Spelling suggestions: "subject:"mikrotubuli"" "subject:"mikrotubulis""
11 |
High performance photonic probes and applications of optical tweezers to molecular motorsJannasch, Anita 23 November 2017 (has links) (PDF)
Optical tweezers are a sensitive position and force transducer widely employed in physics and biology. In a focussed laser, forces due to radiation pressure enable to trap and manipulate small dielectric particles used as probes for various experiments. For sensitive biophysical measurements, microspheres are often used as a handle for the molecule of interest. The force range of optical traps well covers the piconewton forces generated by individual biomolecules such as kinesin molecular motors. However, cellular processes are often driven by ensembles of molecular machines generating forces exceeding a nanonewton and thus the capabilities of optical tweezers. In this thesis I focused, fifirst, on extending the force range of optical tweezers by improving the trapping e fficiency of the probes and, second, on applying the optical tweezers technology to understand the mechanics of molecular motors. I designed and fabricated photonically-structured probes: Anti-reflection-coated, high-refractive-index, core-shell particles composed of titania. With these probes, I significantly increased the maximum optical force beyond a nanonewton. These particles open up new research possibilities in both biology and physics, for example, to measure hydrodynamic resonances associated with the colored nature of the noise of Brownian motion. With respect to biophysical applications, I used the optical tweezers to study the mechanics of single kinesin-8. Kinesin-8 has been shown to be a very processive, plus-end directed microtubule depolymerase. The underlying mechanism for the high processivity and how stepping is affected by force is unclear. Therefore, I tracked the motion of yeast (Kip3) and human (Kif18A) kinesin-8s with high precision under varying loads. We found that kinesin-8 is a low-force motor protein, which stalled at loads of only 1 pN. In addition, we discovered a force-induced stick-slip motion, which may be an adaptation for the high processivity. Further improvement in optical tweezers probes and the instrument will broaden the scope of feasible optical trapping experiments in the future.
|
12 |
Leveraging the motor protein Kinesin to manipulate DNA molecules in synthetic environmentDinu, Cerasela Zoica 24 May 2006 (has links)
Die vorliegende Doktorarbeit stammt aus (ist in) dem Bereich der NanoBioTechnologie. Ihr Ziel ist es, das Motorprotein Kinesin und Mikrotubuli einzusetzen, um DNS-Moleküle in einem synthetischen Umgebung zu manipulieren. Diese Doktorarbeit setzt sich aus fünf Kapiteln zusammen. In der Einführung wird die makromolekulare Struktur der Zelle beschrieben, z.B. das Zytoskelett und Kinesin, eins der Motorproteine, die auf Mikrotubuli entlang laufen können. Der Schwerpunkt dieses Kapitels liegt auf der Nützlichkeit biologischer Motoren für den Aufbau und die Organisation von Strukturen im technischen Umfeld. Das zweite Kapitel zeigt, wie Kinesin und Mikrotubulis in einem synthetischen Umfeld für den Transport verschiedener Frachten, z.B. Streptavidin, Quantum dots oder DNS-Molekülen, genutzt werden können. Hier liegt der Schwerpunkt auf der Manipulation der DNS-Moleküle durch motor-gesteuerte Mikrotubulis und wie dieser Fracht-Transport-Mechanismus prinzipiell als Basis für die Entwicklung neuer Konzepte im Bereich des Bioingenieurwesens dienen kann. Ein Beispiel für ein solches Konzept ist die auf DNS basierende Molekularelektronik, bei der die Bindung und Streckung von DNS-Molekülen zwischen leitfähigen Oberflächen notwendig ist. Das dritte Kapitel beschreibt den Einfluß der Oberflächeneigenschaften auf die DNS-Anbindung. Es bietet Antworten darauf, wie diese Eigenschaften erforscht, spezifisch gestaltet und vorbereitet werden können, so daß sie der wissenschaftlichen Zielsetzung angemessen sind. Auf die Betrachtung von komplexen Musteranordnungen, wie sie in der Nanoelektronik genutzt werden können, wird im vierten Kapitel eingegangen. Hier wird auf praktische Art und Weise deutlich gemacht, wie DNS-Moleküle an leitfähige Oberflächen gebunden und dort durch Motorproteine und Mikrotubulis manipuliert werden können. Die Vorteile der motor-basierten Manipulation gegenüber den konventionellen Methoden wie AFM oder der optischen Pinzette werden diskutiert. Das fünfte und letzte Kapitel zeigt, wie man das Kinesin-Mikrotubuli-System nutzen kann, um daraus Informationen über DNS-Moleküle abzuleiten. Dafür wurde das Verhalten der Mikrotubulis in Beziehung auf die von gebundenen DNS-Molekülen ausgeübten Kräfte untersucht. Zusammenfassend habe ich experimentelle Untersuchungen und Färbeprotokolle entwickelt, um den gesamten Manipulationsprozeß zu detektieren, visualisieren und kontrollieren. Weiterhin untersuchte ich seine Implikationen auf theoretische Analysen, sowie auf praktische Anwendungen im Nano-Ingenieurwesen. Meine Daten demonstrieren, das DNS-Moleküle im synthetischen Umfeld so manipuliert werden können, daß kontrollierte DNS-Bioschnittstellen entstehen; Schnittstellen, die sowohl für weitere nanoelektronische Anwendungen als auch für topologische DNS-Studien genutzt werden können. Es wird weiterhin erwartet, daß das Kinesin-Mikrotubuli-System für die 3D-Anordnung auf biomolekularer Ebene im technischen Umfeld eine ebenso wichtige Rolle spielen wird. Die Fähigkeit, Vorlagen von Biomolekülen und/oder Anordungen mit definierten Eigenschaften zu schaffen und gleichzeitig ihre biologische Aktivität zu erhalten, kann als Beweis dienen, daß biologische Motoren für die molekulare Fertigung genutzt werden können. - (Die Druckexemplare enthalten jeweils eine CD-ROM als Anlagenteil: QuickTimeMovies (ca. 86 MB)- Übersicht über Inhalte siehe Dissertation S. IX - XIII) / The work described in this thesis is in the field of NanoBioTechnology. Its goal is to leverage the motor protein kinesin and its microtubule track to manipulate DNA molecules in synthetic environment. This thesis contains five chapters. The first chapter describes macromolecular structures of the cell: i. e. the cytoskeleton and one of the motor proteins that move along it, kinesin. Emphasized is how biological motors might prove useful for organizing structures in engineered environments. The second chapter demonstrates how kinesin and microtubules can be used in synthetic environments to transport different cargos: i.e. streptavidin, quantum dots and DNA molecules. Special emphasis is placed on the manipulation of DNA molecules by the motor-driven microtubules. This cargo transport mechanism serves as a proof-of-principle for new bioengineering concepts such as DNA-based molecular electronics. The third chapter describes the influences of the surface properties on the DNA attachment and offers answers as how surface characteristics can be investigated, specifically designed and prepared so that they can serve the desired scientific purpose. The fourth chapter describes the manner in which DNA molecules can be attached to conductive surfaces and manipulated with motor proteins and microtubules. The complex DNA pattern formation that can be used for nanoelectronics is demonstrated. The advantages of motor-based manipulation over the conventional "one-by-one" methods (AFM, optical tweezers etc.) are discussed. The fifth and last chapter shows how one can use the kinesin-microtubule system to derive information about DNA molecules. For this, the response of the microtubules to forces exerted by attached DNA molecules has been studied. In summary, I have generated experimental assays and staining procedures to detect, visualize and control the entire manipulation process and to investigate its implications for theoretical analysis as well as for practical nano-engineered applications. My data demonstrated that DNA molecules can be manipulated in synthetic environment by kinesin and microtubules in such a way that controlled DNA biointerfaces can be generated. These biointerfaces can then be used for nanoelectronical application as well as for DNA topological studies. The kinesin-microtubule system is also expected to be equally important for 3D biomolecular assembly in engineered environments. The ability to generate templates of biomolecules and/or bioassemblies with well-defined features while maintaining their bioactivity, serves as proof-of-principle that biological motors can be used for molecular manufacturing. - (The pressure copies contain in each case a CD-ROM as component: QuickTimeMovies (ca. 86 MB)- To overview of contents see thesis P. IX - XIII)
|
13 |
Patterning planar surfaces with motor proteins: Towards spatial control over motile microtubules: Patterning planar surfaces with motor proteins: Towards spatial control over motile microtubulesReuther, Cordula 11 June 2009 (has links)
A major challenge in nanotechnology is the spatially controlled transport of cargo on the nanometer scale. The use of a nanoscale transport system based on molecular motors and filaments of the cytoskeleton proved as a promising approach to this problem. Therefore, the objective of this work was to pattern planar surfaces with motor proteins in a way that allows controlled and guided movement of microtubule-shuttles.
The first part of the work was in particular focused on generating nanometer–sized tracks of motor proteins on unstructured surfaces. Specifically, microtubules themselves were used as biological templates for the stamping and alignment of motor proteins. Compared to other soft lithography techniques like microcontact printing this approach circumvented protein denaturation due to drying and conformational changes caused by mechanical stress. Given the large persistence length of microtubules their encounters with the boundaries of the nanotracks are limited to shallow approach angles. This way, the generated structures proved very efficient for the guiding of microtubules without topographical barriers.
Topography-free guiding, as demonstrated in this work, is expected to significantly ease the design and fabrication of microtubule-transport systems and opens up the possibility to transport cargo of unlimited size, i.e. without any constraints by the dimensions of topographic guiding channels. Moreover, the biotemplated patterning is a promising tool for in vitro studies on the individual and cooperative action of motor proteins. In particular it might be helpful for the reconstitution of complex subcellular machineries in synthetic environments. As an example, microtubule-microtubule sliding by the biomolecular motor ncd has been shown to induce directional sliding between antiparallel microtubules and static cross-linking between parallel ones.
The second part of the work explored an in-situ patterning technique for motor proteins to enable user-defined pattern designs, and investigated the achievable resolution. Photothermal patterning, based on localized light-to-heat conversion combined with a thermoresponsive polymer layer, was presented as a novel method. Specifically, the conformation of poly(N-isopropylacrylamide) (PNIPAM) molecules in aqueous solution was switched between the swollen state at T < 30°C (protein-repelling conformation) to the collapsed state at T > 33°C (protein-binding conformation) by optical signals of visible light to generate heat in a highly-localized manner. Upon heating of a light-absorbing layer on the substrate, the surface-grafted PNIPAM molecules collapsed locally and allowed motor proteins in solution to bind in the illuminated areas. To confirm the successful patterning of kinesin-1 molecules and their functionality microtubule-based gliding motility assays were performed. It was shown that the microtubules bind to the patterned kinesin-1 molecules and are transported exclusively in the patterned areas.
While the achieved pattern sizes were currently in the range of ten micrometers, finite element modeling (implemented in COMSOL) showed that increased optical intensities possibly combined with cooling of the sample allow to significantly scale down the pattern dimensions. The produced patterns can be reversibly activated and deactivated at high and low temperature, respectively. Moreover, sequential patterning of multiple kinds of proteins on the same surface will be possible in a similar way without the need for specific linker molecules or elaborate surface preparation. Another advantage of the method is the use of visible light, which is versatile as any wavelength can be applied. In addition visible light is in comparison to other UV-based photopatterning techniques non-damaging to proteins. / Der räumlich kontrollierte Transport von nanoskaligen Objekten ist eine große Herausforderung auf dem Gebiet der Nanotechnologie. Ein auf molekularen Motoren und Filamenten des Zellskeletts basierendes Nanotransportsystem hat sich dabei als ein viel versprechender Ansatz erwiesen. Das Ziel der vorgelegten Arbeit war es daher, ebene Oberflächen so mit Motorproteinen zu strukturieren, dass eine kontrollierte und geführte Bewegung von Mikrotubuli-Transportern ermöglicht wird. Der erste Teil der Arbeit war insbesondere darauf fokussiert, Motorprotein-Spuren im Nanometerbereich zu erzeugen. Im zweiten Teil der Arbeit wurde eine Strukturierungsmethode zur Realisierung von benutzerdefinierten Musterdesigns untersucht und die erreichbare Auflösung bestimmt.
Für die Nanometerstrukturierung von Oberflächen mit funktionalen Motorproteinen wurde ein neuer Ansatz demonstriert. Mit der Anwendung von Biotemplaten, wie hier der Mikrotubuli, konnte ein hoch-lokalisiertes und orientiertes Anbinden von Proteinen an Oberflächen sowie gleichzeitig geringer Proteindenaturierung erreicht werden. Durch spezifisches Stempeln beziehungsweise Binden von Motoren wurden Muster aus funktionellen Proteinen mit hoher Oberflächendichte hergestellt.
Die erzeugten Motor-Spuren haben gezeigt, dass Nanometerstrukturierungen möglich sind und ohne topographische Barrieren zu zuverlässiger Führung von Mikrotubuli führen können. Bisher konnte die nicht-topographische Strukturierung von Oberflächen mit Kinesin-1-Motoren nur im Mikrometerbereich demonstriert werden. Wegen der hohen Steifigkeit der Mikrotubuli war die thermische Energie des Systems in diesen Fällen nicht ausreichend, um die führende Spitze der Mikrotubuli zurück auf das Gebiet mit den strukturierten Motoren zu biegen. Dieses Problem wird durch die kleine Breite der hier demonstrierten Motor-Nanospuren verhindert, da das Auftreffen der Mikrotubuli mit den Grenzlinien auf extrem flache Winkel begrenzt ist. Interessanterweise haben sich Spuren des nicht-prozessiven Motors Kinesin-14 für das Führen und den Transport im Nanometerbereich als noch zuverlässiger herausgestellt als Kinesin-1-Spuren.
Es ist zu erwarten, dass nicht-topographisches Führen, wie es in dieser Arbeit gezeigt wurde, das Design und die Herstellung von Mikrotubuli-Transportsystemen deutlich vereinfacht und die Möglichkeit eröffnet, Cargo mit unlimitierter Größe, d.h. ohne Einschränkungen durch die Abmessungen der topographischen Führungskanäle, zu transportieren. Zusätzlich ist die biotemplierte Strukturierung ein viel versprechendes Werkzeug um das individuelle und das kooperative Arbeiten von Motorproteinen in vitro untersuchen und komplexe subzelluläre Maschinerien in synthetischer Umgebung rekonstituieren zu können. Dies wurde am Beispiel des gerichteten Gleitens des biomolekularen Motors Kinesin-14 gezeigt, der ein gerichtetes Gleiten zwischen antiparallelen Mikrotubuli und statisches Vernetzen zwischen parallelen Mikrotubuli hervorruft.
Mit dem Ansatz des biotemplierten Strukturierens ist es jedoch nicht einfach möglich, benutzerdefinierte Spuren zu erzeugen. Daher wurde die photothermische Proteinstrukturierung als eine neue Methode für die frei programmierbare, hochauflösende und schnelle Herstellung von strukturierten Proteinoberflächen eingeführt. Auf diese Weise wurden Kinesin-1-Muster durch licht-induziertes Heizen einer licht-absorbierenden Substratschicht erzeugt. Die thermisch schaltbaren poly(N-isopropylacrylamid) (PNIPAM) Moleküle auf der Oberfläche kollabierten lokal und erlaubten es den Motorproteinen, in den beleuchteten Gebieten aus der Lösung an die Oberfläche zu binden. Die Bewegung gleitender Mikrotubuli bestätigte anschließend die erfolgreiche Strukturierung der Kinesin-1-Motoren und deren Funktionalität, da die Mikrotubuli an die strukturierten Motoren banden und ausschließlich in den strukturierten Gebieten transportiert wurden. Neben der Proteinstrukturierung wurde die lokalisierte Licht-zu-Wärme-Umwandlung kombiniert mit einer thermisch schaltbaren Polymerschicht auch für die lokale Aktivierung von Kinesin-1-Motoren auf der Oberfläche genutzt. Ein Vorteil der photothermischen Proteinstrukturierung ist die Möglichkeit, sichtbares Licht zu verwenden, da jede beliebige Wellenlänge angewendet werden kann und sichtbares Licht, im Vergleich zu anderen UV-basierten Photostrukturierungsmethoden, Proteine nicht schädigt.
Modellierungen mit Hilfe der Finite-Elemente-Methode (implementiert in der Software COMSOL) haben gezeigt, dass die Lichtintensität und die Oberflächentemperatur speziell eingestellt werden müssen, um definierte Strukturgrößen zu erzielen. Während die derzeitig erzeugten Muster Größen im Bereich von zehn Mikrometern hatten, könnten durch höhere optische Intensitäten kombiniert mit Kühlung der Probe die Größenordnungen signifikant reduziert werden. Die reale experimentelle Auflösung wird jedoch auch von der Schaltcharakteristik des Polymers und der Proteinbindungsdynamik abhängen.
Die hergestellten Muster können reversibel bei hohen beziehungsweise niedrigen Temperaturen aktiviert und deaktiviert werden. Zusätzlich können auf die gleiche Weise verschiedene Proteinsorten sequentiell auf einer Oberfläche strukturiert werden, ohne dass spezifische Bindungsmoleküle oder aufwändige Oberflächenpräparationen notwendig wären. Die Möglichkeit, Proteine reversibel an die Oberfläche zu binden, um geschriebene Muster wieder löschen zu können, wäre eine Weiterentwicklung und würde die Anwendungsmöglichkeiten der photothermischen Strukturierungsmethode erweitern. Außerdem würden optisch schaltbare Polymere das direkte Strukturieren von Motoren mit Licht ermöglichen und daher die Methode vereinfachen.
|
14 |
Microtubule mechanics and the implications for their assemblyTaute, Katja 21 March 2012 (has links)
Microtubules are cytoskeletal protein polymers relevant to a wide range of cell functions. In order to polymerize, the constituent tubulin subunits need to bind the nucleotide GTP, but its subsequent hydrolysis to GDP in the microtubule lattice induces depolymerization. The resulting behaviour of stochastic switching between growth and shrinkage is called dynamic instability. Both dynamic instability and microtubule mechanical properties are integral to many cell functions, yet are poorly understood.
The present study uses thermal fluctuation measurements of grafted microtubules
with different nucleotide contents to extract stiffnesses, relaxation times, and drag coefficients with an unprecedented precision. Both the stiffness and the relaxation time data indicate that stiffness is a function of length for GDP microtubules stabilized with the chemotherapy drug taxol. By contrast, measurements on microtubules polymerized with the non-hydrolizable GTP-analogue GMPCPP show a significantly higher, but constant, stiffness. The addition of taxol is shown to not significantly affect the properties of these microtubules, but a lowering of the GMPCPP content restores the length-dependent stiffness seen for taxol microtubules.
The data are interpreted on the basis of a recent biopolymer model that takes into account the anisotropic architecture of microtubules which consist of loosely coupled protofilaments arranged in a tube. Using taxol microtubules and GMPCPP microtubules as the respective analogues of the GDP and GTP state of microtubules, evidence is presented that shear coupling between neighbouring protofilaments is at least two orders of magnitude stiffer in the GTP state than in the GDP state. Previous studies of nucleotide effects on tubulin have focussed on protofilament bending, and the present study is the first to be able to show a dramatic effect on interprotofilament bonds. The finding’s profound implications for dynamic instability are discussed.
In addition, internal friction is found to dominate over hydrodynamic drag for microtubules shorter than ∼ 4 μm and, like stiffness, to be affected by the bound nucleotide, but not by taxol.
Furthermore, the thermal shape fluctuations of free microtubules are imaged, and the intrinsic curvatures of microtubules are shown for the first time to follow a spectrum reminiscent of thermal bending. Regarding the extraction of mechanical data, this assay, though previously described in the literature, is shown to suffer from systematic flaws.
|
15 |
Neuronal Growth Cone Dynamics: The Back and Forth of itRauch, Philipp 29 July 2013 (has links)
Sensory-motile cells fulfill various biological functions ranging from immune activity or wound healing to the formation of the highly complex nervous systems of vertebrates. In the case of neurons, a dynamic structure at the tip of outgrowing processes navigates towards target cells or areas during the generation of neural networks. These fan shaped growth cones are equipped with a highly complex molecular machinery able to detect various external stimuli and to translate them into directed motion. Receptor and adhesion molecules trigger signaling cascades that regulate the dynamics of an internal polymeric scaffold, the cytoskeleton. It plays a crucial role in morphology maintenance as well as in the generation and distribution of growth cone forces. The two major components, actin and microtubules (MTs) connect on multiple levels through interwoven biochemical and mechanical interactions. Actin monomers assemble into semiflexible filaments (F-actin) which in turn are either arranged in entangled networks in the flat outer region of the growth cone (lamellipodium) or in radial bundles termed filopodia. The dynamic network of actin filaments extends through polymerization at the front edge of the lamellipodium and is simultaneously moving towards the center (C-domain) of the growth cone. This retrograde flow (RF) of the actin network is driven by the polymerizing filaments themselves pushing against the cell membrane and the contractile activity of motor proteins (myosins), mainly in the more central transition zone (T-zone). Through transmembrane adhesion molecules, a fraction of the retrograde flow forces is mechanically transmitted to the cellular substrate in a clutch-like mechanism generating traction and moving the GC forward. MTs are tubular polymeric structures assembled from two types of tubulin protein subunits. They are densely bundled in the neurite and at the growth cone “neck” (where the neurite opens out into the growth cone) they splay apart entering the C-domain and more peripheral regions (P-domain). Their advancement is driven by polymerization and dynein motor protein activity. The two subsystems, an extending array of MTs and the centripetal moving actin network are antagonistic players regulating GC morphology and motility. Numerous experimental findings suggest that MTs pushing from the rear interact with actin structures and contribute to GC advancement. Nevertheless, the amount of force generated or transmitted through these rigid structures has not been investigated yet. In the present dissertation, the deformation of MTs under the influence of intracellular load is analyzed with fluorescence microscopy techniques to estimate these forces. RF mechanically couples to MTs in the GC periphery through friction and molecular cross-linkers. This leads to MT buckling which in turn allows the calculation of the underlying force. It turns out that forces of at least act on individual MT filaments in the GC periphery. Compared to the relatively low overall protrusion force of neuronal GCs, this is a substantial contribution. Interestingly, two populations of MTs buckle under different loads suggesting different buckling conditions. These could be ascribed to either the length-dependent flexural rigidity of MTs or local variations in the mechanical properties of the lamellipodial actin network. Furthermore, the relation between MT deformation levels and GC morphology and advancement was investigated. A clear trend evolves that links higher MT deformation in certain areas to their advancement. Interactions between RF and MTs also influence flow velocity and MT deformation. It is shown that transient RF bursts are related to higher MT deformation in the same region. An internal molecular clutch mechanism is proposed that links MT deformation to GC advancement.
When focusing on GC dynamics it is often neglected that the retraction of neurites and the controlled collapse of GCs are as important for proper neural network formation as oriented outgrowth. Since erroneous connections can cause equally severe malfunctions as missing ones, the pruning of aberrant processes or the transient stalling of outgrowth at pivotal locations are common events in neuronal growth. To date, mainly short term pausing with minor cytoskeletal rearrangements or the full detachment and retraction of neurite segments were described. It is likely that these two variants do not cover the full range of possible events during neuronal pathfinding and that pausing on intermediate time scales is an appropriate means to avoid the misdetection of faint or ambiguous external signals. In the NG108-15 neuroblastoma cells investigated here, a novel type of collapse was observed. It is characterized by the degradation of actin network structures in the periphery while radial filopodia and the C-domain persist. Actin bundles in filopodia are segmented at one or multiple breaking points and subsequently fold onto the edge of the C-domain where they form an actin-rich barrier blocking MT extension. Due to this characteristic, this type of collapse was termed fold collapse. Possible molecular players responsible for this remarkable process are discussed. Throughout fold collapse, GC C-domain area and position remain stable and only the turnover of peripheral actin structures is abolished. At the same time, MT driven neurite elongation is hindered, causing the GC to stall on a time scale of several to tens of minutes. In many cases, new lamellipodial structures emerge after some time, indicating the transient nature of this collapse variant. From the detailed description of the cytoskeletal dynamics during collapse a working model including substrate contacts and contractile actin-myosin activity is derived. Within this model, the known and newly found types of GC collapse and retraction can be reduced to variations in local adhesion and motor protein activity.
Altogether the results of this work indicate a more prominent role of forward directed MT-based forces in neuronal growth than previously assumed. Their regulation and distribution during outgrowth has significant impact on neurite orientation and advancement. The deformation of MT filaments is closely related to retrograde actin flow which in turn is a regulator of edge protrusion. For the stalling of GCs it is not only required that actin dynamics are decoupled from the environment but also that MT pushing is suppressed. In the case of fold collapse, this is achieved through a robust barrier assembled from filopodial actin bundles.
|
16 |
Microtubule dynamics modulate sprouting angiogenesis in vivoBastos de Oliveira, Marta 29 October 2021 (has links)
Die innerste Schicht von Blutgefäßen wird durch Endothelzellen geformt. Dort haben sie das Potential neue Blutgefäße durch einen Prozess Namens Angiogenese zu bilden. In Krebspatienten wurde gezeigt, dass Medikamente, die auf Mikrotubuli zielen, die tumorassoziierte Angiogen ese hemmen. Diese Erkenntnis lässt auf eine Rolle der Mikrotubuli-Dynamik im Prozess der Angiogenese schließen. Die fein abgestimmte Mikrotubulus-Dynamik wird durch posttranslationale Tubulinmodifikationen, wie die durch die Vasohibin-1 katalysierte Mikrotubuli-Detyrosinierung, moduliert. Dennoch sind die Rollen der Mikrotubuli-Dynamik und -Detyrosinierung während der Angiogenese noch nicht verstanden. Ich konnte zeigen, dass Mikrotubuli in aussprossenden Zellen schneller und für kürzere Zeit wachsen, und dass sie in Abhängigkeit vom Blutfluss stabilisiert werden. Funktionelle Studien haben gezeigt, dass die Dynamik der Mikrotubuli eine Rolle bei der Streckung und Proliferation von Endothelzellen spielt und dadurch für die korrekte Gefäßmorphogenese notwendig ist. Vasohibin-1 detyrosiniert α-Tubulin und wird im Endothel von Zebrafischen stark exprimiert. Ich habe herausgefunden, dass endotheliales Tubulin vorwiegend in aus sprossenden Gefäßen der hinteren Kardinalvene detyrosiniert wird. Bei sekundären Aus sprossungen führte der Funktionsverlust von Vasohibin-1 zu einer allgemeinen Abnahme der Mikrotubuli-Detyrosinierung, was zu einem abnormalen Sprossungsverhalten führte. Es unter Verlust von Vasohibin-1 eine vermehrte Zellteilung und eine erhöhte Zellzahl in sekundären Aussprossungen gibt. Infolge dessen scheitern diese Zellen daran die Lymphgefäße zu bilden und bauen stattdessen überschüssige Verbindungen zwischen den Venen. Meine Erkenntnisse lassen vermuten, dass die Tubulin-Detyrosinierung spezifisch die Zellteilung in den sekundären Aussprossungen kontrolliert, um die Bildung der venösen und lymphatischen Gefäße im Zebrafisch-Schwanz zu erreichen. / Endothelial cells form the inner layer of blood vessels. There, they retain the potential to develop into new vessels through a process known as sprouting angiogenesis. Microtubule targeting drugs inhibit tumour-associated angiogenesis in cancer patients, suggesting a role of microtubule dynamics in this process. The fine-tuned microtubule dynamics are modulated by tubulin post translational modifications such as microtubule detyrosination, catalysed by Vasohibin-1. The role of the microtubule dynamics and detyrosination in angiogenesis remains elusive. The aim of my research is to increase the understanding of the role of microtubule dynamics and stability in vessel development and maturation by studying and manipulating the microtubule dynamics in the zebrafish embryo. In Chapter 3, I show that microtubules grow faster and for shorter periods in sprouting cells, and stabilise over time, in a flow-dependent manner. Functional studies showed that microtubule dynamics are necessary for the correct vessel morphogenesis, by playing a role in endothelial cell elongation and proliferation. In Capter 4, I show that Vasohibin-1 detyrosinates α-tubulin and is highly expressed in the endothelium of zebrafish. I found that endothelial tubulin is predominantly detyrosinated in sprouting vessels from the posterior cardinal vein of the zebrafish. In these secondary sprouts, Vasohibin-1 loss-of-function led to an overall decrease of microtubule detyrosination resulting in abnormal sprouting behaviour. High resolution imaging revealed increased cell division and cell numbers in Vasohibin-1 deficient secondary sprouts. These cells then failed to build the lymphatic vessels and instead populate superfluous connections between veins. I propose that tubulin detyrosination specifically controls cell division of secondary sprouts to achieve adequate formation of venous and lymphatic vasculature in the zebrafish trunk.
|
17 |
Funktionelle Charakterisierung der Interaktion des COP9-Signalosoms mit dem Mikrotubuli-bindenden Protein EB1Peth, Andreas 08 October 2007 (has links)
Das COP9-Signalosom (CSN) ist ein evolutionär konservierter Proteinkomplex. Er besteht aus acht Untereinheiten und wird als Paralog des Lid-Subkomplexes des 26S Proteasoms angesehen. Das CSN verfügt über diverse enzymatische Aktivitäten, die es zu einem regulatorischen Faktor des Ubiquitin-Proteasom-Systems (UPS) machen. Das UPS ist für den Abbau von einem Großteil der zellulären Proteine notwendig. Für die Proteolyse bestimmter Proteine werden diese mit einer Polyubiquitinkette markiert. Dies geschieht über eine Enzymkaskade von E1, E2s und E3-Ligasen, wobei die E3s die Substratspezifität bestimmen. Die Interaktion von E3s mit dem CSN ist für deren Assemblierung und Aktivität von entscheidender Bedeutung. Des Weiteren bindet das CSN eine Vielzahl von proteasomalen Substraten und scheint deren Abbau direkt zu kontrollieren. In dieser Arbeit konnte eine Interaktion des CSN mit dem Mikrotubuli-bindenden Protein EB1 nachgewiesen werden. EB1 wirkt präferentiell an den (+)-Enden von Mikrotubuli und fördert die Polymerisierung und Stabilität von Mikrotubulifilamenten. EB1 bindet über die Untereinheit CSN5 an das CSN. Die Interaktion von EB1 mit dem CSN findet im Centrosom statt und führt zur Phosphorylierung und Stabilisierung von EB1. Eine verminderte Bindung von EB1 an das CSN oder eine reduzierte Phosphorylierung von EB1 führt zu einem beschleunigten Abbau. Die Funktion der Interaktion zwischen EB1 und dem CSN wurde in CSN-siRNA-Zelllinien untersucht. Dazu wurden die Untereinheiten CSN1, 3 und 5 in HeLa-Zellen permanent herunterreguliert. Die siRNAs gegen CSN1 und 3 (siCSN1, siCSN3) führen zur Reduktion des gesamten CSN Komplexes, der Knockdown von CSN5 (siCSN5) nur zur Verminderung von CSN5. In allen drei Zelllinien ist der Abbau von EB1 beschleunigt, was auf eine verminderte Bindung an, bzw. Phosphorylierung durch das CSN zurückzuführen ist. Dies hat Konsequenzen für die Stabilität von Mikrotubulifilamenten in siCSN1- und siCSN3-Zellen. Diese zeigen eine erhöhte Sensibilität gegenüber Nocodazol, welches die Polymerisierung von Mikrotubuli inhibiert. Des Weiteren konnte ein durch Nocodazol ausgelöster Zellzyklusarrest durch die Überexpression von EB1 oder CSN1 in HeLa-Zellen überwunden werden. / The COP9 signalosome (CSN) is an evolutionary conserved protein complex. It consists out of eight subunits and is a paralogue to the lid subcomplex of the 26S proteasome. The CSN posesses several activities, supporting its function as a regulator of the Ubiquitin Proteasome System (UPS). The UPS mediates the degradation of the majority of the cellular proteins. Prior to degradation, a poly-ubiquitin chain is attached to the proteins. This process is catalyzed by a cascade of E1, E2s and E3-ligases. The CSN is a regulator of the E3-ligases, which determine substrate selectivity of the ubiquitination. The CSN also directly binds and thereby controls degradation of several proteasomal substrates. In the present study a direct interaction between the CSN and the microtubule binding protein EB1 is shown, which is mediated by the subunit CSN5. EB1 binds preferentially to the (+)-ends of microtubules and thereby promotes polymerisation rates and enhances the stability of microtubule filaments. The interaction between the CSN and EB1 is localized to the centrosome and results in EB1 phosphorylation and stabilization. A compromised binding of EB1 to the CSN results in an accelerated degradation. For functional studies of the CSN-EB1 interaction in HeLa cells, siRNA mediated knockdowns of CSN subunits were used. The subunits CSN1, CSN3 and CSN5 were knocked down permanently resulting in a faster proteolysis of EB1. This was a result of decreased amounts of CSN complex in cells with downregulated CSN1 and CSN3. The knockdown of CSN5 affects only subunit CSN5 levels causing a compromised binding of EB1 to the CSN complex. An increased sensitivity to the microtubule disrupting agent nocodazole was observed in the CSN1 and CSN3 knockdown cells. A cell cycle arrest induced in HeLa cells by nocodazole treatment was rescued by overexpression of EB1 or CSN1. The data presented in this study suggest a functional relationship of EB1 and the CSN resulting in a stabilization of microtubule filaments.
|
18 |
Tubulin biochemistry confers intrinsic differences in microtubule dynamics and drug sensitivity between speciesHirst, William Graham 17 June 2021 (has links)
Mikrotubuli sind filamentöse intrazelluläre Polymere, die als grundlegende Bestandteile subzellulärer Strukturen in Eukaryoten dienen. Diese Studie verwendet einen vergleichenden Ansatz, um zu untersuchen, wie sich die intrinsischen dynamischen und biochemischen Eigenschaften von Tubulin zwischen verschiedenen Spezies unterscheiden, und zeigt ihre Konsequenzen in zwei verschiedenen physiologischen Kontexten: 1) Bestimmung der Spindelgröße bei Fröschen der Gattung Xenopus und 2) Spezifität von Mikrotubuli-Inhibitoren für Plasmodium falciparum-Mikrotubuli über denen ihres menschlichen Wirts.
In den Eiern der Froschgattung Xenopus wird die Länge der meiotischen Spindel biochemisch festgelegt und erreicht unabhängig von räumlichen Einschränkungen eine Obergrenze. Messungen der Dynamik von Xenopus-Mikrotubuli zeigen, dass X. laevis-Mikrotubuli sowohl schneller wachsen als auch länger leben als die von X. tropicalis. Darüber hinaus spielt die Quantifizierung der Länge und Massenverteilung der Xenopus-Mikrotubuli zusammen mit den Reaktionen der Eiextrakt-Spindelanordnung eine Rolle für die intrinsische Dynamik der Mikrotubuli bei der Modulation der Spindellänge.
Mikrotubuli sind auch Wirkstofftargets bei Pilz- und parasitären Helmintheninfektionen und haben in den letzten Jahrzehnten die Aufmerksamkeit als potenzielles Wirkstoffziel beim Malariaparasiten Plasmodium falciparum auf sich gezogen. Um die Dynamik und Medikamentspezifität von Mikrotubuli von P. falciparum zu charakterisieren, haben wir Tubulin direkt von den Parasiten gereinigt. Zum ersten Mal wurden hier dynamische P. falciparum-Mikrotubuli in vitro rekonstituiert und eine parasitenspezifische Unterdrückung der Dynamik von Mikrotubuli durch Oryzalin und Amiprofos-Methyl direkt nachgewiesen. Diese Studie legt einen experimentellen Rahmen fest, um direkt auf parasitenspezifische Hemmung von Mikrotubuli zu testen, die bisher unter Verwendung bestehender in-vitro-Ansätze nicht beobachtet wurden. / Microtubules are filamentous intracellular polymers that are fundamental components of subcellular structures including the spindle, the cytoskeleton, and flagella in eukaryotes. This study uses a comparative approach to investigate how the intrinsic dynamic and biochemical characteristics of tubulin vary between species and demonstrates their consequences in two different physiological contexts: 1) Spindle size control in Xenopus frogs, and 2) The specificity of microtubule inhibitors for Plasmodium falciparum microtubules over those of their human host.
In Xenopus frog eggs, the length of the spindle is biochemically controlled and reaches an upper limit independent of spatial constraints. In this study, in vitro measurements of Xenopus microtubule dynamics show that X. laevis microtubules are both faster-growing and longer-lived X. tropicalis, independent of the influence of microtubule-associated proteins. Furthermore, quantification of Xenopus microtubule length and mass distributions, combined with egg extract spindle assembly reactions, establishes a role for intrinsic microtubule dynamics in modulating spindle length.
Microtubules are also established drug targets in fungal and parasitic helminth infections and have in the past decades drawn attention as a potential drug target in the malaria parasite Plasmodium falciparum. In order to characterize P. falciparum microtubule dynamics, structure, and drug specificity, we have used an affinity chromatography-based approach to purify tubulin directly from blood-stage parasites. For the first time, dynamic P. falciparum microtubules have been reconstituted in vitro and parasite-specific suppression of microtubule dynamics by oryzalin and amiprofos methyl has been directly demonstrated. This study establishes an experimental framework to directly test for parasite-specific microtubule inhibition, microtubule structure, and interactions with MAPs that previously have not observed using existing in vitro approaches.
|
19 |
Membrane Invaginations Reveal Cortical Sites that Pull on Mitotic Spindles in One-Cell C. elegans EmbryosRedemann, Stefanie, Pecreaux, Jacques, Goehring, Nathan W., Khairy, Khaled, Stelzer, Ernst H. K., Hyman, Anthony A., Howard, Jonathon 09 December 2015 (has links) (PDF)
Asymmetric positioning of the mitotic spindle in C. elegans embryos is mediated by force-generating complexes that are anchored at the plasma membrane and that pull on microtubules growing out from the spindle poles. Although asymmetric distribution of the force generators is thought to underlie asymmetric positioning of the spindle, the number and location of the force generators has not been well defined. In particular, it has not been possible to visualize individual force generating events at the cortex. We discovered that perturbation of the acto-myosin cortex leads to the formation of long membrane invaginations that are pulled from the plasma membrane toward the spindle poles. Several lines of evidence show that the invaginations, which also occur in unperturbed embryos though at lower frequency, are pulled by the same force generators responsible for spindle positioning. Thus, the invaginations serve as a tool to localize the sites of force generation at the cortex and allow us to estimate a lower limit on the number of cortical force generators within the cell.
|
20 |
Optical 3D-Nanometry to Study the Function of Biomolecular Motors in NanotransportNitzsche, Bert 13 October 2009 (has links) (PDF)
A major challenge in nanotechnology is the controlled transport of cargo on the nanometer scale. A promising approach to this problem is the use of molecular motors of the cellular cytoskeleton.
The aim of this work was to develop a method to characterize the behavior of filamentous nanoshuttles – specifically of motor protein-driven microtubules – in three dimensions (3-D). The main requirements to meet were low impact on the nanotransport system, high spatial and temporal resolution, and versatility. Furthermore, this method was intended to be used to address open questions in the field of nanotransport. In particular, it was firstly attempted to characterize cargo transport in a system currently favored by most studies in the field, where nanoshuttles are powered by the microtubule motor best understood so far – the plus-end-directed kinesin-1. Secondly, the goal was to further the understanding of potential counter-players of kinesin-1 in nanotransport applications - the much less well understood microtubule minus-end-directed motor proteins 22S dynein and the kinesin-14 non-claret disjunctional (ncd).
A novel method to study the linear forward motion as well as the axial motion of filamentous nanoshuttles, which are driven by motors of the cell cytoskeleton, has been introduced. The method uses fluorescence interference-based 3-D nanometer tracking of quantum dots as optical probes that are attached to the nanoshuttles. While other recently reported 3-D tracking techniques based on dual-focus imaging offer similar sensitivity, the method here can be easily performed on any standard epi-fluorescence microscope, even with arc lamp illumination, and additionally holds the potential to retrieve absolute height values. It is strongly suggested that the ease of use might help to spread this valuable and versatile tool for a variety of applications, including studies of interactions between single molecules or even intramolecular changes.
Specifically, 3-D tracking has been used to visualize and analyze the rotation of microtubules around their longitudinal axis when they are propelled on a motor protein-coated surface. This geometry called gliding assay is currently favored for most proof-of-principle studies that investigate the use of biomolecular motors for transport of nanoscale cargo with the goal to assemble and manipulate nanostructures. The suitability of the method has been proven for kinesin-1 gliding assays, where knowledge of properties of both, microtubules and kinesin-1, allowed a very precise prediction of microtubule rotation, which was matching the actual measured values very well.
The microtubule rotation in kinesin-1 gliding assays has turned out to be robust against the attachment of small cargo in the shape of quantum dots (diameter ∼20 nm), but also against the reduction of electrostatic interactions between microtubules and kinesin-1 by cleavage of the tubulin E-hook. The situation was dramatically different when large cargo (beads with diameter of ∼3 µm) was attached to microtubules. In this case, filament rotation was stopped, but otherwise the impact on motility was surprisingly low. In particular, the velocity of the gliding microtubules only decreased to a negligible degree. This shows that in principle microtubules driven by processive motors like kinesin-1 can make flexible, responsive and effective molecular shuttles for nanotransport applications. In addition, the results might indicate that in vivo kinesin-1 molecules, which transport cargo along microtubules, can likewise flexibly respond to an axial force by deviating from their path parallel to the protofilament axes.
Two microtubule minus-end-directed motors that might be employed to counteract kinesin-1 in engineered nanotransport systems are dynein and ncd. Both motors have been found to be capable of generating torque causing short-pitched microtubule rotation in gliding motility assays. The results for 22S dynein helped to resolve controversial findings of earlier reports about the ability of 22S dynein to generate torque. However, it turned out difficult to establish conditions where the movement of the dynein-driven nanoshuttles was homogeneous and reproducible. In contrast, motility in ncd gliding assays looks much more promising. The obtained results supported previous reports of torque generation by ncd. Moreover, a strong dependence of rotational pitches of gliding microtubules on ATP concentration was found. The reason could be that ncd motors in the nucleotide-free microtubule-bound state impede the forward movement of gliding microtubules stronger than the axial motion. To fully understand the nature of this effect, further research is required. Most likely, this will substantially contribute to the understanding of ncd function in vivo. Furthermore, the possibility of tuning the rotation of microtubules acting as nanoshuttles might provide a means to increase control of processes like cargo-loading and unloading. / Eine große Herausforderung auf dem Gebiet der Nanotechnologie ist der kontrollierte und präzise Transport von nanoskaligen Objekten. Der Einsatz von molekularen Motoren des zellulären Zytoskeletts hat sich dabei als vielversprechender Ansatz erwiesen.
Ziel der hier vorgelegten Arbeit war die Entwicklung einer Methode, um das Verhalten von filamentartigen Nanotransportern - speziell von Mikrotubuli, die durch Motorproteine über Oberflächen bewegt werden - in drei Dimensionen (3-D) zu charakterisieren. Die Hauptkriterien waren dabei eine geringe Störung des zu untersuchenden Systems, hohe räumliche und zeitliche Auflösungen sowie die generelle Anwendbarkeit für Einzelmolekülstudien. Ein weiteres Ziel war es, die entwickelte Methode zur Beantwortung offener Fragen bezüglich des Nanotransports mittels Zytoskelett-basierter Motoren einzusetzen. Insbesondere sollte das System aus Mikrotubuli und dem Motorprotein Kinesin-1, welches für die meisten aktuellen Studien zum Thema Nanotransport herangezogen wird, untersucht werden. Schließlich sollten neue Erkenntnisse über weniger gut erforschte Motorproteine, speziell über 22S Dynein und das Kinesin-14 „Non-claret disjunctional“ (Ncd), gewonnen werden. Beide Motoren könnten in Nanotransportsystemen als Gegenspieler von Kinesin-1 agieren.
In der vorliegenden Arbeit wird eine neuartige, auf Fluoreszenz-Interferenz basierende 3-D Nanometertrackingmethode beschrieben. Auf deren Grundlage wird es möglich, die Bewegung von einzelnen fluoreszenten Partikeln nahe einer reflektierenden Oberfläche mit einer Genauigkeit im Nanometerbereich zu verfolgen. Im Vergleich zu anderen kürzlich vorgestellten 3-D Techniken, welche auf bifokaler optischer Mikroskopie basieren und ähnliche Genauigkeiten zulassen, ist die hier vorgestellte Methode mit deutlich geringerem Aufwand auf der Basis eines herkömmlichen Epi-Fluoreszenzmikroskops umsetzbar. Dabei kann die Fluoreszenzanregung wahlweise mit einer Bogenlampe oder einem Laser erfolgen. Weiterhin besteht die Möglichkeit, nicht nur Differenzwerte (wie bei bifokaler Mikroskopie), sondern absolute Werte in der Höhendimension zu messen. Im Ergebnis wurde ein mit geringem Aufwand umsetzbares, gleichwohl hochgradig genaues und vielseitig einsetzbares Werkzeug geschaffen, welches ideal für Studien der Interaktionen von Einzelmolekülen oder auch intramolekularer Dynamik geeignet ist.
Mit Hilfe der hier vorgestellten 3-D Trackingmethode wurden die Rotationen von Mikrotubuli um ihre Längsachse während des Gleitens auf mit Motorproteinen besetzten Oberflächen analysiert. Diese Geometrie wird derzeit bevorzugt in Studien eingesetzt, welche den Einsatz von biomolekularen Motoren für den Transport von nanoskaligen Objekten untersuchen und das Ziel verfolgen, Nanostrukturen zu erzeugen und zu manipulieren. Die Ergebnisse zu Rotationen von Mikrotubuli, welche über mit Kinesin-1 besetzte Oberflächen bewegt werden, sind konsistent mit (i) der Eigenschaft von Kinesin-1 sich entlang der Protofilamente von Mikrotubuli zu bewegen und (ii) der Superhelixstruktur von in vitro rekonstituierten Mikrotubuli. Dies belegt die Eignung der Methode für die Charakterisierung von Nanotransportsystemen.
Die Rotation von Mikrotubuli, welche durch Kinesin-1 angetrieben werden, hat sich sowohl beim Transport von kleinen Objekten in Form von Quantum Dots (Durchmesser ca. 20 nm) als auch bei der Reduktion elektrostatischer Wechselwirkungen zwischen Kinesin-1 und Mikrotubuli durch Verdau der Tubulin-C-Termini als stabil erwiesen. Ein vollkommen anderes Bild ergab sich für den Transport von großen Objekten (Durchmesser ca. 3 µm). In diesem Fall wurde die Rotation der Filamente angehalten. Unerwarteterweise war jedoch die Vorwärtsbewegung der Mikrotubuli und insbesondere deren Geschwindigkeit kaum betroffen. Dies zeigt, daß Mikrotubuli, welche von prozessiven Motoren wie Kinesin-1 angetrieben werden, das Potential zu responsiven, flexiblen und effektiven molekularen Shuttles besitzen. Außerdem weisen die Ergebnisse darauf hin, daß Kinesin-1-Moleküle, welche in vivo Frachten entlang von Mikrotubuli transportieren, auf seitwärts gerichtete Kräfte reagieren können, indem sie von ihrem intrinsisch vorgegebenen Pfad parallel zur Protofilamentachse des Mikrotubulus abweichen.
Zwei Motoren, die sich im Gegensatz zu Kinesin-1 in Richtung des Minus-Endes von Mikrotubuli bewegen, sind 22S Dynein und Ncd. Sie sind somit als Gegenspieler von Kinesin-1 in Nanotransportsystemen prädestiniert. Beide Motoren können, ebenso wie Kinesin-1, die Translokation von Mikrotubuli über Oberflächen sowie damit verbundene Rotationen von Mikrotubuli verursachen. Im Gegensatz zu Kinesin-1 tritt die Rotation unabhängig von einer Superhelixstruktur der Mikrotubuli auf. Die Ergebnisse für 22S Dynein lösen Widersprüche zwischen früheren Studien auf, indem sie belegen, daß dieser Motor Rotationen von Mikrotubuli erzeugen kann. Jedoch scheint es unter Verwendung von 22S Dynein nicht möglich zu sein, Bedingungen zu schaffen, unter welchen sich Mikrotubuli in geeigneter Weise als Nanoshuttles homogen und reproduzierbar bewegen. Der Einsatz von Ncd ist hier deutlich erfolgversprechender. Die in diesem Falle erlangten Erkenntnisse bezüglich der Erzeugung von Rotationen von Mikrotubuli decken sich mit früheren Studien. Ein bislang unbekannter, bemerkenswerter Effekt ist dabei ein Rückgang in der Länge der Rotationsperioden mit sinkender ATP-Konzentration. Die mit dem heutigen Wissensstand über den mechanochemischen Zyklus von Ncd konsistente Erklärung ist, daß Ncd-Motoren im nukleotidfrei an Mikrotubuli gebundenen Zustand die Vorwärtskomponente der Bewegung von gleitenden Mikrotubuli stärker hemmen als die Rotationskomponente. Möglicherweise kann die sich hieraus ergebende Möglichkeit der Regulierung der Rotation von Mikrotubuli dazu eingesetzt werden, das Be- und Entladen von Nanoshuttles zu steuern.
|
Page generated in 0.0387 seconds