• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 15
  • 13
  • 9
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 30
  • 29
  • 25
  • 20
  • 20
  • 19
  • 18
  • 17
  • 16
  • 16
  • 15
  • 15
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Dynamic Grid Motion in a High-Order Computational Aeroacoustic Solver

Heminger, Michael Alan 09 September 2010 (has links)
No description available.
122

Genetic optimization and experimental validation of a camber morphing winglet / Estudo da aplicação de uma winglet de camber variável em um jato executivo

Eguea, João Paulo 18 March 2019 (has links)
International aviation regulations on emissions are becoming more strict. Improvements goals on fuel efficiency demand development of technologies capable of reducing fuel consumption and gas emissions. Morphing structures capability to adapt their aerodynamic shape for optimal condition in flight brings potential for reduction of aircraft drag and operating fuel consumption, minimizing gas emissions and fuel expenses. This study presents an investigation on the impact of a camber morphing winglet on midsize business jet using numerical simulation and wind tunnel experiments. A genetic algorithm was used to optimize the winglet sections camber for different flight conditions. Optimized geometries achieved total drag reduction of up to 0.58% compared to original winglet for single condition optimization, reaching up to 7 % reduction on consumed fuel on a typical mission. This efficiency improvement allows aircraft to carry 900 kg additional load, comprising the morphing system and extra payload. There is an indication of even better results for applications on a bigger commercial jet. Presented methodology is also suitable for new winglet fixed geometry design or incorporating morphing technology. Aerodynamic balance force measurements showed that optimized winglets increased the wing effective aspect ratio (AReff), reducing the lift-induced drag, and maximum lift coefficient (CLmax). However, maximum lift to drag ratio (L/Dmax) was reduced on CL optimization region due to flow differences between optimization and wind tunnel conditions. Aerodynamic efficiency improvement was found for greater lift coefficients (CL). Reductions on wing tip vortex size and intensity due to winglet installation are seen on measured vorticity map, showing liftinduced drag reduction according to Maskells equation. Parabolic drag polar and Maskells equation methods were used for lift-induced drag calculation, using balance force and flowing mapping data for calculations. The presented concept showed considerable aircraft performance improvement, using a feasible device with greater certification ease than other morphing structures concepts, once the failure of this system would not compromise flight safety. Further investigation using computational fluid dynamics (CFD) and wind tunnel experiments is necessary to develop and test a functional camber morphing winglet device. / Regulamentações internacionais sobre emissões estão se tornando mais rigorosas. Metas de melhoria da eficiência de consumo de combustível demandam o desenvolvimento de tecnologias capazes de reduzir o consumo e emissões de gases. Estruturas capazes de adaptar sua forma aerodinâmica para condição ótima em voo trazem potencial de redução do arrasto e consumo de combustível da aeronave, minimizando as emissões de gases e gastos com combustível. Este estudo apresenta uma investigação sobre o impacto de uma winglet de camber variável em um jato executivo da categoria mid size utilizando simulação numérica e experimentos em túnel de vento. Um algoritmo genético foi usado para otimizar o camber das seções para diferentes fases de voo. As geometrias otimizadas reduziram o arrasto total em até 0.58% comparadas a winglet original na otimização de condição única, alcançando até 7% de redução no combustível consumido em missão típica. Essa melhoria de eficiência permite a aeronave carregar 900 kg de carga adicional, composta pelo sistema de adaptação e carga paga extra. Há uma indicação de resultados ainda melhores para aplicação em um jato comercial maior. A metodologia apresentada é apropriada para projeto de uma nova winglet de geometria fixa ou que incorpore a tecnologia de adaptação. Medidas de força com balança aerodinâmica mostraram que as winglets otimizadas aumentaram o alongamento efetivo da asa (AReff), reduzindo o arrasto induzido, e o coeficiente de sustentação máximo (CLmax). No entanto, a máxima razão entre sustentação e arrasto (L/Dmax) foi reduzida dentro do intervalo de CL da otimização devido as diferenças entre as condições do escoamento na otimização e no túnel de vento. Melhoria na eficiência aerodinâmica foi obtida para coeficientes de sustentação (CL) maiores. Reduções no tamanho e intensidade do vórtice de ponta de asa são vistas nos mapas de vorticidade medidos, mostrando redução do arrasto induzido segundo a equação de Maskell. Os métodos da polar de arrasto parabólica e da equação de Maskell foram usados para o cálculo do arrasto induzido, utilizando nos cálculos os dados de força da balança e o mapeamento do escoamento. O conceito apresentado mostrou melhoria considerável no desempenho da aeronave, utilizando um sistema factível e com maior facilidade para certificação que outros conceitos de estruturas adaptáveis, uma vez que a falha desse sistema não comprometeria a segurança do voo. Mais estudos são necessários para desenvolver e testar uma winglet de camber varável funcional.
123

Propagation de la variabilité de la morphologie humaine sur le débit d'absorption spécifique en dosimétrie numérique.

El Habachi, Aimad Abdeslam 31 January 2011 (has links) (PDF)
Dans ce mémoire, nous étudions l'exposition aux ondes électromagnétiques l'échelle d'une population. Cette étude est réalisée pour une exposition à une onde plane orientée frontalement sur des modèles anatomiques du corps humains (fantômes) avec une puissance incidente de 1W/m2 et une fréquence de 2.1 GHz. Pour ce faire, l'idée est de construire un modèle du WBSAR (Whole Body averaged Specific Absorption Rate) en fonction de lamorphologie. Les facteurs morphologiques influençant le WBSAR ont été identifiés à l'aide des fantômes existant dont le nombre se limite à 18 et des modèles de régressions. Cette analyse préliminaire montre que les facteurs morphologiques externes (taille, poids ...) seuls ne suffisent pas pour construire un tel modèle, mais l'introduction des facteurs morphologiques internes (muscles, graisse ...) est nécessaire. L'absence de données statistiques sur les facteurs morphologiques internes de populations nous a conduits à intégrer des connaissances apriori sur ces facteursafin d'étudier l'exposition d'une population donnée. Des lois paramétriques usuelles et des mélanges de gaussiennes sont utilisés pour modéliser ces facteurs internes afin d'étudier leur influence sur le quantile du WBSAR à 95 %.L'utilisation des fantômes homogènes où le fantôme homogène est obtenu en remplaçant tous les tissus internes par un unique tissu équivalent. Ces fantômes homogènes permettent de s'affranchir de l'influence de la morphologie interne dans un modèle du WBSAR et facilitent également leur déformation par une technique de morphing. Ainsi nous avons pu enrichir la base de fantômes existant. Pour donner une estimation du quantile du WBSAR à 95 %, nous avons mis en place un plan d'expériences séquentiel qui repose sur un modèle paramétrique du WBSAR et l'inférence bayésienne et qui permet de raffiner la région à 95 %. Cette approche nous a permis de trouver le quantile à 95 % pour une population et un exemple de fantôme correspondant. Cependant, cette approche ne permet pas d'obtenir une estimation de toute la distribution du WBSAR. Afin d'obtenir une estimation de toute cette distribution, nous avons construit une surface de réponse en utilisant les polynômes de chaos. Dans l'objectif d'obtenirdes résultats cohérents nous avons effectué un changement de variables permettant de traduire les connaissances physiques dans cette surface de réponse.
124

Morphing arquitectónico: transformaciones entre las casas usonianas de Frank Lloyd Wright

Herrera Velazco, Rodrigo 16 February 2012 (has links)
Esta tesis investiga sobre el proceso de transformación de la forma arquitectónica, analizando una técnica específica denominada morphing. La técnica del morphing se utiliza en los gráficos por ordenador para la transformación de la forma entre dos o más objetos dados. Desde un punto de vista técnico, se revisan y actualizan las metodologías y aplicaciones existentes, sus características específicas y sus incidencias sobre la arquitectura. Desde un punto de vista práctico, se utilizan una serie de modelos de las casas Usonianas de Frank Lloyd Wright, con el fin de experimentar la técnica y ver qué utilidades se pueden obtener a partir de su lógica de diseño. Como resultado de este análisis se obtiene una metodología genérica para el procedimiento de un morphing arquitectónico. / This thesis investigates the transformation of architectural form, analyzing a specific technique called morphing. Morphing is a technique used in computer graphics to transform a form between two or more given objects. From a technical point of view, the existing techniques are reviewed and updated, as well as their specific characteristics and impact on architecture. From a practical point of view, some models of Usonian houses of Frank Lloyd Wright are used to experience the technique and see which utilities are available from his design logic. As a result of this analysis a generic methodology for the process of architectural morphing is obtained.
125

Evaluation of innovative concepts for semi-active and active rotorcraft control

Van Weddingen, Yannick 14 November 2011 (has links)
Lead-lag dampers are present in most rotor systems to provide the desired level of damping for all flight conditions. These dampers are critical components of the rotor system, and the performance of semi-active Coulomb-friction-based lead-lag dampers is examined for the UH-60 aircraft. The concept of adaptive damping, or “damping on demand,” is discussed for both ground resonance and forward flight. The concept of selective damping is also assessed, and shown to face many challenges. In rotorcraft flight dynamics, optimized warping twist change is a potentially enabling technology to improve overall rotorcraft performance. Research efforts in recent years have led to the application of active materials for rotorcraft blade actuation. An innovative concept is proposed wherein the typically closed section blade is cut open to create a torsionally compliant structure that acts as its own amplification device; deformation of the blade is dynamically controlled by out-of-plane warping. Full-blade warping is shown to have the potential for great design flexibility. Recent advances in rotorcraft blade design have also focused on variable-camber airfoils, particularly concepts involving “truss-core” configurations. One promising concept is the use of hexagonal chiral lattice structures in continuously deformable helicopter blades. The static behavior of passive and active chiral networks using piezoelectric actuation strategies is investigated, including under typical aerodynamic load levels. The analysis is then extended to the dynamic response of active chiral networks in unsteady aerodynamic environments.
126

An adaptive model reduction approach for 3D fatigue crack growth in small scale yielding conditions

Galland, Florent 04 February 2011 (has links) (PDF)
It has been known for decades that fatigue crack propagation in elastic-plastic media is very sensitive to load history since the nonlinear behavior of the material can have a great influence on propagation rates. However, the raw computation of millions of fatigue cycles with nonlinear material behavior on tridimensional structures would lead to prohibitive calculation times. In this respect, we propose a global model reduction strategy, mixing both the a posteriori and a priori approaches in order to drastically decrease the computational cost of these types of problems. First, the small scale yielding hypothesis is assumed, and an a posteriori model reduction of the plastic behavior of the cracked structure is performed. This reduced model provides incrementally the plastic state in the vicinity of the crack front, from which the instantaneous crack growth rate is inferred. Then an additional a priori model reduction technique is used to accelerate even more the time to solution of the whole problem. This a priori approach consists in building incrementally and without any previous calculations a reduced basis specific to the considered test-case, by extracting information from the evolving displacement field of the structure. Then the displacement solutions of the updated crack geometries are sought as linear combinations of those few basis vectors. The numerical method chosen for this work is the finite element method. Hence, during the propagation the spatial discretization of the model has to be updated to be consistent with the evolving crack front. For this purpose, a specific mesh morphing technique is used, that enables to discretize the evolving model geometry with meshes of the same topology. This morphing method appears to be a key component of the model reduction strategy. Finally, the whole strategy introduced above is embedded inside an adaptive approach, in order to ensure the quality of the results with respect to a given accuracy. The accuracy and the efficiency of this global strategy have been shown through several examples; either in bidimensional and tridimensional cases for model crack propagation, including the industrial example of a helicopter structure.
127

3D mesh morphing

Mocanu, Bogdan Cosmin 29 November 2012 (has links) (PDF)
This Ph.D. thesis specifically deals with the issue of metamorphosis of 3D objects represented as 3D triangular meshes. The objective is to elaborate a complete 3D mesh morphing methodology which ensures high quality transition sequences, smooth and gradual, consistent with respect to both geometry and topology, and visually pleasant. Our first contributions concern the two different approaches of parameterization: a new barycentric mapping algorithm based on the preservation of the mesh length ratios, and a spherical parameterization technique, exploiting a Gaussian curvature criterion. The experimental evaluation, carried out on 3D models of various shapes, demonstrated a considerably improvement in terms of mesh distortion for both methods. In order to align the features of the two input models, we have considered a warping technique based on the CTPS C2a radial basis function suitable to deform the models embeddings in the parametric domain maintaining a valid mapping through the entire movement process. We show how this technique has to be adapted in order to warp meshes specified in the parametric domains. A final contribution consists of a novel algorithm for constructing a pseudo-metamesh that avoids the complex process of edge intersections encountered in the state-of-the-art. The obtained mesh structure is characterized by a small number of vertices and it is able to approximate both the source and target shapes. The entire mesh morphing framework has been integrated in an interactive application that allows the user to control and visualize all the stages of the morphing process
128

Effects of engine placement and morphing on nonlinear aeroelastic behavior of flying wing aircraft

Mardanpour, Pezhman 13 January 2014 (has links)
Effects of engine placement on flutter characteristics of a very flexible high-aspect-ratio wing are investigated using the code NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft). The analysis was validated against published results for divergence and flutter of swept wings and found to be in excellent agreement with the experimental results of the classical wing of Goland. Moreover, modal frequencies and damping obtained for the Goland wing were found in excellent agreement with published results based on a new continuum-based unsteady aerodynamic formulation. Gravity for this class of wings plays an important role in flutter characteristics. In the absence of aerodynamic and gravitational forces and without an engine, the kinetic energy of the first two modes are calculated. Maximum and minimum flutter speed locations coincide with the area of minimum and maximum kinetic energy of the second bending and torsion modes. Time-dependent dynamic behavior of a turboshaft engine (JetCat SP5) is simulated with a transient engine model and the nonlinear aeroelastic response of the wing to the engine's time-dependent thrust and dynamic excitation is presented. Below the flutter speed, at the wing tip and behind the elastic axis, the impulse engine excitation leads to a stable limit cycle oscillation; and for the ramp kind of excitation, beyond the flutter speed, at 75% span, behind the elastic axis, it produces chaotic oscillation of the wing. Both the excitations above the flutter speed are stabilized, on the inboard portion of the wing. Effects of engine placement and sweep on flutter characteristics of a backswept flying wing resembling the Horten IV are explored using NATASHA. This aircraft exhibits a non-oscillatory yawing instability, expected in aircraft with neither a vertical tail nor yaw control. More important, however, is the presence of a low frequency “body-freedom flutter” mode. The aircraft center of gravity was held fixed during the study, which allowed aircraft controls to trim similarly for each engine location, and minimized flutter speed variations along the inboard span. Maximum flutter speed occurred for engine placement just outboard of 60% span with engine center of gravity forward of the elastic axis. The body-freedom flutter mode was largely unaffected by the engine placement except for cases in which the engine is placed at the wing tip and near the elastic axis. In the absence of engines, aerodynamics, and gravity, a region of minimum kinetic energy density for the first symmetric free-free bending mode is also near the 60% span. A possible relationship between the favorable flutter characteristics obtained by placing the engines at that point and the region of minimum kinetic energy is briefly explored. Effects of multiple engine placement on a similar type of aircraft are studied. The results showed that multiple engine placement increases flutter speed particularly when the engines are placed in the outboard portion of the wing (60% to 70% span), forward of the elastic axis, while the lift to drag ratio is affected negligibly. The behavior of the sub- and supercritical eigenvalues is studied for two cases of engine placement. NATASHA captures a hump body-freedom flutter with low frequency for the clean wing case, which disappears as the engines are placed on the wings. In neither case is there any apparent coalescence between the unstable modes. NATASHA captures other non-oscillatory unstable roots with very small amplitude, apparently originating with flight dynamics. For the clean-wing case, in the absence of aerodynamic and gravitational forces, the regions of minimum kinetic energy density for the first and third bending modes are located around 60% span. For the second mode, this kinetic energy density has local minima around the 20% and 80% span. The regions of minimum kinetic energy of these modes are in agreement with calculations that show a noticeable increase in flutter speed at these regions if engines are placed forward of the elastic axis. High Altitude, Long Endurance (HALE) aircraft can achieve sustained, uninterrupted flight time if they use solar power. Wing morphing of solar powered HALE aircraft can significantly increase solar energy absorbency. An example of the kind of morphing considered in this thesis requires the wings to fold so as to orient a solar panel to be hit more directly by the sun's rays at specific times of the day. In this study solar powered HALE flying wing aircraft are modeled with three beams with lockable hinge connections. Such aircraft are shown to be capable of morphing passively, following the sun by means of aerodynamic forces and engine thrusts. The analysis underlying NATASHA was extended to include the ability to simulate morphing of the aircraft into a “Z” configuration. Because of the “long endurance” feature of HALE aircraft, such morphing needs to be done without relying on actuators and at as near zero energy cost as possible. The emphasis of this study is to substantially demonstrate the processes required to passively morph a flying wing into a Z-shaped configuration and back again.
129

Development of an aeroelastic methodology for surface morphing rotors

Cook, James Richard 22 May 2014 (has links)
A Computational Fluid Dynamics/Computational Fluid Dynamics (CFD/CSD) coupling interface was developed to obtain aeroelastic solutions of a morphing rotor. The methodology was implemented in Fully Unstructured Navier-Stokes (FUN3D) solver, which communicates aerodynamic forces on the blade surface to University of Michigan’s Nonlinear Active Beam Solver (UM/NLABS) and then imports structural deflections of the blade surface during each time step. Development of this methodology adds the capability to model elastic rotors with flexible airfoils. The method was validated through an aerodynamic work analysis, comparison of sectional blade loads and deflections with experimental data, and two-dimensional stability analyses for pitch/plunge flutter and camber flutter. Computational simulations were performed for a rotor in forward flight with the CFD/CSD solver and with a comprehensive CSD solver using finite-state (F-S) aerodynamics, and results were compared. Prescribed three-per-revolution camber deflections were then applied, and solutions of the CFD/CSD and comprehensive CSD computations indicated that three-per-revolution camber actuation has the potential to minimize hub forces and moments with deflections as small as 0.25%c. In anticipation of active rotor experiments inside enclosed facilities, the capability of CFD for accurately simulating flow inside enclosed volumes was examined. It was determined that URANS models are not suitable for rotor simulations in an enclosed facility, and components that are a distance of two to three rotor radii from the hub were also observed to have a large influence on recirculation and performance.
130

Morphing multirésolution de courbes

Cornillac, Mélanie 09 December 2010 (has links) (PDF)
Le morphing est la transformation progressive et lisse d'un modèle en un autre par interpolation. Le problème est de créer une transition entre deux formes qui soit esthétique et intuitive. Les formes intermédiaires doivent préserver l'apparence et les propriétés des formes en entrée. Le processus de morphing se décompose en deux problèmes : le couplage des sommets (trouver une correspondance entre les caractéristiques géométriques des objets) et la trajectoire des sommets (trouver la trajectoire suivie par deux éléments correspondants au cours du morphing). Ces deux problèmes suscitent toujours beaucoup d'intérêt en recherche, puisqu'il n'existe pas à ce jour de définition formelle d'une solution satisfaisante. Dans cette thèse, nous nous intéressons au problème de la trajectoire des sommets au cours du morphing. Nous présentons un nouvel algorithme de morphing de courbes utilisant une décomposition multirésolution intrinsèque que nous introduisons, basée sur des quantités intrinsèques des courbes polygonales : les longueurs et angles. Elle présente l'avantage que l'orientation des détails suit naturellement n'importe quelle déformation. Le principe du morphing multirésolution est d'interpoler séparément les coefficients grossiers et ceux de détails issus de la décomposition multirésolution. Les polygones intermédiaires se comportent naturellement et leur distorsion est minimale grâce à la représentation multirésolution intrinsèque que nous avons développée. Nous montrons la robustesse de notre algorithme sur des polygones de grande taille comportant de nombreux détails. Nous déclinons notre morphing MR pour les courbes planaires, puis pour les courbes de l'espace.

Page generated in 0.0432 seconds