similar way without the need for specific linker molecules or elaborate surface preparation. Another advantage of the method is the use of visible light, which is versatile as any wavelength can be applied. In addition visible light is in comparison to other UV-based photopatterning techniques non-damaging to proteins. / Der räumlich kontrollierte Transport von nanoskaligen Objekten ist eine große Herausforderung auf dem Gebiet der Nanotechnologie. Ein auf molekularen Motoren und Filamenten des Zellskeletts basierendes Nanotransportsystem hat sich dabei als ein viel versprechender Ansatz erwiesen. Das Ziel der vorgelegten Arbeit war es daher, ebene Oberflächen so mit Motorproteinen zu strukturieren, dass eine kontrollierte und geführte Bewegung von Mikrotubuli-Transportern ermöglicht wird. Der erste Teil der Arbeit war insbesondere darauf fokussiert, Motorprotein-Spuren im Nanometerbereich zu erzeugen. Im zweiten Teil der Arbeit wurde eine Strukturierungsmethode zur Realisierung von benutzerdefinierten Musterdesigns untersucht und die erreichbare Auflösung bestimmt. Für die Nanometerstrukturierung von Oberflächen mit funktionalen Motorproteinen wurde ein neuer Ansatz demonstriert. Mit der Anwendung von Biotemplaten, wie hier der Mikrotubuli, konnte ein hoch-lokalisiertes und orientiertes Anbinden von Proteinen an Oberflächen sowie gleichzeitig geringer Proteindenaturierung erreicht werden. Durch spezifisches Stempeln beziehungsweise Binden von Motoren wurden Muster aus funktionellen Proteinen mit hoher Oberflächendichte hergestellt. Die erzeugten Motor-Spuren haben gezeigt, dass Nanometerstrukturierungen möglich sind und ohne topographische Barrieren zu zuverlässiger Führung von Mikrotubuli führen können. Bisher konnte die nicht-topographische Strukturierung von Oberflächen mit Kinesin-1-Motoren nur im Mikrometerbereich demonstriert werden. Wegen der hohen Steifigkeit der Mikrotubuli war die thermische Energie des Systems in diesen Fällen nicht ausreichend, um die führende Spitze der Mikrotubuli zurück auf das Gebiet mit den strukturierten Motoren zu biegen. Dieses Problem wird durch die kleine Breite der hier demonstrierten Motor-Nanospuren verhindert, da das Auftreffen der Mikrotubuli mit den Grenzlinien auf extrem flache Winkel begrenzt ist. Interessanterweise haben sich Spuren des nicht-prozessiven Motors Kinesin-14 für das Führen und den Transport im Nanometerbereich als noch zuverlässiger herausgestellt als Kinesin-1-Spuren. Es ist zu erwarten, dass nicht-topographisches Führen, wie es in dieser Arbeit gezeigt wurde, das Design und die Herstellung von Mikrotubuli-Transportsystemen deutlich vereinfacht und die Möglichkeit eröffnet, Cargo mit unlimitierter Größe, d.h. ohne Einschränkungen durch die Abmessungen der topographischen Führungskanäle, zu transportieren. Zusätzlich ist die biotemplierte Strukturierung ein viel versprechendes Werkzeug um das individuelle und das kooperative Arbeiten von Motorproteinen in vitro untersuchen und komplexe subzelluläre Maschinerien in synthetischer Umgebung rekonstituieren zu können. Dies wurde am Beispiel des gerichteten Gleitens des biomolekularen Motors Kinesin-14 gezeigt, der ein gerichtetes Gleiten zwischen antiparallelen Mikrotubuli und statisches Vernetzen zwischen parallelen Mikrotubuli hervorruft. Mit dem Ansatz des biotemplierten Strukturierens ist es jedoch nicht einfach möglich, benutzerdefinierte Spuren zu erzeugen. Daher wurde die photothermische Proteinstrukturierung als eine neue Methode für die frei programmierbare, hochauflösende und schnelle Herstellung von strukturierten Proteinoberflächen eingeführt. Auf diese Weise wurden Kinesin-1-Muster durch licht-induziertes Heizen einer licht-absorbierenden Substratschicht erzeugt. Die thermisch schaltbaren poly(N-isopropylacrylamid) (PNIPAM) Moleküle auf der Oberfläche kollabierten lokal und erlaubten es den Motorproteinen, in den beleuchteten Gebieten aus der Lösung an die Oberfläche zu binden. Die Bewegung gleitender Mikrotubuli bestätigte anschließend die erfolgreiche Strukturierung der Kinesin-1-Motoren und deren Funktionalität, da die Mikrotubuli an die strukturierten Motoren banden und ausschließlich in den strukturierten Gebieten transportiert wurden. Neben der Proteinstrukturierung wurde die lokalisierte Licht-zu-Wärme-Umwandlung kombiniert mit einer thermisch schaltbaren Polymerschicht auch für die lokale Aktivierung von Kinesin-1-Motoren auf der Oberfläche genutzt. Ein Vorteil der photothermischen Proteinstrukturierung ist die Möglichkeit, sichtbares Licht zu verwenden, da jede beliebige Wellenlänge angewendet werden kann und sichtbares Licht, im Vergleich zu anderen UV-basierten Photostrukturierungsmethoden, Proteine nicht schädigt. Modellierungen mit Hilfe der Finite-Elemente-Methode (implementiert in der Software COMSOL) haben gezeigt, dass die Lichtintensität und die Oberflächentemperatur speziell eingestellt werden müssen, um definierte Strukturgrößen zu erzielen. Während die derzeitig erzeugten Muster Größen im Bereich von zehn Mikrometern hatten, könnten durch höhere optische Intensitäten kombiniert mit Kühlung der Probe die Größenordnungen signifikant reduziert werden. Die reale experimentelle Auflösung wird jedoch auch von der Schaltcharakteristik des Polymers und der Proteinbindungsdynamik abhängen. Die hergestellten Muster können reversibel bei hohen beziehungsweise niedrigen Temperaturen aktiviert und deaktiviert werden. Zusätzlich können auf die gleiche Weise verschiedene Proteinsorten sequentiell auf einer Oberfläche strukturiert werden, ohne dass spezifische Bindungsmoleküle oder aufwändige Oberflächenpräparationen notwendig wären. Die Möglichkeit, Proteine reversibel an die Oberfläche zu binden, um geschriebene Muster wieder löschen zu können, wäre eine Weiterentwicklung und würde die Anwendungsmöglichkeiten der photothermischen Strukturierungsmethode erweitern. Außerdem würden optisch schaltbare Polymere das direkte Strukturieren von Motoren mit Licht ermöglichen und daher die Methode vereinfachen.
16

Microtubule dynamics modulate sprouting angiogenesis in vivo

Bastos de Oliveira, Marta 29 October 2021 (has links)
Die innerste Schicht von Blutgefäßen wird durch Endothelzellen geformt. Dort haben sie das Potential neue Blutgefäße durch einen Prozess Namens Angiogenese zu bilden. In Krebspatienten wurde gezeigt, dass Medikamente, die auf Mikrotubuli zielen, die tumorassoziierte Angiogen ese hemmen. Diese Erkenntnis lässt auf eine Rolle der Mikrotubuli-Dynamik im Prozess der Angiogenese schließen. Die fein abgestimmte Mikrotubulus-Dynamik wird durch posttranslationale Tubulinmodifikationen, wie die durch die Vasohibin-1 katalysierte Mikrotubuli-Detyrosinierung, moduliert. Dennoch sind die Rollen der Mikrotubuli-Dynamik und -Detyrosinierung während der Angiogenese noch nicht verstanden. Ich konnte zeigen, dass Mikrotubuli in aussprossenden Zellen schneller und für kürzere Zeit wachsen, und dass sie in Abhängigkeit vom Blutfluss stabilisiert werden. Funktionelle Studien haben gezeigt, dass die Dynamik der Mikrotubuli eine Rolle bei der Streckung und Proliferation von Endothelzellen spielt und dadurch für die korrekte Gefäßmorphogenese notwendig ist. Vasohibin-1 detyrosiniert α-Tubulin und wird im Endothel von Zebrafischen stark exprimiert. Ich habe herausgefunden, dass endotheliales Tubulin vorwiegend in aus sprossenden Gefäßen der hinteren Kardinalvene detyrosiniert wird. Bei sekundären Aus sprossungen führte der Funktionsverlust von Vasohibin-1 zu einer allgemeinen Abnahme der Mikrotubuli-Detyrosinierung, was zu einem abnormalen Sprossungsverhalten führte. Es unter Verlust von Vasohibin-1 eine vermehrte Zellteilung und eine erhöhte Zellzahl in sekundären Aussprossungen gibt. Infolge dessen scheitern diese Zellen daran die Lymphgefäße zu bilden und bauen stattdessen überschüssige Verbindungen zwischen den Venen. Meine Erkenntnisse lassen vermuten, dass die Tubulin-Detyrosinierung spezifisch die Zellteilung in den sekundären Aussprossungen kontrolliert, um die Bildung der venösen und lymphatischen Gefäße im Zebrafisch-Schwanz zu erreichen. / Endothelial cells form the inner layer of blood vessels. There, they retain the potential to develop into new vessels through a process known as sprouting angiogenesis. Microtubule targeting drugs inhibit tumour-associated angiogenesis in cancer patients, suggesting a role of microtubule dynamics in this process. The fine-tuned microtubule dynamics are modulated by tubulin post translational modifications such as microtubule detyrosination, catalysed by Vasohibin-1. The role of the microtubule dynamics and detyrosination in angiogenesis remains elusive. The aim of my research is to increase the understanding of the role of microtubule dynamics and stability in vessel development and maturation by studying and manipulating the microtubule dynamics in the zebrafish embryo. In Chapter 3, I show that microtubules grow faster and for shorter periods in sprouting cells, and stabilise over time, in a flow-dependent manner. Functional studies showed that microtubule dynamics are necessary for the correct vessel morphogenesis, by playing a role in endothelial cell elongation and proliferation. In Capter 4, I show that Vasohibin-1 detyrosinates α-tubulin and is highly expressed in the endothelium of zebrafish. I found that endothelial tubulin is predominantly detyrosinated in sprouting vessels from the posterior cardinal vein of the zebrafish. In these secondary sprouts, Vasohibin-1 loss-of-function led to an overall decrease of microtubule detyrosination resulting in abnormal sprouting behaviour. High resolution imaging revealed increased cell division and cell numbers in Vasohibin-1 deficient secondary sprouts. These cells then failed to build the lymphatic vessels and instead populate superfluous connections between veins. I propose that tubulin detyrosination specifically controls cell division of secondary sprouts to achieve adequate formation of venous and lymphatic vasculature in the zebrafish trunk.
17

Microtubule mechanics and the implications for their assembly

Taute, Katja 21 March 2012 (has links)
Microtubules are cytoskeletal protein polymers relevant to a wide range of cell functions. In order to polymerize, the constituent tubulin subunits need to bind the nucleotide GTP, but its subsequent hydrolysis to GDP in the microtubule lattice induces depolymerization. The resulting behaviour of stochastic switching between growth and shrinkage is called dynamic instability. Both dynamic instability and microtubule mechanical properties are integral to many cell functions, yet are poorly understood. The present study uses thermal fluctuation measurements of grafted microtubules with different nucleotide contents to extract stiffnesses, relaxation times, and drag coefficients with an unprecedented precision. Both the stiffness and the relaxation time data indicate that stiffness is a function of length for GDP microtubules stabilized with the chemotherapy drug taxol. By contrast, measurements on microtubules polymerized with the non-hydrolizable GTP-analogue GMPCPP show a significantly higher, but constant, stiffness. The addition of taxol is shown to not significantly affect the properties of these microtubules, but a lowering of the GMPCPP content restores the length-dependent stiffness seen for taxol microtubules. The data are interpreted on the basis of a recent biopolymer model that takes into account the anisotropic architecture of microtubules which consist of loosely coupled protofilaments arranged in a tube. Using taxol microtubules and GMPCPP microtubules as the respective analogues of the GDP and GTP state of microtubules, evidence is presented that shear coupling between neighbouring protofilaments is at least two orders of magnitude stiffer in the GTP state than in the GDP state. Previous studies of nucleotide effects on tubulin have focussed on protofilament bending, and the present study is the first to be able to show a dramatic effect on interprotofilament bonds. The finding’s profound implications for dynamic instability are discussed. In addition, internal friction is found to dominate over hydrodynamic drag for microtubules shorter than ∼ 4 μm and, like stiffness, to be affected by the bound nucleotide, but not by taxol. Furthermore, the thermal shape fluctuations of free microtubules are imaged, and the intrinsic curvatures of microtubules are shown for the first time to follow a spectrum reminiscent of thermal bending. Regarding the extraction of mechanical data, this assay, though previously described in the literature, is shown to suffer from systematic flaws.
18

Neuronal Growth Cone Dynamics: The Back and Forth of it

Rauch, Philipp 29 July 2013 (has links)
Sensory-motile cells fulfill various biological functions ranging from immune activity or wound healing to the formation of the highly complex nervous systems of vertebrates. In the case of neurons, a dynamic structure at the tip of outgrowing processes navigates towards target cells or areas during the generation of neural networks. These fan shaped growth cones are equipped with a highly complex molecular machinery able to detect various external stimuli and to translate them into directed motion. Receptor and adhesion molecules trigger signaling cascades that regulate the dynamics of an internal polymeric scaffold, the cytoskeleton. It plays a crucial role in morphology maintenance as well as in the generation and distribution of growth cone forces. The two major components, actin and microtubules (MTs) connect on multiple levels through interwoven biochemical and mechanical interactions. Actin monomers assemble into semiflexible filaments (F-actin) which in turn are either arranged in entangled networks in the flat outer region of the growth cone (lamellipodium) or in radial bundles termed filopodia. The dynamic network of actin filaments extends through polymerization at the front edge of the lamellipodium and is simultaneously moving towards the center (C-domain) of the growth cone. This retrograde flow (RF) of the actin network is driven by the polymerizing filaments themselves pushing against the cell membrane and the contractile activity of motor proteins (myosins), mainly in the more central transition zone (T-zone). Through transmembrane adhesion molecules, a fraction of the retrograde flow forces is mechanically transmitted to the cellular substrate in a clutch-like mechanism generating traction and moving the GC forward. MTs are tubular polymeric structures assembled from two types of tubulin protein subunits. They are densely bundled in the neurite and at the growth cone “neck” (where the neurite opens out into the growth cone) they splay apart entering the C-domain and more peripheral regions (P-domain). Their advancement is driven by polymerization and dynein motor protein activity. The two subsystems, an extending array of MTs and the centripetal moving actin network are antagonistic players regulating GC morphology and motility. Numerous experimental findings suggest that MTs pushing from the rear interact with actin structures and contribute to GC advancement. Nevertheless, the amount of force generated or transmitted through these rigid structures has not been investigated yet. In the present dissertation, the deformation of MTs under the influence of intracellular load is analyzed with fluorescence microscopy techniques to estimate these forces. RF mechanically couples to MTs in the GC periphery through friction and molecular cross-linkers. This leads to MT buckling which in turn allows the calculation of the underlying force. It turns out that forces of at least act on individual MT filaments in the GC periphery. Compared to the relatively low overall protrusion force of neuronal GCs, this is a substantial contribution. Interestingly, two populations of MTs buckle under different loads suggesting different buckling conditions. These could be ascribed to either the length-dependent flexural rigidity of MTs or local variations in the mechanical properties of the lamellipodial actin network. Furthermore, the relation between MT deformation levels and GC morphology and advancement was investigated. A clear trend evolves that links higher MT deformation in certain areas to their advancement. Interactions between RF and MTs also influence flow velocity and MT deformation. It is shown that transient RF bursts are related to higher MT deformation in the same region. An internal molecular clutch mechanism is proposed that links MT deformation to GC advancement. When focusing on GC dynamics it is often neglected that the retraction of neurites and the controlled collapse of GCs are as important for proper neural network formation as oriented outgrowth. Since erroneous connections can cause equally severe malfunctions as missing ones, the pruning of aberrant processes or the transient stalling of outgrowth at pivotal locations are common events in neuronal growth. To date, mainly short term pausing with minor cytoskeletal rearrangements or the full detachment and retraction of neurite segments were described. It is likely that these two variants do not cover the full range of possible events during neuronal pathfinding and that pausing on intermediate time scales is an appropriate means to avoid the misdetection of faint or ambiguous external signals. In the NG108-15 neuroblastoma cells investigated here, a novel type of collapse was observed. It is characterized by the degradation of actin network structures in the periphery while radial filopodia and the C-domain persist. Actin bundles in filopodia are segmented at one or multiple breaking points and subsequently fold onto the edge of the C-domain where they form an actin-rich barrier blocking MT extension. Due to this characteristic, this type of collapse was termed fold collapse. Possible molecular players responsible for this remarkable process are discussed. Throughout fold collapse, GC C-domain area and position remain stable and only the turnover of peripheral actin structures is abolished. At the same time, MT driven neurite elongation is hindered, causing the GC to stall on a time scale of several to tens of minutes. In many cases, new lamellipodial structures emerge after some time, indicating the transient nature of this collapse variant. From the detailed description of the cytoskeletal dynamics during collapse a working model including substrate contacts and contractile actin-myosin activity is derived. Within this model, the known and newly found types of GC collapse and retraction can be reduced to variations in local adhesion and motor protein activity. Altogether the results of this work indicate a more prominent role of forward directed MT-based forces in neuronal growth than previously assumed. Their regulation and distribution during outgrowth has significant impact on neurite orientation and advancement. The deformation of MT filaments is closely related to retrograde actin flow which in turn is a regulator of edge protrusion. For the stalling of GCs it is not only required that actin dynamics are decoupled from the environment but also that MT pushing is suppressed. In the case of fold collapse, this is achieved through a robust barrier assembled from filopodial actin bundles.
19

Membrane Invaginations Reveal Cortical Sites that Pull on Mitotic Spindles in One-Cell C. elegans Embryos

Redemann, Stefanie, Pecreaux, Jacques, Goehring, Nathan W., Khairy, Khaled, Stelzer, Ernst H. K., Hyman, Anthony A., Howard, Jonathon 09 December 2015 (has links) (PDF)
Asymmetric positioning of the mitotic spindle in C. elegans embryos is mediated by force-generating complexes that are anchored at the plasma membrane and that pull on microtubules growing out from the spindle poles. Although asymmetric distribution of the force generators is thought to underlie asymmetric positioning of the spindle, the number and location of the force generators has not been well defined. In particular, it has not been possible to visualize individual force generating events at the cortex. We discovered that perturbation of the acto-myosin cortex leads to the formation of long membrane invaginations that are pulled from the plasma membrane toward the spindle poles. Several lines of evidence show that the invaginations, which also occur in unperturbed embryos though at lower frequency, are pulled by the same force generators responsible for spindle positioning. Thus, the invaginations serve as a tool to localize the sites of force generation at the cortex and allow us to estimate a lower limit on the number of cortical force generators within the cell.
20

MuRF3 binds to the retromer subunit SNX5 inhibiting its MuRF2-mediated degradation and leading to its stabilization

Hamati, Jida 17 October 2016 (has links)
Die muskelspezifischen RING-Finger Ubiquitin E3 Ligasen MuRF1, MuRF2 und MuRF3 werden mit verschiedenen zellulären Prozessen in Verbindung gebracht. MuRF1 und MuRF3 beteiligen sich am Abbau mehrerer Muskelstrukturproteine über das Ubiquitin Proteasom System (UPS) und spielen somit eine wichtige Rolle bei der Aufrechterhaltung der Skelett- und Herzmuskelstruktur und -funktion. MuRF1 wurde als Atrophie-Marker identifiziert, da seine Expression während der Muskelatrophie ansteigt, und MuRF2 und MuRF3 wirken bei der Stabilisierung von Mikrotubuli und Differenzierung von Myozyten mit. Dennoch sind bisher viele Aspekte der Funktion von MuRF-Proteinen ungeklärt. Die Domänenstruktur der MuRF-Proteine zeigt mehrere hochkonservierte Domänen, die sich an Protein-Protein Interaktionen beteiligen. Die Identifizierung und Charakterisierung ihres Interaktoms ermöglicht ein besseres Verständnis ihrer Funktionen. Aus diesem Grund wurden quantitative massenspektrometrische Analysen durchgeführt, um neue Interaktionspartner und Substrate für MuRF1, 2 und 3 zu identifizieren. Sorting nexin 5 (SNX5), eine Untereinheit des Retromers in Säugetieren, wurde als Interaktionspartner von MuRF3 identifiziert. SNX5, das eine wichtige Rolle in subzellulären Transport-Signalwegen spielt, interagierte über seine BAR-Domäne mit MuRF3. SNX5 und MuRF3 co-lokalisierten und assoziierten mit vesikulären Strukturen des subzellulären Transport-Signalweges. SNX5 wurde außerdem als Substrat von MuRF2 identifiziert. MuRF2 band und ubiquitinierte SNX5 in vivo und vermittelte damit dessen Abbau über das UPS. MuRF3 stabilisierte SNX5 durch die Inhibierung dieses Abbaus. Somit konnten MuRF2 und MuRF3 mit einem in subzellulärem Transport aktiven Protein in Verbindung gebracht werden, das direkt mit Mikrotubuli assoziiert und funktionell von einem stabilen Mikrotubuli-Netzwerk abhängig ist. Dies legt eine mögliche regulatorische Rolle von MuRF2 und MuRF3 in Mikrotubuli-abhängigen subzellulären Transportwegen nahe. / Muscle specific RING-Finger ubiquitin E3 ligases MuRF1, MuRF2 and MuRF3 have been implicated in several cellular functions. MuRF1 and MuRF3 have been shown to bind and degrade muscle contractile and structural proteins via the ubiquitin proteasome system (UPS), thus playing an important role in the maintenance of skeletal and cardiac muscle structure and function. MuRF1 is considered an atrophy marker since its expression increases during muscle atrophy. MuRF2 and MuRF3 are involved in myocyte differentiation and both bind to and stabilize microtubules. Nevertheless, many aspects of the functions of the MuRF-family are unknown. The domain structure of the MuRF family implicates several highly conserved domains involved in protein-protein interaction. Accordingly, one way to better understand the role of MuRF proteins in myocyte function and protein homeostasis is to identify and characterize their interactome. Therefore, quantitative mass spectrometric analysis was used to identify novel interaction partners and target proteins of MuRF1, 2 and 3. Sorting nexin 5 (SNX5), a mammalian retromer subunit which plays an important role in subcellular trafficking pathways, was identified as a novel interaction partner of MuRF3, with which it interacted via its Bin/Amphiphysin/Rvs (BAR)-domain. SNX5 and MuRF3 co-localized and associated with early endosomes, connecting the microtubule-binding MuRF3 to structures of subcellular trafficking pathway. SNX5 was also identified as a substrate of MuRF2, which interacted with and ubiquitinated SNX5 in vivo, mediating its degradation in a UPS-dependent manner. This MuRF2-mediated degradation was inhibited by MuRF3, which stabilized SNX5. Thus, MuRF2 and MuRF3 were linked to a subcellular trafficking protein, SNX5, which is directly associated with microtubules and functionally dependent on a stable microtubule network, suggesting a possible regulatory role of MuRF2 and MuRF3 in microtubule-dependent subcellular trafficking pathways.

Page generated in 0.0693 seconds