Spelling suggestions: "subject:"molekylärbiologi"" "subject:"molekylärbiologin""
751 |
Thiopurine S-methyltransferase - characterization of variants and ligand bindingBlissing, Annica January 2017 (has links)
Thiopurine S-methyltransferase (TPMT) belongs to the Class I S-adenosylmethionine-dependent methyltransferase (SAM-MT) super family of structurally related proteins. Common to the members of this large protein family is the catalysis of methylation reactions using S-adenosylmethionine (SAM) as a methyl group donor, although SAM-MTs act on a wide range of different substrates and carry out numerous biologically important functions. While the natural function of TPMT is unknown, this enzyme is involved in the metabolism of thiopurines, a class of pharmaceutical substances administered in treatment of immune-related disorders. Specifically, methylation by TPMT inactivates thiopurines and their metabolic intermediates, which reduces the efficacy of clinical treatment and increases the risk of adverse side effects. To further complicate matters, TPMT is a polymorphic enzyme with over 40 naturally occurring variants known to date, most of which exhibit lowered methylation activity towards thiopurines. Consequently, there are individual variations in TPMTmediated thiopurine inactivation, and the administered dose has to be adjusted prior to clinical treatment to avoid harmful side effects. Although the clinical relevance of TPMT is well established, few studies have investigated the molecular causes of the reduced methylation activity of variant proteins. In this thesis, the results of biophysical characterization of two variant proteins, TPMT*6 (Y180F) and TPMT*8 (R215H), are presented. While the properties of TPMT*8 were indistinguishable from those of the wild-type protein, TPMT*6 was found to be somewhat destabilized. Interestingly, the TPMT*6 amino acid substitution did not affect the functionality or folding pattern of the variant protein. Therefore, the decreased in vivo functionality reported for TPMT*6 is probably caused by increased proteolytic degradation in response to the reduced stability of this protein variant, rather than loss of function. Also presented herein are novel methodological approaches for studies of TPMT and its variants. Firstly, the advantages of using 8-anilinonaphthalene-1-sulfonic acid (ANS) to probe TPMT tertiary structure and active site integrity are presented. ANS binds exclusively to the native state of TPMT with high affinity (KD ~ 0.2 μm) and a 1:1 ratio. The stability of TPMT was dramatically increased by binding of ANS, which was shown to co-localize with the structurally similar adenine moiety of the cofactor SAM. Secondly, an enzyme activity assay based on isothermal titration calorimetry (ITC) is presented. Using this approach, the kinetics of 6-MP and 6-TG methylation by TPMT has been characterized.
|
752 |
The Colours of Diabetes : advances and novel applications of molecular optical techniques for studies of the pancreasNord, Christoffer January 2016 (has links)
Diabetes is a rapidly increasing health problem. In a global perspective,approximately 415 million people suffered from diabetes in 2015 and this number ispredicted to increase to 640 million by 2040. To tackle this pandemic there is a needfor better analytical tools by which we can increase our understanding of the disease.One discipline that has already provided much needed insight to diabetes etiology isoptical molecular imaging. Using various forms of light it is possible to create animage of the analysed sample that can provide information about molecularmechanistic aspects of the disease and to follow spatial and temporal dynamics. The overall aim of this thesis is to improve and adapt existing andnovel optical imaging approaches for their specific use in diabetes research. Hereby,we have focused on three techniques: (I) Optical projection tomography (OPT),which can be described as the optical equivalent of x-ray computed tomography(CT), and two vibrational microspectroscopic (VMS) techniques, which records theunique vibrational signatures of molecules building up the sample: (II) Fouriertransforminfrared vibrational microspectroscopy (FT-IR) and (III) Ramanvibrational microspectroscopy (Raman). The computational tools and hardware applications presented here generallyimprove OPT data quality, processing speed, sample size and channel capacity.Jointly, these developments enable OPT as a routine tool in diabetes research,facilitating aspects of e.g. pancreatic β-cell generation, proliferation,reprogramming, destruction and preservation to be studied throughout the pancreaticvolume and in large cohorts of experimental animals. Further, a novel application ofmultivariate analysis of VMS data derived from pancreatic tissues is introduced.This approach enables detection of novel biochemical alterations in the pancreasduring diabetes disease progression and can be used to confirm previously reportedbiochemical alterations, but at an earlier stage. Finally, our studies indicate thatRaman imaging is applicable to in vivo studies of grafted islets of Langerhans,allowing for longitudinal studies of pancreatic islet biochemistry.viIn summary, presented here are new and improved methods by which opticalimaging techniques can be utilised to study 3D-spatial, quantitative andmolecular/biochemical alterations of the normal and diseased pancreas.
|
753 |
Insulin Resistance : Causes, biomarkers and consequencesNowak, Christoph January 2017 (has links)
The worldwide increasing number of persons affected by largely preventable diseases like diabetes demands better prevention and treatment. Insulin is required for effective utilisation of circulating nutrients. Impaired responsiveness to insulin (insulin resistance, IR) is a hallmark of type 2 diabetes and independently raises the risk of heart attack and stroke. The pathophysiology of IR is incompletely understood. High-throughput measurement of large numbers of circulating biomarkers may provide new insights beyond established risk factors. The aims of this thesis were to (i) use proteomics, metabolomics and genomics methods in large community samples to identify biomarkers of IR; (ii) assess biomarkers for risk prediction and insights into aetiology and consequences of IR; and (iii) use Mendelian randomisation analysis to assess causality. In Study I, analysis of 80 circulating proteins in 70-to-77-year-old Swedes identified cathepsin D as a biomarker for IR and highlighted a tentative causal effect of IR on raised plasma tissue plasminogen activator levels. In Study II, nontargeted fasting plasma metabolomics was used to discover 52 metabolites associated with glycaemic traits in non-diabetic 70-year-old men. Replication in independent samples of several thousand persons provided evidence for a causal effect of IR on reduced plasma oleic acid and palmitoleic acid levels. In Study III, nontargeted metabolomics in plasma samples obtained at three time points during an oral glucose challenge in 70-year-old men identified associations between a physiologic measure of IR and concentration changes in medium-chain acylcarnitines, monounsaturated fatty acids, bile acids and lysophosphatidylethanolamines. Study IV provided evidence in two large longitudinal cohorts for causal effects of type 2 diabetes and impaired insulin secretion on raised coronary artery disease risk. In conclusion, the Studies in this thesis provide new insights into the pathophysiology and adverse health consequences of IR and illustrate the value of combining traditional epidemiologic designs with recent molecular techniques and bioinformatics methods. The results provide limited evidence for the role of circulating proteins and small molecules in IR and require replication in separate studies and validation in experimental designs.
|
754 |
A Muscle Perspective on the Pathophysiology of Amyotrophic Lateral Sclerosis : Differences between extraocular and limb musclesHarandi, Vahid M. January 2016 (has links)
Background: Amyotrophic lateral sclerosis (ALS) is a late-onset progressive neurodegenerative disorder. ALS has been traditionally believed to be primarily a motor neuron disease. However, accumulating data indicate that loss of contact between the axons and the muscle fibres occurs early; long before the death of motor neurons and that muscle fibres may initiate motor neuron degeneration. Thus, the view of ALS is changing focus from motor neurons alone to also include the muscle fibres and the neuromuscular junctions (NMJs). While skeletal muscles are affected in ALS, oculomotor disturbances are not dominant features of this disease and extraocular muscles (EOMs) are far less affected than limb muscles. Why oculomotor neurons and EOMs are capable to be more resistant in the pathogenetic process of ALS is still unknown. The overall goal of this thesis is to explore the pathophysiology of ALS from a muscle perspective and in particular study the expression and distribution of key neurotrophic factors (NTFs) and Wnt proteins in EOMs and limb muscles from ALS donors and from SOD1G93A transgenic mice. Comparisons were made with age-matched controls to distinguish between changes related to ALS and to ageing. Results: Brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4) were present in EOMs and limb muscles at both mRNA and protein levels in control mice. The mRNA levels of BDNF, NT-3 and NT-4 were significantly lower in EOMs than in limb muscles of early and/or late control mice, indicating an intrinsic difference in NTFs expression between EOMs and limb muscles. qRT-PCR analysis showed significantly upregulated mRNA levels of NT-3 and GDNF in EOMs but significantly downregulated mRNA levels of NT-4 in limb muscles from SOD1G93A transgenic mice at early stage. The NTFs were detected immunohistochemically in NMJs, nerve axons and muscle fibres. The expression of BDNF, GDNF and NT-4 on NMJs of limb muscles, but not of EOMs, was significantly decreased in terminal stage ALS animals as compared to the limb muscles of the age-matched controls. In contrast, NTFs expression in intramuscular nerve axons did not present significant changes in either muscle group of early or late ALS mice. NTFs, especially BDNF and NT-4 were upregulated in some small-sized muscle fibres in limb muscles of late stage ALS mice. All the four Wnt isoforms, Wnt1, Wnt3a, Wnt5a and Wnt7a were detected in most axon profiles in all human EOMs with ALS, whereas significantly fewer axon profiles were positive in the human limb muscles except for Wnt5a. Similar differential patterns were found in myofibres, except for Wnt7a, where its expression was elevated within sarcolemma of limb muscle fibres. β-catenin, a marker of the canonical Wnt pathway was activated in a subset of myofibres in the EOMs and limb muscle in all ALS patients. In the SOD1G93A mouse, all four Wnt isoforms were significantly decreased in the NMJs at the terminal stage compared to age matched controls. Conclusions: There were clear differences in NTF and Wnt expression patterns between EOM and limb muscle, suggesting that they may play a role in the distinct susceptibility of these two muscle groups to ALS. In particular, the early upregulation of GDNF and NT-3 in the EOMs might play a role in the preservation of the EOMs in ALS. Further studies are needed to determine whether these proteins and the pathways they control may be have a future potential as protecting agents for other muscles.
|
755 |
Development of a Healthy and Satiating Snack / Development of a Healthy and Satiating SnackOudah, Dayana January 2008 (has links)
ABSTRACT The demand of healthier products is increasing, and more people are more interested of what they eat. Statistics show that the consumption of snacks is rising. Hyperglycemia leads to an increased risk for complications in type II diabetes mellitus. Increased levels of postprandial plasma glucose may also lead to equal or maybe more harmful effects than fasting hyperglycemia. When the levels of postprandial plasma glucose are decreased, the development of cardiovascular complications is delayed, why it is important to lower the snacks consumption especially snacks that brings hunger quickly after they are eaten. Because of these factors, healthier products were developed in this study. The aim was to develop a wafer chocolate product that gives higher satiating effect and healthier blood glucose levels compared to one of Cloetta’s chocolate products. Two raw materials were used, a new carbohydrate and a new fat. The new carbohydrate is a healthier sugar alternative than sucrose, since it leads to lower and prolonged increase in blood glucose and insulin levels. The new fat is based on natural oil that is believed to be healthy, mainly due to its satiating effect. The effects of these two materials on blood glucose response and satiety were examined in two products. Furthermore, the products were made of fat reduced milk chocolate in which sucrose in the chocolate mass was 100 % replaced with the new carbohydrate, dietary fibre and fruit concentrate. Only one of the products contained the new fat. The products, together with Cloetta’s chocolate product were consumed by 17 healthy subjects. Blood glucose response and satiating effect after product intake were examined during a period of 3 days. When blood glucose response was analyzed, a slight indication that the products were relatively healthier than placebo, due to placebo’s unhealthy fluctuations, was found. No clear differences regarding blood sugar maxima were found. Placebo showed, as expected, the highest blood glucose maxima and the largest incremental area under curve, but the maxima of the new fat-lacking product was less than half as high as that of the new fatcontaining product and the area was smaller too, which was not expected. The results regarding the hunger levels were not as expected either since the new fat-lacking product was most satiating while the new fatcontaining product was the least satiating. Despite that, 57 % of the subjects reported they would by such products in the future. Several biases may have played a role in the results, for example whether or not subjects followed the criteria (e.g. lunch time, exercise), stress, worry, individual energy requirement and how serious and focused the subjects were. However, for further research, increasing the new fat content to 3 g, a bigger sized product, different filling, more subjects and more repeats of same measurements is recommended. / SVENSK SAMMANFATTNING Efterfrågan på hälsosammare produkter ökar, och fler människor blir mer intresserade av vad de äter. Statistik visar att konsumtionen av mellanmål ökar. Hyperglykemi leder till en ökad risk för komplikationer i typ II-diabetiker. Ökade nivåer av postprandiell plasmaglukos kan leda till lika eller mer skadliga effekter än fastande hyperglykemi. När nivåerna av postprandiell plasmaglukos är lägre reduceras utvecklingen av kardiovaskulära komplikationer, därför är det viktigt att minska småätandet, speciellt av mellanmål som leder till hunger snart efter att de har ätits. På grund av dessa faktorer har hälsosammare produkter utvecklats i denna studie. Syftet var att utveckla en kexchokladprodukt som har högre mättnadseffekt samt hälsosammare blodsockernivåer jämfört med en av Cloettas chokladprodukter. Två produkter som alternativ till Cloettas chokladprodukter utvecklades. I dessa användes en ny kolhydrat och ett nytt fett. Den nya kolhydraten är ett hälsosammare sockeralternativ än sukros, då den leder till en lägre och förlängd ökning av blodglukos- och insulinnivåer. Det nya fettet är baserat på en naturlig olja som är hälsosam på grund av dess mättande effekt. Effekten av dessa två ämnen undersöktes. Vidare så gjordes de två produkterna av fettreducerad mjölkchoklad i vilken sukros i chokladmassan var 100 % ersatt med den nya kolhydraten, kostfiber samt fruktkoncentrat. endast en av produkterna innehöll det nya fettet. Produkterna, tillsammans med Cloettas chokladprodukt (placebo) konsumerades av 17 friska personer. Blodsockerresponsen och den mättande effekten efter produktintaget undersöktes under 3 timmars period per dag i totalt 3 dagar. När blodglukosrespons analyserades hittades en svag indikation på att produkterna var relativt hälsosammare än placebo, på grund av de ohälsosamma fluktuationerna. Inga klara skillnader med avseende på blodsockermaxima hittades. Placebo visade, som väntat, det högsta blodglukosmaximum och den största arean under kurvan, men maximum för produkten utan det nya fettet var mindre än hälften så högt som det för produkten med det nya fettet och även arean under kurvan var mindre, vilket inte var förväntat. De upplevda hungernivåerna var inte heller som förväntat då produkten som saknar det nya fettet mättade flest personer medan produkten innehållande nya fettet mättade minst antal personer. Trots det så kunde 57 % av deltagarna tänka sig köpa sådana produkter i framtiden. Flera faktorer kan ha påverkat resultatet, till exempel huruvida försökspersonerna följde kriterierna (t.ex. lunchtid, träning), stress, oro, individuella energibehov samt hur allvarliga och fokuserade personerna var när de angav hungernivåerna. För vidare studier rekommenderas ett högre innehåll av det nya fettet (3 g), en större produkt, annorlunda fruktbaserad fyllning och fler deltagare och flera upprepningar av samma mätningar.
|
756 |
Transcriptional regulation of mouse ribonucleotide reductaseElfving, Anna January 2011 (has links)
All living organisms are made of cells and they store their hereditary information in the form of double stranded DNA. In all organisms DNA replication and repair is essential for cell division and cell survival. These processes require deoxyribonucleotides (dNTPs), the building blocks of DNA. Ribonucleotide reductase (RNR) is catalyzing the rate limiting step in the de novo synthesis of dNTPs. Active RNR is a heterodimeric protein complex. In S phase cells, the mouse RNR consists of the R1 and the R2 proteins. The R1/R2 RNR-complex supplies the cell with dNTPs required for DNA replication. Outside S-phase or in non-proliferating cells RNR is composed of R1 and p53R2 proteins. The R1/p53R2 RNR-complex supplies cells with dNTPs required for mitochondrial DNA replication and for DNA repair. An undisturbed dNTP regulation is important since unbalanced dNTP pools results in DNA mutations and cell death. Since unbalanced pools are harmful to the cell, RNR activity is regulated at many levels. The aim of this thesis is to study how the mouse RNR genes are regulated at a transcriptional level. We have focused on the promoter regions of all three mouse RNR genes. Primer extension experiments show that the transcription start of the TATA-less p53R2 promoter colocalizes with an earlier unidentified initiator element (Inr-element). This element is similar to the known Inr-element in the mouse R1 promoter. Furthermore, functional studies of the R1 promoter revealed a putative E2F binding element. This result suggests that the S phase specific transcription of the R1 gene is regulated by a similar mechanism as the R2 promoter which contains an E2F binding site. Finally we have established a method to partially purify the transcription factor(s) binding the upstream activating region in the mouse R2 promoter by phosphocellulose chromatography and affinity purification using oligonucleotides immobilized on magnetic beads. This method will allow us to further study the transcription factors responsible for activating expression of the R2 protein. This method has a potential to be utilized as a general method when purifying unknown transcription factors.
|
757 |
Preclinical evaluation of immunostimulatory gene therapy for pancreatic cancerEriksson, Emma January 2017 (has links)
Pancreatic cancer is characterized by its desmoplastic tumor microenvironment and the infiltration of immunosuppressive cells. It is a devastating disease where most patients are diagnosed at a late stage and the treatment options are few. The development of new treatments is surly needed. One treatment option explored is the use of immunotherapy with the intent to activate the immune system and change the balance from pro-tumor to anti-tumor. This thesis presents the idea of using oncolytic adenoviruses called LOAd-viruses that are armed with immunostimulatory- and microenvironment-modulating transgenes. For effective treatment of pancreatic cancer, the virus needs to be able to be given in addition to standard therapy, the chemotherapy gemcitabine. In paper I, the immunomodulatory effect of gemcitabine was evaluated in blood from pancreatic cancer patients receiving their first 28-day cycle of treatment with infusions day 1, 8 and 15 followed by a resting period. Gemcitabine reduced the level of immunosup-pressive cells and molecules but the effect did not last throughout the resting period. On the other hand, gemcitabine did not affect the level or proliferative function of effector T cells indicating that gemcitabine could be combined with immunotherapy. The LOAd700 virus expresses a novel membrane-bound trimerized form of CD40L (TMZ-CD40L). In paper II, LOAd700 showed to be oncolytic in pancreatic cancer cell lines as well as being immunostimulatory as shown by its capacity to activate dendritic cells (DCs), myeloid cells, endothelium, and to promote expansion of antigen-specific T cells. In paper III, LOAd703 armed with both 4-1BBL and TMZ-CD40L was evaluated. LOAd703 gave a more profound effect than LOAd700 on activation of DCs and the virus was also capable of reducing factors in stellate cells connected to the desmo-plastic and immunosuppressive microenvironment. In paper IV, LOAd713 armed with TMZ-CD40L in combination with a single-chain variable fragment against IL-6R was evaluated. The virus could kill pancreatic cancer cells lines through oncolysis and could also reduce factors involved in desmoplasia in stellate cells. Most interestingly, LOAd713 could reduce the up-regulation of PD-1/PD-L1 in DCs after CD40 activation. Taken together, LOAd703 and LOAd713 seem to have interesting features with their combination of immunostimulation and microenvironment modulation. At present, LOAd703 is evaluated in a clinical trial for pancreatic cancer (NCT02705196).
|
758 |
Antibiotic susceptibility and resistance in Neisseria meningitidis : phenotypic and genotypic characteristicsThulin Hedberg, Sara January 2009 (has links)
Neisseria meningitidis, also known as the meningococcus, is a globally spread obligate human bacterium causing meningitis and/or septicaemia. It is responsible for epidemics in both developed and developing countries. Untreated invasive meningococcal disease is often fatal, and despite modern intensive care units, the mortality is still remarkably high (approximately 10%). The continuously increasing antibiotic resistance in many bacterial pathogens is a serious public health threat worldwide and there have been numerous reports of emerging resistance in meningococci during the past decades. In paper I, the gene linked to reduced susceptibility to penicillins, the penA gene, was examined. The totally reported variation in all published penA genes was described. The penA gene was highly variable (in total 130 variants were identified). By examination of clinical meningococcal isolates, the association between penA gene sequences and penicillin susceptibility could be determined. Isolates with reduced susceptibility displayed mosaic structures in the penA gene. Two closely positioned nucleotide polymorphisms were identified in all isolates with reduced penicillin susceptibility and mosaic structured penA genes. These alterations were absent in all susceptible isolates and were successfully used to detect reduced penicillin susceptibility by real-time PCR and pyrosequencing in paper II. In papers III and IV, antibiotic susceptibility and characteristics of Swedish and African meningitis belt meningococcal isolates were comprehensively described. Although both populations were mainly susceptible to the antibiotics used for treatment and prophylaxis, the proportion of meningococci with reduced penicillin susceptibility was slightly higher in Sweden. A large proportion of the African isolates was resistant to tetracycline and erythromycin. In paper V, the gene linked to rifampicin resistance, the rpoB gene, was examined in meningococci from 12 mainly European countries. Alterations of three amino acids in the RpoB protein were found to always and directly lead to rifampicin resistance. A new breakpoint for rifampicin resistance in meningococci was suggested. The biological cost of the RpoB alterations was investigated in mice. The pathogenicity/virulence was significantly lower in rifampicin resistant mutants as compared with susceptible wild-type bacteria.
|
759 |
Host cell responses to Helicobacter pylori secreted factorsGarcia Lobato Tavares, Raquel January 2017 (has links)
The infection of the human gastric mucosa by the bacterium Helicobacter pylori can lead to the development of gastritis, gastroduodenal ulcers, and cancer. The factors that determine disease development in a small percentage of infected individuals are still not fully understood. In this thesis, we aimed to identify and functionally characterize novel virulence factors of H. pylori and to understand their effect on host cell responses. In Paper I, we found that JHP0290, an uncharacterized secreted protein of H. pylori, induced macrophage apoptosis concomitant to the release of pro-inflammatory cytokine TNF via the regulation of the Src family of kinases and ERK MAPK pathways. In paper II, we demonstrated that JHP0290 exhibits both proliferative and anti-apoptotic activity, together with a faster progression of the cell cycle in gastric epithelial cells. During these responses, ERK MAPK and NF-κB pathways were activated. Paper III revealed a pro-apoptotic effect of another H. pylori-secreted protein HP1286 in macrophages via the TNF-independent and ERK-dependent pathways. No apoptosis was observed in HP1286-treated T cells or HL60 neutrophil-like cells, suggesting cell-type specific effect of HP1286. In Paper IV, we observed the pro-inflammatory activity of H. pylori secreted protein HP1173 in macrophages. The protein was found to induce TNF, IL-1β, and IL-8 in macrophages through MAPKs, NF-κB, and AP-1 signaling pathways. Furthermore, differential expression and release of JHP0290, HP1286, and HP1173 homologues was observed among H. pylori strains (papers II, III, IV). Due to their ability to regulate multiple host cell responses, proteins JHP0290, HP1286, and HP1173 could play an important role in bacterial pathogenesis.
|
760 |
Development and Application of Proximity Assays for Proteome Analysis in Medicinede Oliveira, Felipe Marques Souza January 2018 (has links)
Along with proteins, a myriad of different molecular biomarkers, such as post-translational modifications and autoantibodies, could be used in an attempt to improve disease detection and progression. In this thesis, I build on several iterations of the proximity ligation assay to develop and apply new adaptable methods to facilitate detection of proteins, autoantibodies and post-translational modifications. In paper I, we present an adaptation of the solid-phase proximity ligation assay (SP-PLA) for the detection of post-translational modification of proteins (PTMs). The assay was adapted for the detection of two of the most commons PTMs present in proteins, glycosylation and phosphorylation, offering the encouraging prospect of using detection of PTMs in a diagnostic or prognostic capacity. In paper II, we developed a variant of the proximity ligation assay using micro titer plate for detection and quantification of protein using optical density as readout in the fluorometer, termed PLARCA. With a detection limit considerably lower than ELISA, PLARCA detected femtomolar levels of these proteins in patient samples. In paper III, we aim to compare detection values of samples collected from earlobe capillary, venous plasma, as well as capillary plasma stored in dried plasma spots (DPS) assessed with a 92-plex inflammation panel using multiplex proximity extension assay (PEA). Despite the high variability in protein measurements between the three sample sources, we were able to conclude that earlobe capillary sampling is a suitable less invasive alternative, to venipuncture. In paper IV, we describe the application of PLARCA and proximity extension assay (PEA) for the detection of GAD65 autoantibodies (GADA). Thus, offering highly sensitive and specific autoimmunity detection.
|
Page generated in 0.0361 seconds