Spelling suggestions: "subject:"mos2"" "subject:"nos2""
101 |
Electrocatalytic Studies Using Layered Transition Metal Thiphosphates, Metal Chalcogenides and PolymersMukherjee, Debdyuti January 2017 (has links) (PDF)
The ever increasing demand for energy due to over consumption of non-renewable fossil fuels has emphasized the need for alternate, sustainable and efficient energy conversion and storage systems. In this direction, electrochemical energy conversion and storage systems involving various fundamental electrochemical redox processes such as hydrogen evolution (HER), oxygen reduction (ORR), oxygen evolution (OER), hydrogen oxidation (HOR) reactions and others become highly important. Electrocatalysts are often used to accelerate the kinetics of these reactions. Platinum (Pt), ruthenium oxide and iridium oxide (RuO2 and IrO2) are known to be the state of the art catalysts for several of these reactions due to favouarable density of states (DOS) near the Fermi level, binding energy with the reactant species, chemical inertness etc. Apart from HER, OER and ORR, chlorine evolution reaction (Cl-ER) is another industrially important reaction associated with water purification, disinfection, bleaching, chemical weapons and pharmaceuticals. Dimensionally stable anodes (RuO2/IrO2 mixed with TiO2 on Ti) are the most commonly used catalysts for this process. Issues related to surface poisoning, corrosion and cost of the catalysts, in addition to selectivity and specificity towards a particular reaction are various aspects to be addressed. For example, Pt is not very specific for ORR in presence of methanol in addition to high cost and corrosion in certain media. On the other hand, DSA can efficiently catalyze both OER and Cl-ER, and hence there is overlap of the two processes in the potential range available. There is an on going search for efficient, cost-effective, stable catalysts that possess high specificity for a particular redox reaction. Towards this goal, the present study explores certain layered (phospho)chalcogenides for catalyzing HER, ORR, OER and Cl-ER.
The present thesis is structured in two parts, where the first part explores the multi-functional catalytic aspects of new classes of compounds based on layered transition metal mixed chalcogenides (MoS2(1-x)Se2x) and ternary phosphochalcogenides (FePS3, FePSe3 and MoPS). In addition, lithium insertion and desinsertion has been studied with the aim of using the layered materials for rechargeable batteries. The second part of the thesis explores organic electrode materials with active carbonyl groups such as rufigallol, polydihydroxyanthrachene succinic anhydride (PDASA) as battery electrodes. Additionally, covalently functionalized transition metal phthalocyanines with reduced graphene oxide are studied as counter electrodes in dye sensitized solar cells (DSSCs).
MoS2(1-x)Se2x (x = 0 to 1) compositions are solid solutions of MoS2 and MoSe2 in different ratios. They crystallize in hexagonal structure with space group P63/mmc (D6h4) having Mo in trigonal prismatic coordination like the pristine counterparts. X-Ray diffraction studies reveal that Vegard’s law (figure 1a) is followed and hence complete miscibility of MoS2 and MoSe2 is established. MoS2(1-x)Se2x (x = 0 to 1) are layered in nature and the layers are held together by long range, weak van der Waal’s forces. This gives us the flexibility of exfoliation to produce corresponding few-layer materials (figure 1b).
Figure 1. (a) Variation of lattice parameter corresponding to (002) reflection of MoS2(1-x)Se2x with different x values. (b) Scanning electron micrograph of few-layer MoS2(1-x)Se2x (x = 0.5).
The electrocatalytic activity of the few-layer sulphoselenides have been studied towards HER in aqueous 0.5 M H2SO4 and towards Cl-ER in 3 M aqueous NaCl (pH = 3) solution. The mixed chalcogenides exhibit very good activities for both HER and Cl-ER as compared to the activity of their pristine counter parts (i.e. MoS2 and MoSe2) (figures 2a and 2b). Electrocatalytic activity on different compositions reveal that MoS1.0Se1.0 exhibits the maximum activity. Additionally, it has been observed that MoS1.0Se1.0 shows high specificity for Cl-ER with negligible interference of OER.
Figure 2. Voltammetric data for (a) hydrogen evolution reaction (in 0.5 M aqueous H2SO4) and (b) chlorine evolution reaction (in 3 M aqueous NaCl solution, pH = 3) on MoS2(1-x)Se2x (x = 0, 0.5, 1).
Figure 3. (a) XRD pattern of MoS2(1-x)Se2x (x = 0.5) electrode after a cycle of Li insersion and deinsersion (red) along with as-synthesized material (black) (b) Cycling behaviour of rGO supported (black) and pristine (red) MoS2(1-x)Se2x (x = 0.5) as electrode in rechargeable lithium-ion battery.
The equiatomic MoS1.0Se1.0 has also been studied as an anode material for rechargeable lithium batteries. The cyclic voltammogram and characterization after charge-discharge cycle (figure 3a) indicate intercalation of Li with in the layers followed by
conversion type formation of Li-S and Li-Se type compounds. The pristine material shows continuous capacity fading while the composites of sulphoselenides functionalized with conducting carbon supports such as rGO, MWCNT, super P carbon, toray carbon show marked improvement in capacity as well as cycling behavior. The rGO functionalized MoS1.0Se1.0 reveals ~1000 mAh/g of stable specific discharge capacity for 500 cycles (figure 3b).
In the next two chapters, new class of transition metal-based layered materials FePS3 and FePSe3, containing both P and chalcogen (S and Se) is indroduced for electrocatalysis. FePS3 crystallizes in monoclinic symmetry with an indirect band gap of ~1.55 eV while FePSe3 possesses rhombohedral crystal structure with comparatively low band gap (~1.3 eV) as shown in figure 4a. The FePS3 and FePSe3 have been exfoliated as has been done for MoS1.0Se1.0 (liquid exfoliation method) using acetone as the solvent. Stable colloids with few-layer nanosheets having lamellar morphology and lateral sizes of ~100 to 200 nm are obtained. Electrical characterization indicates that they are semiconducting and the conductivity of the Se analogue is ~50 times higher than that of the S analogue (figure 4b).
Figure 4. (a) Catholuminescence of FePX3 ( X = S and Se) reveals the band gap of the material. Band gap of the S analogue is 1.52 eV and that of the Se analogue is 1.33 eV (b) Resistivity of FePX3 ( X = S and Se) as a function of temperature.
The tri-functional electrocatalytic activities on rGO-few layer FePX3 (X = S and Se) have been evaluated for HER over a wide pH range (0.5 M H2SO4, 0.5 M KOH, phosphate
Figure 5. Catalytic activity of rGO-few-layer FePX3 (X = S, Se) towards HER in (a) aqueous 0.5 M H2SO4 and (b) 3.5 wt % NaCl solutions. (c) ORR activity of the catalysts in oxygen saturated 0.5 M KOH (d) OER behaviour on the catalysts in 0.5 M KOH at a rotation speed of 1600 rpm. buffer, pH 7 and 3.5 % NaCl), ORR and OER in alkaline media (0.5 M KOH). The studies clearly reveal that both rGO-FePS3 and rGO-FePSe3 exhibit excellent HER activity in acidic media (figure 5a) with high stability. The HER studies in 3.5 wt % aqueous NaCl solution (figure 5b) suggests that the catalysts are effective in evolving hydrogen from sea-water environment. Studies on ORR activity (figure 5c) indicate that the rGO composites of both S and Se analogues follow 4-electron pathways to produce water as the final product. They are also found to be highly methanol tolerant. In the case of OER (figure 5d), XPS characterization of the electrodes after the voltammetric studies reveals the presence of very thin layer of Fe2O3 (not detectable by XRD). All the three reactions (HER, ORR and OER) catalyzed by the Se analogue are better than the S analogue (figure 5). This could be due to the low band gap and high conductivity of FePSe3 as compared to FePS3. The over potential to achieve 10 mAcm-2 current density is ~108 mV for rGO-few-layer FePS3 catalyst where in the case of rGO-few layer FePSe3, it is ~97 mV (table 1).
Table 1. Catalytic activities of rGO-few layer FePS3 and rGO-few layer FePSe3 towards HER, ORR and OER.
Reaction studied rGO-FePS3 rGO-FePSe3
HER (η @ 10mAcm-2) ~108 mV ~97 mV
ORR (peak potential) ~0.81 V ~0.87 V
OER (η @ 10mAcm-2) ~470 mV ~430 mV
It is likely that there is a strong interaction between FePX3 (metal d-orbital) and rGO, as observed from the downward shift of Fe 2p peak in high resolution XPS studies. This interaction may extend the density of states of metal d-orbitals thereby improving the catalytic activities.
The next chapter deals with molybdenum-based phosphosulphide compound (MoPS). Molybdenum-based phosphide catalysts have been explored recently as excellent catalysts for various electrochemical reactions such as HER. It is expected that the catalyst containing both S and P will show positive effects on catalytic activities due to the synergy between S and P. In the present study, P incorporated MoS2 is studied towards HER. The XRD pattern of the as-synthesized crystal suggests the presence of mixed phase of MoS2, MoP2 and MoP while the elemental mapping in microscopy indicates the ratio of Mo, P and S to be 1:1:1. The electrochemical HER in 0.5 M H2SO4 indicates that the activity is improved drastically as compared to bulk and few-layer MoS2.
The next section explores the use of different organic electrode materials possessing active carbonyl groups for Li-storage studies. The advantage of the use of carbonyl-based compounds lies in the high reversible activity towards Li ion insersion and de-insersion. Rufigallol (figure 6a) exhibits very stable capacity of ~200 mAh/g (at C/20 rate) upto 500
Figure 6. (a) and (c) Schematic representation of rufigallol and poly-dihydroanthracene succinic anhydride (PDASA) respectively. (b) and (d) Cyclic behaviour of rufigallol (at C/20 rate) and PDASA (at 20 mAg-1 current rate) in Li-storage devices. (e) and (f) represent the coulombic efficiency of rufigallol (at C/20 rate) and PDASA (at 20 mAg-1 current rate) as a function of number of cycles.
cycles along (figure 6b) and with very good rate capability. A triptycene-based mesoporous polymer, PDASA (figure 6c) is introduced and explored as efficient electrode material for Li-storage. PDASA exhibits very high capacity of ~1000 mAh/g at a current rate of 50 mA/g upto 1000 cycles (figure 6d). Even at very high current rates (3A/g) excellent cyclability is observed. The mechanistic details of lithium uptake and release are studied using various spectroscopic techniques. In both the cases the coulombic efficiency observed is ~80 to 90 % (figures 6e and f).
Figure 7. (a) Digital photograph of the dye sensitized solar cell with rGO-Co-TAPc counter electrode. (b) Photoconversion efficiency of DSSCs with different counter electrodes as mentioned in the figure. (c) Photo conversion efficiency of Pt and rGO-Co-TAPc based DSSCs as function of storage time. (d) Schematic illustration of DSSC wherein the energy level of the counter electrodes and electrolyte are shown for different M-TAPcs.
In a slightly different direction, metal phthalocyanine - rGO composites (rGO-M-TAPc; M = Co, Zn, Fe) have been explored as counter electrodes in DSSC. Figure 7a depicts the digital image of a DSSC constructed using rGO-Co-TAPc as the counter electrode. It has been observed that rGO-cobalt tetraamino phthalocyanine (rGO-Co-TAPc) counter electrode exhibits ~6.6 % of solar conversion efficiency (figure 7b) and is close to that of standard DSSC (Pt counter electrode) under identical experimental conditions and are highly stable (figure 7c). Other metal phthalocyanines show less efficiency and is analysed based on the relative positions of HOMO energy levels of the materials and the energy level of the redox system (I-/I3- system) as given in figure 7d.
The thesis contains eight chapters on aspects discussed above along with summary and future perspectives given at the end. It is devided into various chapters in two sections, one comprising inorganic chalcogenide-based electrocatalysts and another comprising organic electrode materials. Appendix I discusses the Na-storage behaviour of MoS1.0Se1.0 and appendix II describes the Li-storage behaviour of rGO functionalized benzoquinone and diamino anthraquinone electrode materials.
|
102 |
Electrical Transport And Low Frequency Noise In Graphene And Molybdenum DisulphideGhatak, Subhamoy 08 1900 (has links) (PDF)
This thesis work contains electrical transport and low frequency (1/f) noise measurements in ultrathin graphene and Molybdenum disulphide (MoS2) field effect transistors (FET). From the measurements, We mainly focus on the origin of disorder in both the materials.
To address the orgin of disorder in graphene, we study single and bilayer graphene-FET devices on SiO2 substrate. We observe that both conductivity and mobility are mainly determined by substrate induced long range, short range, and polar phonon scattering. For further confirmation, we fabricate suspended graphene devices which show extremely high mobility. We find that, in contrast to substrate-supported graphene, conductivity and mobility in suspended graphene are governed by the longitudinal acoustic phonon scattering at high temperature and the devices reach a ballistic limit at low temperature. We also conduct low frequency 1/f noise measurements, known to be sensitive to disorder dynamics, to extract more information on the nature of disorder. The measurements are carried out both in substrate-supported and suspended graphene devices. We find that 1/f noise in substarted graphene is mainly determined by the trap charges in the SiO2 substrate. On the other hand, noise behaviour in suspended graphene devices can not be explained with trap charge dominated noise model. More-over, suspended devices exhibit one order of magnitude less noise compared to graphene on SiO2 substrate. We believe noise in suspended graphene devices probably originate from metal-graphene contact regions.
In the second part of our work, We present low temperature electrical transport in ultrathin MoS2 fields effect devices, mechanically exfoliated onto Si/SiO2 substrate. Our experiments reveal that the electronic states in MoS2 are localized well up to the room temperature over the experimentally accessible range of gate voltage. This manifests in two dimensional (2D) variable range hopping (VRH) at high temperatures, while below ~ 30 K the conductivity displays oscillatory structures in gate voltage arising from resonant tunneling at the localized sites. From the correlation energy (T0) of VRH and gate voltage dependence of conductivity, we suggest that the charged impurities are the dominant source of disorder in MoS2. To explore the origin of the disorder, we perform temperature dependent I - V measurements at high source-drain bias. These measurements indicate presence of an exponentially distributed trap states in MoS2 which originate from the structural inhomogeneity. For more detailed investigation, we employ 1/f noise which further confirms possible presence of structural disorder in the system. The origin of the localized states is also investigated by spectroscopic studies, which indicate a possible presence of metallic 1T-patches inside semiconducting 2H phase. From all these evidences, we suggest that the disorder is internal, and achieving high mobility in MoS2 FET requires a greater level of crystalline homogeneity.
|
103 |
Tuning Electronic Properties of Low Dimensional MaterialsBhattacharyya, Swastibrata January 2014 (has links) (PDF)
Discovery of grapheme has paved way for experimental realization of many physical phenomena such as massless Dirac fermions, quantum hall effect and zero-field conductivity. Search for other two dimensional (2D) materials led to the discovery of boron nitride, transition metal dichalcogenides(TMDs),transition metal oxides(MO2)and silicene. All of these materials exhibit different electronic and transport properties and are very promising for nanodevices such as nano-electromechanical-systems(NEMS), field effect transistors(FETs),sensors, hydrogen storage, nano photonics and many more. For practical utility of these materials in electronic and photonic applications, varying the band gap is very essential. Tuning of band gap has been achieved by doping, functionalization, lateral confinement, formation of hybrid structures and application of electric field. However, most of these techniques have limitations in practical applications. While, there is a lack of effective method of doping or functionalization in a controlled fashion, growth of specific sized nanostructures (e.g., nanoribbons and quantum dots),freestanding or embedded is yet to be achieved experimentally. The requirement of high electric field as well as the need for an extra electrode is another disadvantage in electric field induced tuning of band gap in low dimensional materials. Development of simpler yet effective methods is thus necessary to achieve this goal experimentally for potential application of these materials in various nano-devices. In this thesis, novel methods for tuning band gap of few 2D materials, based on strain and stacking, have been proposed theoretically using first principles based density functional theory(DFT) calculations. Electronic properties of few layered nanomaterials are studied subjected to mechanical and chemical strain of various kinds along with the effect of stacking pattern. These methods offer promising ways for controlled tuning of band gap in low dimensional materials. Detailed methodology of these proposed methods and their effect on electronic, structural or vibrational properties have also been studied.
The thesis has been organized as follows:
Chapter1 provides a general introduction to the low dimensional materials: their importance and potential application. An overview of the systems studied here is also given along with the traditional methods followed in the literature to tune their electronic properties. The motivation of the current research work has also been highlighted in this chapter.
Chapter 2 describes the theoretical methodology adopted in this work. It gives brief understanding of first principles based Density Functional Theory(DFT) and various exchange and correlation energy functionals used here to obtain electronic, structural, vibrational and magnetic properties of the concerned materials.
Chapter 3 deals with finding the origin of a novel experimental phenomenon, where electromechanical oscillations were observed on an array of buckled multiwalled carbon nanotubes (MWCNTs)subjected to axial compression. The effect of structural changes in CNTs in terms of buckling on electronic properties was studied. Contribution from intra-as well as inter-wall interactions was investigated separately by using single-and double-walled CNTs.
Chapter 4 presents a method to manipulate electronic and transport properties of graphene bilayer by sliding one of the layers. Sliding caused breaking of symmetry in the graphene bilayer, which resulted in change in dispersion in the low energy bands. A transition from linear dispersion in AA stacking to parabolic dispersion in AB stacking is discussed in details. This shows a possibility to use these slid bilayers to tailor graphene based devices.
Chapter 5 develops a method to tune band gap of bilayers of semiconducting transition metal dichalcogenides(TMDs) by the application of normal compressive strain. A reversible semiconductor to metal(S-M) transition was reported in this chapter for bilayers of TMDs.
Chapter 6 shows the evolution of S-M transition from few layers to the bulk MoS2 under various in-plane and out of plane strains. S-M transition as a function of layer number has been studied for different strain types. A comparison between the in-plan and normal strain on modifying electronic properties is also presented.
Chapter 7 discusses the electronic phase transition of bulk MoS2 under hydrostatic pressure. A hydrostatic pressure includes a combined effect of both in-plane and normal strain on the structure. The origin of metallic transition under pressure has been studied here in terms of electronic structure, density of states and charge analysis.
Chapter 8 studies the chemical strain present in boron nitride nanoribbons and its effect on structural, electronic and magnetic properties of these ribbons. Properties of two achiral (armchair and zig-zag) edges have been analyzed in terms of edge energy and edge stress to predict stability of the edges.
Chapter9 summarizes and concludes the work presented in this thesis.
|
104 |
Studium fotoluminiscence tenkých vrstev MoS2 / Photoluminiscence study of thin layers of MoS2Kuba, Jakub January 2016 (has links)
The thesis deals with study of thin layers of transition metal dichalcogenides, especially of molybdenum disulfide. Nanostructures were fabricated on two-dimensional crystals of MoS2 and WSe2. Within followed analysis attention was paid to the photoluminescence properties. In the thesis transition metal dichalcogenides are reviewed and description of the modified process of preparation by micromechanical exfoliation is given.
|
105 |
A two-dimensional hybrid with molybdenum disulfide nanocrystals strongly coupled on nitrogen-enriched graphene via mild temperature pyrolysis for high performance lithium storageTang, Yanping, Wu, Dongqing, Mai, Yiyong, Pan, Hao, Cao, Jing, Yang, Chongqing, Zhang, Fan, Feng, Xinliang 16 December 2019 (has links)
A novel 2D hybrid with MoS₂ nanocrystals strongly coupled on nitrogen-enriched graphene (MoS₂/NGg-C₃N₄) is realized by mild temperature pyrolysis (550 °C) of a self-assembled precursor (MoS₃/g-C₃N₄–H⁺/GO). With rich active sites, the boosted electronic conductivity and the coupled structure, MoS₂/NGg₋C₃N₄ achieves superior lithium storage performance.
|
106 |
Fabrication of Large-Scale and Thickness-Modulated Two-Dimensional Transition Metal Dichalcogenides [2D TMDs] NanolayersPark, Juhong 05 1900 (has links)
This thesis describes the fabrication and characterization of two-dimensional transition dichalcogenides (2D TMDs) nanolayers for various applications in electronic and opto-electronic devices applications. In Chapter 1, crystal and optical structure of TMDs materials are introduced. Many TMDs materials reveal three structure polytypes (1T, 2H, and 3R). The important electronic properties are determined by the crystal structure of TMDs; thus, the information of crystal structure is explained. In addition, the detailed information of photon vibration and optical band gap structure from single-layer to bulk TMDs materials are introduced in this chapter. In Chapter 2, detailed information of physical properties and synthesis techniques for molybdenum disulfide (MoS2), tungsten disulfide (WS2), and molybdenum ditelluride (MoTe2) nanolayers are explained. The three representative crystal structures are trigonal prismatic (hexagonal, H), octahedral (tetragonal, T), and distorted structure (Tʹ). At room temperature, the stable structure of MoS2 and WS2 is semiconducting 2H phase, and MoTe2 can reveal both 2H (semiconducting phase) and 1Tʹ (semi-metallic phase) phases determined by the existence of strains. In addition, the pros and cons of the synthesis techniques for nanolayers are discussed. In Chapter 3, the topic of synthesized large-scale MoS2, WS2, and MoTe2 films is considered. For MoS2 and WS2 films, the layer thickness is modulated from single-layer to multi-layers. The few-layer MoTe2 film is synthesized with two different phases (2H or 1Tʹ). The all TMDs films are fabricated using two-step chemical vapor deposition (CVD) method. The analyses of atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and Raman spectroscopy confirm that the synthesis of high crystalline MoS2, WS2, and MoTe2 films are successful. The electronic properties of both MoS2 and WS2 exhibit a p-type conduction with relatively high field effect mobility and current on/off ratio. In Chapter 4, vertically-stacked few-layer MoS2/WS2 heterostructures on SiO2/Si and flexible polyethylene terephthalate (PET) substrates is presented. Detailed structural characterizations by Raman spectroscopy and high-resolution/scanning transmission electron microscopy (HRTEM/STEM) show the structural integrity of two distinct 2D TMD layers with atomically sharp van der Waals (vdW) heterointerfaces. Electrical transport measurements of the MoS2/WS2 heterostructure reveal diode-like behavior with current on/off ratio of ~ 104. In Chapter 5, optically uniform and scalable single-layer Mo1-xWxS2 alloys are synthesized by a two-step CVD method followed by a laser thinning. Post laser treatment is presented for etching of few-layer Mo1-xWxS2 alloys down to single-layer alloys. The optical band gap is controlled from 1.871 to 1.971 eV with the variation in the tungsten (W) content, x = 0 to 1. PL and Raman mapping analyses confirm that the laser-thinning of the Mo1-xWxS2 alloys is a self-limiting process caused via heat dissipation to SiO2/Si substrate, resulting in fabrication of spatially uniform single-layer Mo1-xWxS2 alloy films.
|
107 |
Two-dimensional (2D) Monolayer Materials: Exfoliation, Characterization, and ApplicationQu, Jiang 17 January 2023 (has links)
Monolayer two-dimensional (2D) materials have been regarded as a hot topic in the fields of condensed matter physics, materials science, and chemistry due to their unique physical, chemical, and electronic properties. However, the research on the preparation method and properties understanding of the 2D monolayer are inadequate. In this dissertation, taking 2D nickel-iron layered double hydroxides (NiFe LDHs) and molybdenum disulfide (MoS2) as examples, the practicability of the direct synthesis of NiFe LDHs monolayer and the thermal enhancement catalytic performance of 2D MoS2 monolayer (MoS2 ML) are discussed. First, a one-pot synthetic strategy (bottom-up method) is presented to synthesize 2D NiFe-based LDHs monolayers, including NiFe, Co-, Ru-, doped, and Au-modified NiFe LDHs. The prerequisite and universality of this strategy are investigated and confirmed. The features of LDHs are characterized by advanced technologies. The obtained LDH bulks own a large interlayer spacing up to 8.2 Å, which can be facilely exfoliated into monolayers in water by hand-shaking within 10 s. As a result, the as-prepared NiFe-based LDH monolayers display a good electrocatalytic oxygen evolution reaction (OER) performance. This facile strategy paves the way for designing easily exfoliated LDHs for highly active catalysts and energy conversion devices based on other monolayer LDHs. Second, with gold-modified tape, 2D MoS2 ML is exfoliated from the bulk crystal through a micromechanical exfoliation method (top-down strategy). The thermal effects of MoS2 ML are confirmed by Raman and photoluminescence (PL) spectra. Moreover, an on-chip MoS2 ML hydrogen evolution reaction (HER) reactor is designed and fabricated. The thermal effects generate efficient electron transfer in the MoS2 ML and at the electrolyte-catalyst (MoS2 ML) interface, leading to an enhanced HER performance. Compared to the results obtained at room temperature, the MoS2 ML shows a direct thermal enhanced HER performance at higher temperatures. In summary, the findings and understandings, the direct synthesis and direct thermal enhancement catalytic performance, of 2D monolayers offer a guideline for synthesizing and catalyst application of other 2D monolayers.
|
108 |
Influence of Metallic, Dichalcogenide, and Nanocomposite Tribological Thin Films on The Rolling Contact Performance of Spherical Rolling ElementsMutyala, Kalyan Chakravarthi January 2015 (has links)
No description available.
|
109 |
Etude ultra-sensible en phase de nano-structures par interferométrie optique à balayage en champ proche / A study on ultra-sensitive phase in nano-structures by near-field scanning optical interferometryMok, Jinmyoung 26 March 2015 (has links)
La construction d’un NSOM, dans ce manuscrit de thèse, est décrite en détail. Lacombinaison du système NSOM construit avec un interféromètre est proposée afin d’accéderà des mesures de phase, à la fois de ultra-haute sensibilité mais également de très granderésolution spatiale. Le nom de l’instrument développé est un interferomètre optique àbalayage en champ proche (NSOI, pour l’acronyme en anglais). Le principe est basé surl’utilisation d’un diapason accordable en cristal de quartz, sur lequel se trouve une pointe,afin de sonder le matériau étudié. La mesure de la force de cisaillement de la pointe sondeau voisinage de la surface permet d’assurer la régulation et la stabilité de la distance depositionnement de la pointe par rapport à la surface considérée. Le dispositif est construit encombinant différents éléments électroniques pilotés par un logiciel développé en langageLab-VIEW. Le bruit de la mesure en NSOI est supprimé par un calcul simple basé sur lathéorie de l’optique ondulatoire et des interférences associées. Le système permet deréaliser des mesures optiques en champ proche ainsi que la détermination en hauterésolution de la phase du champ optique. L’échantillon SNG01 (l’un des réseaux utilisés pourcaractériser notre microscope à balayage en champ proche), ainsi que des disques optiques(CD, DVD and disques blu-ray) ont été utilisés pour tester la faisabilité et les performancesde notre système.Dans ce manuscrit de thèse, le graphène et les monocouches de MoS2 sont étudiés. Nous montrons qu’une épaisseur à l’échelle atomique peut être résolue par notresystème NSOI, avec l’utilisation de l’algorithme de suppression du bruit de mesure. Lesjoints de grain du graphène sont observés à grande échelle, via la technique d’imagerie parcollection en champ proche et par la réalisation de cartographies de phase. En particulier,les tensions internes à une couche de graphène sont observées, uniquement dans le casd’une imagerie de phase. / In this thesis, near-field scanning optical interferometry (NSOI), which combinesNSOM with interferometer, is proposed for the phase measurement. The shear-forcedetection scheme is applied for distance regulation. The hardware of the systemis constructed by combining various electronic devices, and the operating softwareis coded by LabVIEW. Unwanted background signal is removed by simple calculationbased on interference theory. By using this, the near-field optical measurementand the ultra-sensitive phase investigation of nano-materials are performed. 2D materialssuch as graphene and monolayer MoS2 are investigated. It is shown thatatomic-scale thickness can be resolved by the NSOI. Especially, the grain boundariesof graphene and the seed of MoS2 can be found by phase detection. In addition,direct laser writing (DLW) on silver-containing glass is observed by using NSOM,and NSOI. For the first time, the writing threshold is correlatively observed in thefluorescence imaging and the near-field phase image.
|
110 |
Optimization of HfO2 Thin Films for Gate Dielectric Applications in 2-D Layered MaterialsGanapathi, K Lakshmi January 2014 (has links) (PDF)
Recently, high-κ materials have become the focus of research and been extensively utilized as the gate dielectric layer in aggressive scaled complementary metal-oxide-semiconductor (CMOS) technology. Hafnium dioxide (HfO2) is the most promising high-κ material because of its excellent chemical, thermal, mechanical and dielectric properties and also possesses good thermodynamic stability and better band offsets with silicon. Hence, HfO2 has already been used as gate dielectric in modern CMOS devices.
For future technologies, it is very difficult to scale the silicon transistor gate length, so it is a necessary requirement of replacing the channel material from silicon to some high mobility material. Two-dimensional layered materials such as graphene and molybdenum disulfide (MoS2) are potential candidates to replace silicon. Due to its planar structure and atomically thin nature, they suit well with the conventional MOSFET technology and are very stable mechanically as well as chemically.
HfO2 plays a vital role as a gate dielectric, not only in silicon CMOS technology but also in future nano-electronic devices such as graphene/MoS2 based devices, since high-κ media is expected to screen the charged impurities located in the vicinity of channel material, which results in enhancement of carrier mobility. So, for sustenance and enhancement of new technology, extensive study of the functional materials and its processing is required.
In the present work, optimization of HfO2 thin films for gate dielectric applications in Nano-electronic devices using electron beam evaporation is discussed. HfO2 thin films have been optimized in two different thickness regimes, (i) about 35 nm physical thicknesses for back gate oxide graphene/MoS2 transistors and (ii) about 5 nm physical thickness to get Equivalent Oxide Thickness (EOT) less than 1 nm for top gate applications. Optical, chemical, compositional, structural and electrical characterizations of these films have been done using Ellipsometry, X-ray Photoelectron Spectroscopy (XPS), Rutherford Back Scattering (RBS), X-ray Diffraction (XRD), Capacitance-Voltage and Current-Voltage characterization techniques.
The amount of O2 flow rate, during evaporation is optimized for 35 nm thick HfO2 films, to achieve the best optical, chemical and electrical properties. It has been observed that with increasing oxygen flow rate, thickness of the films increased and refractive index decreased due to increase in porosity resulting from the scattering of the evaporant. The films deposited at low O2 flow rates (1 and 3 SCCM) show better optical and compositional properties. The effects of post deposition annealing (PDA) and post metallization annealing (PMA) in forming gas ambient (FGA) on the optical and electrical properties of the films have been analyzed. The film deposited at 3 SCCM O2 flow rate shows the best properties as measured on MOS capacitors. A high density film (ρ=8.2 gram/cm3, 85% of bulk density) with high dielectric constant of κ=19 and leakage current density of J=2.0×10-6 A/cm2 at -1 MV/cm has been achieved at optimized deposition conditions.
Bilayer graphene on HfO2/Si substrate has been successfully identified and also transistor has been fabricated with HfO2 (35 nm) as a back gate. High transconductance compared to other back gated devices such as SiO2/Si and Al2O3/Si and high mobility have been achieved. The performance of back gated bilayer graphene transistors on HfO2 films deposited at two O2 flow rates of 3 SCCM and 20 SCCM has been evaluated. It is found that the device on the film deposited at 3 SCCM O2 flow rate shows better properties. This suggests that an optimum oxygen pressure is necessary to get good quality films for high performance devices.
MoS2 layers on the optimized HfO2/Si substrate have been successfully identified and transistor has been fabricated with HfO2 (32 nm) as a back gate. The device is switching at lower voltages compared to SiO2 back gated devices with high ION/IOFF ratio (>106).
The effect of film thickness on optical, structural, compositional and electrical properties for top gate applications has been studied. Also the effect of gate electrode material and its processing on electrical properties of MOS capacitors have been studied. EOT of 1.2 nm with leakage current density of 1×10-4 A/cm2 at -1V has been achieved.
|
Page generated in 0.0502 seconds