Spelling suggestions: "subject:"mos2"" "subject:"nos2""
71 |
Hollow MoSx nanomaterials for aqueous energy storage applicationsQuan, Ting 31 May 2021 (has links)
Die vorliegende Arbeit konzentriert sich auf die Synthese von neuartigen hohlen MoSx-Nanomaterialien mit kontrollierbarer Größe und Form durch die kolloidale Template Methode. Ihre möglichen Anwendungen in wässrigen Energiespeichersystemen, einschließlich Superkondensatoren und Li-Ionen-Batterien (LIBs), wurden untersucht.
Im ersten Teil wurde eine neue Nanostruktur aus hohlen Kohlenstoff-MoS2-Kohlenstoff-nanoplättchen erfolgreich durch eine L-Cystein unterstützte hydrothermale Methode unter Verwendung von Gibbsit als Templat und Polydopamin (PDA) als Kohlenstoffvorläufer synthetisiert. Nach dem Kalzinieren und Ätzen des Gibbsit Templates wurden gleichförmige Hohlplättchen erhalten, die aus einer sandwichartigen Anordnung von teilweise graphitischem Kohlenstoff und zweidimensional geschichteten MoS2 Flocken bestehen. Die Plättchen haben eine ausgezeichnete Dispergierbarkeit und Stabilität in Wasser sowie eine gute elektrische Leitfähigkeit aufgrund des durch die Kalzinierung von Polydopaminbeschichtungen erzeugten Kohlenstoffs gezeigt. Das Material wird dann in einem symmetrischen Superkondensator mit 1 M Li2SO4 als Elektrolyt aufgebracht, der eine spezifische Kapazität von 248 F/g (0.12 F/cm2) bei einer konstanten Stromdichte von 0.1 A/g und eine ausgezeichnete elektrochemische Stabilität über 3000 Zyklen aufweist, was darauf hindeutet, dass hohle Kohlenstoff-MoS2-Kohlenstoffnanoplättchen vielversprechende Materialien als Kandidaten für Superkondensatoren sind.
Im zweiten Teil wurde 21 molare LiTFSI, das sogenannte "Wasser-in-Salz" (WIS) Elektrolyt, in Superkondensatoren mit hohlen Kohlenstoffnanoplättchen als Elektrodenmaterial untersucht. Im Vergleich zu dem im ersten Teil verwendeten 1 molaren Li2SO4-Elektrolyten wurden bei dem vorliegenden WIS Elektrolyt signifikante Verbesserungen in einem breiteren und stabilen Potentialfenster festgestellt, das durch die geringere Leitfähigkeit mit dem Gegenstück leicht beeinflusst wird. Die elektrochemische Impedanzspektroskopie (EIS) wurde ausgiebig eingesetzt, um einen Einblick in die Reaktionsmechanismen der WIS-Superkondensatoren zu erhalten. Zusätzlich wurde auch der Einfluss der Temperatur auf die elektrochemische Leistung im Temperaturbereich zwischen 15 und 55 °C untersucht, was eine hervorragende spezifische Kapazität von 128 F/g bei dem optimierten Zustand von 55 °C ergab. Die EIS-Messungen deckten die Abnahme der angepassten Widerstände mit der Temperaturerhöhung und umgekehrt auf und beleuchteten direkt die Beziehung zwischen elektrochemischer Leistung und Arbeitstemperatur von Superkondensatoren für zuverlässige praktische Anwendungen.
Im dritten Teil wurde MoS3, ein amorphes, kettenförmig strukturiertes Übergangsmetall Trichalcogenid, als vielversprechende Anode in "Wasser-in-Salz" Li-Ionen-Batterien (WIS-LIBs) nachgewiesen. Die in diesem Teil verwendeten hohlen MoS3-Nanosphären wurden mittels einer skalierbaren Säurefällungsmethode bei Raumtemperatur synthetisiert, wobei sphärische Polyelektrolytbürsten (SPB) als Schablonen verwendet wurden. Beim Einsatz in WIS-LIBs mit LiMn2O4 als Kathodenmaterial erreicht das präparierte MoS3 eine hohe spezifische Kapazität von 127 mAh/g bei einer Stromdichte von 0.1 A/g und eine gute Stabilität über 1000 Zyklen sowohl in Knopf- als auch in Pouch-Zellen. Der Arbeitsmechanismus von MoS3 in WIS-LIBs wurde auch durch Ex-situ-Röntgenbeugungsmessungen (XRD) untersucht. Während des Betriebs wird MoS3 während der anfänglichen Li-Ionen-Aufnahme irreversibel in Li2MoO4 umgewandelt und dann allmählich in eine stabilere und reversible LixMoOy-Phase (2≤y≤4)) entlang der Zyklen umgewandelt. Amorphes Li-defizientes Lix-mMoOy/MoOz wird bei der Delithiierung gebildet.
Die Ergebnisse der vorliegenden Studie zeigen einfache Ansätze zur Synthese hohler MoSx-Nanomaterialien mit kontrollierbarer Morphologie unter Verwendung einer Template-basierten Methode, die auf die vielversprechende Leistung von MoSx für wässrige Energiespeicheranwendungen zurückzuführen sind. Die elektrochemischen Untersuchungen von hohlen MoSx-Nanomaterialien in wässrigen Elektrolyten geben Einblick in die Reaktionsmechanismen von wässrigen Energiespeichersystemen und treiben die Entwicklung von Metallsulfiden für wässrige Energiespeicheranwendungen voran. / The present thesis focuses on the synthesis of novel hollow MoSx nanomaterials with controllable size and shape through the colloidal template method. Their possible applications in aqueous energy storage systems, including supercapacitors and Li-ion batteries (LIBs), have been studied.
In the first part, hollow carbon-MoS2-carbon nanoplates have been successfully synthesized through an L-cysteine-assisted hydrothermal method by using gibbsite as the template and polydopamine (PDA) as the carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which are made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, have been obtained. The platelets have shown excellent dispersibility and stability in water, and good electrical conductivity due to carbon coating generated by the calcination of polydopamine. The material is then applied in a symmetric supercapacitor using 1 M Li2SO4 as the electrolyte, which exhibits a specific capacitance of 248 F/g (0.12 F/cm2) at a constant current density of 0.1 A/g and an excellent electrochemical stability over 3000 cycles, suggesting that hollow carbon-MoS2-carbon nanoplates are promising candidate materials for supercapacitors.
In the second part, 21 m LiTFSI, so-called “water-in-salt” (WIS) electrolyte, has been studied in supercapacitors with hollow carbon nanoplates as electrode materials. In comparison with 1 M Li2SO4 electrolyte used in the first part, significant improvements on a broader and stable potential window have been revealed in the present WISE, which is slightly influenced by the lower conductivity with the counterpart. The electrochemical impedance spectroscopy (EIS) has been extensively employed to provide an insight look on the formation of solid electrolyte interphase in the WIS-supercapacitors. Additionally, the effect of temperature on the electrochemical performance has also been investigated in the temperature range between 15 and 55 °C, yielding eminent specific capacitance of 128 F/g at the optimized condition of 55 °C. The EIS measurements disclosed the decrease of fitted resistances with the increase of temperature and vise versa, directly illuminating the relationship between electrochemical output and working temperature of supercapacitors for reliable practical applications.
In the third part, MoS3, an amorphous chain-like structured transitional metal trichalcogenide, has been demonstrated as a promising anode in the “water-in-salt” Li-ion batteries (WIS-LIBs). Hollow MoS3 nanospheres used in this part have been synthesized via a scalable room-temperature acid precipitation method using spherical polyelectrolyte brushes (SPB) as the template. When applied in WIS-LIBs with LiMn2O4 as the cathode material, the prepared MoS3 achieves a high specific capacity of 127 mAh/g at the current density of 0.1 A/g and good stability over 1000 cycles in both coin cells and pouch cells. The working mechanism of MoS3 in WIS-LIBs has also been studied by ex-situ X-ray diffraction (XRD) measurements. During operation, MoS3 undergoes irreversible conversion to Li2MoO4 during the initial Li ion uptake, and is then gradually converted to a more stable and reversible LixMoOy (2≤y≤4)) phase along cycling. Amorphous Li-deficient Lix-mMoOy/MoOz is formed upon delithiation.
The results in the present thesis demonstrate facile approaches for synthesizing hollow MoSx nanomaterials with controllable morphologies using a template-based method, which attribute to the promising performance of MoSx for aqueous energy storage applications. The electrochemical studies of hollow MoSx nanomaterials in aqueous electrolytes provide insight into the reaction mechanisms of aqueous energy storage systems and push forward the development of metal sulfides for aqueous energy storage applications.
|
72 |
Photocatalytic hydrogen production over layered materialsJia, Tiantian January 2014 (has links)
The technology of semiconductor-based photocatalytic water splitting to produce hydrogen using solar energy has been considered as one of the most important approaches to solve the world energy crisis. Therefore, the development of the effective semiconductor photocatalysts has undergone considerable research. However, the traditional photocatalysts suffer from the negative effects from rapid charge recombination, which reduces the excited charges by emitting light or generating phonons. Efficient charge separation and fast charge transport, avoiding any bulk/surface recombination, are fundamentally important for photocatalytic hydrogen generation through water splitting. Here, we have introduced assembled layered materials as photocatalyst systems with their unique physicochemical properties to realize the effective charge separation and high photocatalytic activity. Using graphene as a two-dimensional supporting matrix, we have succeeded in selective anchoring of semiconductor and metal nanoparticles as separate catalytically active sites on the graphene surface. The ability of graphene to capture, transfer and store electrons and its potential to serve as a conductive support are demonstrated. The TiO<sub>2</sub> semiconductor/metals nanocrystals-graphene ensemble makes it possible to carry out selective catalytic processes at the separate sites and provides the potentials for applications in water splitting reactions. After demonstrating the positive role of graphene in such photocatalytic system, we then fabricate a simple but highly cooperative ensemble with CdS and MoS<sub>2</sub> nanocrystals dispersed on graphene sheets. It is demonstrated that CdS nanocrystals can also capture visible light energy and facilitate excited electron transfer to MoS<sub>2</sub> (as metal substituent) for catalytic hydrogen production via the 2-D graphene which plays a key role as an efficient electron mediator. Hexagonal multilayer MoS<sub>2</sub> with a layered structure in this system serves to provide active sites for hydrogen evolution by its exposed Mo edges. Hence, multilayer MoS<sub>2</sub> is an ideal cocatalyst of semiconductors for hydrogen generation. This crystalline-layered structure also shows semiconducting properties, however, its characteristic indirect band gap displays a poor light capture and emission ability with excited electrons and holes with different momentum. In contrast, single layer MoS<sub>2</sub> shows a direct band gap behavior. Our studies have clearly shown that single layer MoS<sub>2</sub> prepared with lithium intercalation indeed displays encouraging results in hydrogen evolution due to the direct band gap and quantum confinement effects. In addition, the exfoliated single layer MoS<sub>2</sub> exhibits extraordinary enhanced activity and stability in combination with the Eosin Y sensitized system when compared to those of multilayer MoS<sub>2</sub> and bulk MoS<sub>2</sub> counterparts, which is attributed to the improvement of the density of surface active sites with stronger adsorption for the Eosin Y molecules on the single layer MoS<sub>2</sub>. In addition, this multifunctional catalyst on graphene sheet can also create adsorption sites on a defective basal surface of single layer MoS<sub>2</sub> through adsorption of Eosin Y where electron transfer from photoexcited Eosin Y molecule to graphene via the 2-D MoS<sub>2</sub> mainly takes place. Thus, the photo-generated electrons are then effectively transported to the exposed active sites of MoS<sub>2</sub> for the proton reduction to hydrogen molecule. It is believed the above novel assembled molecular layered systems may be applicable for a wide range of catalytic,photocatalytic and electrocatalytic reactions.
|
73 |
Rhenium disulfide and rhenium-doped MoS2 thin films from single source precursorsAl-Dulaimi, Naktal January 2018 (has links)
The doping of rhenium into molybdenum disulfide was achieved by Aerosol Assisted Chemical Vapour Deposition (AACVD) from single source precursors. Rhenium can be studied as a model for immobilization of radioactive technetium-99 (99Tc) in MoS2. The metals Mo(IV), Re(IV), and Tc(IV) have similar ionic radii 0.65, 0.63 and 0.65 Å respectively, and their Shannon-Prewitt crystal radii 0.79, 0.77 and 0.79 Å Hence demonstrating the potential storage of nuclear waste in geologic like formations in of groundwater may be possible. The interaction between the nuclear waste forms and groundwater, which could lead to release and transport low concentrations or vapour of radionuclides to the near field, as a result, decomposition of engineered barriers. The molecular precursors [Mo(S2CNEt2)4], [Re3(μ-SiPr)3(SiPr)6], [Re(S2CC6H5)(S3CC6H5)2], and [Re2(μ-S)2(S2CNEt2)4] have been used to deposit Re-doped MoS2 thin films. Mo-doped ReS2 alloyed, polycrystalline thin films were synthesised using [Re(S2CC6H5)(S3CC6H5)2], [Mo(S2CNEt2)4] via AACVD, adding with a low concentration of Mo source for the first time . We reported as well a new way for production of ultrathin ReS2 nanosheets by coupling bottom up processing AACVD with top-down LPE. This is important in synthetic pathways for the production of rare transition dichalcogenide, also, our processing methodology is potentially scalable and thus could be a way to commercial exploitation. Characterisation of produced materials performed by pXRD, SEM, TEM, STEM, EDX, ICP and Raman spectroscopy.
|
74 |
Une nouvelle approche dans l'évaluation de l'effet de support des catalyseurs d'hydrodésulfurationNinh, Thi Kim Thoa 02 February 2011 (has links) (PDF)
L'objectif de ce travail est d'évaluer l'effet de la nature du support et l'effet de promotion sur les propriétés catalytiques des catalyseurs d'HDS à base de Mo. Pour obtenir les systèmes catalytiques adéquats, nous avons appliqué la préparation par " voie acac ", qui consiste à faire réagir le promoteur sous forme de complexe acétylacétonate (de Co, Ni ou Fe) sur le sulfure de molybdène supporté (sur γ-Al2O3, SiO2, TiO2 ou ZrO2). Les différents solides obtenus ont été caractérisés par MET, IR(CO) et SPX notamment pour tenter de quantifier les phases actives, puis ils ont été testés dans les réactions d'HDS du thiophène et du 4,6-DMDBT. L'activité catalytique a pu être corrélée aux résultats de caractérisation par une nouvelle approche qui consiste à calculer l'activité apparente par site NiMoS ou CoMoS. Cette approche montre que la qualité des sites actifs CoMoS et NiMoS est la meilleure sur SiO2 et comparable sur les supports γ-Al2O3, TiO2 et ZrO2. Par la même méthode nous avons préparé de nouveaux catalyseurs de type CoNiMoS supportés, en ajoutant les promoteurs Co et Ni soit simultanément soit successivement au MoS2. Cette étude permet un fort apport expérimental aux études théoriques qui avancent l'hypothèse de différentes affinités du Co et du Ni pour les deux type de bords S-edge et Mo-edge sur γ-Al2O3 et TiO2.
|
75 |
Manipulation of Light-Matter Interactions in Molybdenum Disulfide (MoS2) Monolayer through Dressed Phonons (DP) and PlasmonsPoudel, Yuba R 12 1900 (has links)
The performance of electrical and optical devices based on two-dimensional semiconductors (2D) such as molybdenum disulfide is critically influenced due to very poor light absorption in the atomically thin layers. In this study, the phonon mediated optical absorption and emission properties in single atomic layers of MoS2 have been investigated. The electronic transitions in MoS2 due to near-field optical interaction and the influence of interface phonons due to the dielectric substrate GaN on the relaxation of optically generated carriers will be described. The near-field interaction can be induced in the presence of metal plasmons deposited on the surface of MoS2 monolayers. A hybrid metal-semiconductor system was realized by the deposition of silver (Ag) NPs on MoS2 layer and the localized plasmon modes were selectively chosen to interact with quasiparticles such as excitons and phonons. These quasiparticles are confined within the single atomic layer of MoS2 and are stable at room temperatures due to high binding energy. The lattice vibrational modes in MoS2 can be optically excited with the pulses from a femtosecond laser. These phonon modes can be optically dressed due to near-field interaction in the hybrid Ag-MoS2 system under an optical excitation resonant to localized plasmon modes. The coherent dynamics of the carriers in MoS2 were manipulated by the generation of dressed phonons. The driving field creates a coherence between the ground levels in the presence of optical near-field. A strong coupling between the exciton and plasmon modes forming a plexciton band is observed at room temperature within the coherence lifetime of the system. A significant enhancement of photoluminescent (PL) emission from MoS2 monolayer occurs due to carrier density modulation in the presence near-field interactions.
The absorption and emission properties of MoS2 are influenced due to the interactions with the semiconducting substrate. The coupling of carriers in MoS2 with the interfacial phonons, and the charge and energy transfer across the interface in 2D MoS2-GaN (0001) significantly change the UF absorption properties and the relaxation of carriers from the excitonic absorption states. An increased light absorption and enhanced PL emission from the single atomic layer of MoS2 was observed. The phonon-assisted processes can activate the dipole forbidden transitions and hence can explain the interaction of incident light in single atomic layer of MoS2. The MoS2-GaN heterostructure provides a platform to exploit strong coupling between the free carriers or excitons, plasmons and phonons. The gold (Au) NPs have a plasmon energy resonant to MoS2 and hence results in the strong exciton-plasmon coupling due to near-field interaction. In the meantime, the localized plasmon energy of platinum (Pt) NPs is selected to be in resonance to GaN bandedge emission and resonant to C excitonic state in MoS2. The localized plasmons in Pt can actively interact with carriers in MoS2 near Γ-point. The non-equilibrium absorption characteristics of MoS2 nanosheets on GaN hybridized with Au and Pt NPs are influenced due to activation of the defect levels of GaN induced due to interband optical excitation.
|
76 |
Integration, Stability, and Doping of Mono-Elemental and Binary Transition Metal Dichalcogenide Van der Waals Solids for Electronics and Sensing DevicesMehta, Ravindra K 05 1900 (has links)
In this work, we have explored 2D semiconducting transition metal dichalcogenides (TMDs), black phosphorus (BP), and graphene for various applications using liquid and mechanical exfoliation routes. The topical areas of interest that motivate our work include considering factors such as device integration, stability, doping, and the effect of gasses to modulate the electronic transport characteristics of the underlying 2D materials. In the first area, we have integrated solution-processed transparent conducting oxides (TCOs), specifically indium-doped tin oxide (ITO) with BP, which is a commonly used TCO for solar cell devices. Here we have found surface treatment of glass substrates with a plasma before spin-coating the solution-processed ITO, to be effective in improving coverage and uniformity of the ITO film by promoting wettability and film adhesion. The maximum transmittance obtained was measured to be ~75% in the visible region, while electrical measurements made on BP/ITO heterostructures showed improved transport characteristics compared to the bare ITO film. Within the integration realm, inkjet-printing of BP and MoS2 p-n hetero-junctions on standard ITO glass substrates in a vertical architecture was also demonstrated. To address the issue of stability which some 2D materials such as BP face, we experimented with ionic liquids (ILs) to passivation the hydrophilic surface of BP to minimize its oxidative degradation. The enhanced stability of BP was inferred through Raman spectroscopy and scanning probe microscopy techniques, where no observable changes in the A1g and A2g Raman vibrational modes were observed for the BP films passivated with ILs over time under ambient conditions. On the other hand, a blue-shift in these Raman modes was evident for unpassivated samples. Atomic force microscopy measurements on the unpassivated samples clearly revealed the difference in surface characteristics through localized regions of degradation that intensified with time which was absent in IL passivated BP samples. The electronic device measurements for IL coated BP devices showed a more stabilized Ids−Vds characteristic in the 5.4 K to 335 K temperature range. Prototypical demonstrations of stabilized ILs/BP devices at ambient printed on flexible polyimide substrates were also successfully made. At the same time, doping is one of the essential steps required for the modulation of carrier density and electronic transport in electronic and optoelectronic devices, which is the third topical area we have addressed in this work with semiconducting TMDs. Of the conventional approaches used to dope 3D semiconductors, ion-implantation is commonly adopted but given the ultra-thin nature of 2D materials, this approach is not feasible as it causes severe damage to the delicate crystalline lattice of ultra-thin 2D membranes. Instead, we have used plasma-based doping routes with UV-ozone treatement and solution processing using 1,2 dichloroethane, to characterize the temperature-dependent two-terminal and three-terminal electronic and optoelectronic transport of mechanically exfoliated 2D MoS2 and WSe2. A significant difference was seen in the optoelectronic properties between the two dopants, owing to differences in their respective doping mechanisms and the intrinsic structural attributes of the exfoliated flakes. A significant reduction in barrier height was evident after doping using both techniques in MoS2, while an increase in barrier height after soaking in 1,2 dichloroethane was seen in WSe2. Lastly, in the fourth topical area for sensing devices, we have studied the effect of gas-flow in inkjet-printed and spin-coated graphene and MoS2 to modulate the electronic transport for the 2D materials since their increased surface area is an ideal platform to observe interactions with external stimuli, in this case, in-coming gas species. Here, the chamber pressure and change in current with flow of gas was measured in the steady-state, as well as time-dependent dynamic transport toward nitrogen and carbon dioxide. We observed significant differences in the electrical response of mono-elemental graphene and binary MoS2, owing to differences in microstructure and joule heating response to the ambient gas. In conclusion, the findings obtained from our work will provide an important framework to help guide strategies in further improving integration schemes, stability, doping and sensing behavior driven by the unique structural attributes inherent to 2D materials for high-performance devices in the future.
|
77 |
Adhesion and Surface Energy Profiles of Large-area Atomic Layers of Two-dimensional MoS2 on Rigid Substrates by Facile MethodsWu, Min 05 1900 (has links)
Two-dimensional (2D) transition metal dichalcogenides (TMDs) show great potential for the future electronics, optoelectronics and energy applications. But, the studies unveiling their interactions with the host substrates are sparse and limits their practical use for real device applications. We report the facile nano-scratch method to determine the adhesion energy of the wafer scale MoS2 atomic layers attached to the SiO2/Si and sapphire substrates. The practical adhesion energy of monolayer MoS2 on the SiO2/Si substrate is 7.78 J/m2. The practical adhesion energy was found to be an increasing function of the MoS2 thickness. Unlike SiO2/Si substrates, MoS2 films grown on the sapphire possess higher bonding energy, which is attributed to the defect-free growth and less number of grain boundaries, as well as less stress and strain stored at the interface owing to the similarity of Thermal Expansion Coefficient (TEC) between MoS2 films and sapphire substrate. Furthermore, we calculated the surface free energy of 2D MoS2 by the facile contact angle measurements and Neumann model fitting. A surface free energy ~85.3 mJ/m2 in few layers thick MoS2 manifests the hydrophilic nature of 2D MoS2. The high surface energy of MoS2 helps explain the good bonding strength at MoS2/substrate interface. This simple adhesion energy and surface energy measurement methodology could further apply to other TMDs for their widespread use.
|
78 |
Magnetic Interactions in Transition Metal DichalcogenidesAvalos Ovando, Oscar Rodrigo January 2018 (has links)
No description available.
|
79 |
A study of the triboelectricity of 2D materials: MoS2, WS2 and MoO3 : Analyzing measurements from a triboelectric nanogeneratorKilman, Simon January 2022 (has links)
Detta projekts mål har varit att undersöka tre olika 2D-materials triboelektriska egenskaper och därmed placera dem i en triboelektrisk serie. Detta utfördes genom att använda en triboelektrisk nanogenerator (TENG) och mäta den resulterande spänningen. Tio stycken motmaterial applicerades mot varje 2D-material på nanogeneratorn. Utifrån resultatet var det möjligt uppmärka typiska vågformer för en TENG, alltså kunde resultatet från mätningen antas vara från den triboelektriska effekten. 2D-materialen placerades tillsammans med dess motmaterial i en triboelektrisk serie och sorterades sedan för att bestämma dess elektronaffinitet. För de tre 2D-materialen hade de gemensamt att ETFE och FEP tillhör den positiva sidan av den triboelektriska serien relativt de 2D-materialen. Resten, alltså: cellofan, kapton, LDPE, nylon, PEEK, PEI, polypropylene och PTFE, placerades negativt i deras respektives 2D-materials serie. Dock blev resultatet ej som förväntat, då ordningen på motmaterialen i serien kunde antas vara samma för alla 2D-material, men detta var inte vad som hittades. Anledningen till detta kan möjligtvis vara ytladdningar som kan ha överförts till materialen medans de hanterades, eller på grund av ytstrukturen av 2D-materialen. Därför föreslås att detta arbete kan förbättras genom mer varsam hantering och spridning av materialen över dess plattform.
|
80 |
Progress on 2D-MoS2: development of a scalable fabrication method and demonstration of an X-ray detectorTaffelli, Alberto 13 July 2023 (has links)
Two-dimensional transition metal dichalcogenides (TMDCs) aroused significant interest in the last years as semiconductor materials for application in the field of electronics, due to their tunable bandgap, good carrier mobility, and strong light absorption. Among TMDCs, two-dimensional molybdenum disulfide (2D-MoS2) has been the most investigated for electronic and optoelectronic applications, like transistors and photodetectors. 2D-MoS2 can particularly benefit from the excellent light matter interaction properties in the UV-VIS spectrum combined with good charge carrier transport properties. The literature reports photodetectors based on 2D-MoS2 fabricated with different techniques, including exfoliation, chemical vapor deposition (CVD) and wet chemical synthesis. However, it is still challenging to scale the proposed devices to the industrial level, due to the lack of a versatile fabrication process that ensures both reproducibility and scalability. A possible solution to this could rise from wet chemical synthesis. In the first part of this work, I discuss the development and optimization of a fabrication method for MoS2 thin films based on a sol-gel process which allows for scalable productions. This route allowed the fabrication of large area (~cm2) MoS2 thin films of 200 nm thickness on technological relevant substrates (i.e., glass, gold, silicon). The films displayed good uniformity, although the crystallinity was affected by residual impurities. The films produced with this technique were employed for the fabrication of photodetectors, displaying responsivity of few mA/W in the NUV-VIS-NIR spectrum. However, the performance of the device was affected by a still limited quality of the MoS2 films obtained with the current method that require further optimization. Further studies will overcome the current limitations and solutions to be investigated in future works are proposed. The second part of this work focuses on expanding the detection capability of 2D-MoS2 (currently limited to the UV-VIS-NIR spectrum), by exploring for the first time X-rays sensing, taking advantage of the X-ray cross section of MoS2 associated with the high atomic number Z of Mo. A detector based on an exfoliated MoS2 monolayer (1L-MoS2) was fabricated and characterized for the purpose. The detector showed direct detection of ~10^2 keV X-rays down to dose rates of 0.08 mGy/s, with X-ray sensitivity is in the range 10^8-10^9 µC ⋅Gy-1·cm-3, outperforming most of the reported organic and inorganic materials. A strategy to improve the device response was also studied by adding a scintillator film, which resulted in a three-fold increase of the signal. These results suggest to consider 2D-MoS2 for in-vivo dosimetry applications.
|
Page generated in 0.05 seconds