Spelling suggestions: "subject:"multiphase"" "subject:"multiphases""
771 |
Modeling and optimisation of a rotary kiln reactor for the processing of battery materials / Modellering och optimering av en roterugnreaktor för bearbetning av batterimaterialKhawaja, Danial January 2021 (has links)
Roterugnar är cylindriska kärl som används för att höja materials temperaturer i en kontinuerlig process som kallas för kalcinering. Roterugnar kan tillämpas i olika processer såsom reduktion av oxidmalm samt återvinning av farligt avfall. Fördelen med roterugnar ligger i dess förmåga att hantera råmaterial som sträcker sig från slam till granulära material med en mängd olika partikelstorlekar, och därigenom upprätthålla distinkta miljöer såsom en bädd av fasta partiklar som samexisterar med ett oxiderande fribord. Sex olika bäddbeteende har dokumenterats med avseende på fyllningsgrad samt Froude nummer. Syftet med denna studie var att utveckla en tvådimensionell suspensions modell med CFD genom att använda den kommersiella mjukvaran COMSOL 5.5 för att simulera de två faser, gas och fast, som en blandad fas efter verk av Philips et. al., Physics of Fluids A: Fluid Dynamics 4.1 (1992) 30-40 och Acrivos & Zhang., International Journal Multiphase Flow 20.3 (1994) 579-591. Denna modell undersöktes genom att jämföra den med de dokumenterade flödesregimerna samt genom parameter som partikelstorlek, partikeldensitet och viskositeten hos gas i flödesregimen känd som rullande läge. Dessutom undersöktes temperaturprofilen för den roterande ugnen genom att utforska hur blandningsvariationer av den fasta bädden i den roterande ugnen påverkas av värmeöverföringen när värme tillförs från väggen under rullande läge. Resultaten av den tvådimensionella suspension modellen visade att det var bara möjligt att simulera glidläge korrekt; andra lägen kunde inte beskrivas som dokumenterat i litteraturen. Det indikeras att vilovinkeln och viskösa krafter i den roterande ugnen var låga vilket resulterade i att suspensions modellen inte kunde avbilda exakt de återstående flödesregimerna som dokumenterat. Till exempel avbildades rullningsläget mer likt forsandeläge då partiklarna fall fritt efter höjning av bädden. Partikelstorlek och partikeldensitet har visat sig ha en betydande påverkan på suspensions modellen eftersom de viskösa krafterna blir låga för en partikelstorlek och partikeldensitet under 0,4 mm respektive 1500 kg/m3. Angående gasens viskositet visades det sig att ju närmare värdet 2.055e-3 (Pa*s) den blev desto större blev sedimentationsflödet vilket resulterade i att bäddpartiklarna dras ner och förblir där. Suspensions modellen kunde således simulera en fast och flytande fas och inte en gasfas som avsett. Slutligen visade temperaturanalysen att påverkan av den termiska konduktiviteten var mer signifikant än den specifika värmekapaciteten i intervallet 1 - 50 (W/(m*K)) respektive 300 - 800 (J/(kg*K)) på grund av den tid det tog att nå en homogen temperaturprofil. / Rotary kilns are cylindrical vessels used to raise materials temperature in a continuous process known as calcination. Rotary kilns find application in various processes such as reduction of oxide ore and hazardous waste reclamation. The advantage of the rotary kiln lies in its ability to handle feedstock ranging from slurries to granular materials with a variety of particle size, thereby maintaining distinct environments such as a bed of solid particles coexisting with an oxidising freeboard. Six different bed behaviours within the kiln have been documented with respect to the filling degree and Froude number. The aim of this study was to develop a two-dimensional suspension model with CFD by using the commercial software COMSOL 5.5 to simulate the two phases, gas and solid, as a mixed phase, following the works of Philips et. al., Physics of Fluids A: Fluid Dynamics 4.1 (1992) 30-40 and Acrivos & Zhang., International Journal Multiphase Flow 20.3 (1994) 579-591. This model was investigated by comparing it against the documented flow regimes as well as through parameters such as particle size, particle density and viscosity of gas in the flow regime known as rolling mode. In addition, the temperature profile of the rotary kiln was investigated by exploring how the mixture variation of the solid bed within the rotary kiln affects the heat transfer when heat is supplied from the wall during a rolling mode. The results of the two-dimensional suspension model showed that it was only possible to simulate the slipping mode accurately; others mode could not be described as documented in literature. It is indicated that the angle of repose and viscous forces within the rotary kiln were low resulting in the suspension model not being able to accurately depict the remaining flow regimes as documented. For instance, the rolling mode was depicted more as a cataracting mode due to the free fall of particles after elevation of the bed. The particle size and the particle density were found to have a significant impact on the suspension model as the viscous forces became low for a particle size and particle density below 0.4 mm and 1500 kg/m3 respectively. As for the viscosity of gas it was found that the closer it got to the value 2.055e-3 (Pa*s) the sedimentation flux became too large resulting in the bed particles being pulled down and remaining there. Thus, the suspension model could simulate a solid and liquid phase and not a gas phase as intended. Lastly, the temperature analysis revealed that the impact of the thermal conductivity was more significant than the specific heat capacity in the range of 1 - 50 (W/(m*K)) and 300 - 800 (J/(kg*K)) respectively, due to the time it took to reach a homogeneous temperature profile.
|
772 |
Theoretical Analysis and Design for the Series-Resonator Buck ConverterTu, Cong 03 February 2023 (has links)
High step-down dc/dc converters are widely adopted in a variety of areas such as industrial, automotive, and telecommunication. The 48 V power delivery system becomes increasingly popular for powering high-current and low-voltage chips. The Series-Capacitor Buck (SCB) converter doubles the duty ratio and equalizes the current between the two phases. Hard switching has hindered efforts to reduce volume via increased switching frequency, although a monolithically integrated SCB converter has boosted current density. A Series-Resonator Buck (SRB) converter is realized by adding a resonant tank in series with the series capacitor Cs. All switches turn on at zero-voltage (ZVOn), and the low-side switches turn off at zero-current (ZCOff). The design of the SRB converter includes characterizing the design variables' impacts on the converter performances and designing low-loss resonant components as the series resonator.
The Series-Resonator Buck converter belongs to the class of quasi-resonant converters. Its resonant frequency is higher than the switching frequency, and its waveforms are quasi-sinusoidal. This work develops a steady-state model of the SRB converter to calculate voltage gain, component peak voltages, and resonant inductor peak current. Each switching cycle is modeled based on the concept of generalized state-space averaging. The soft-switching condition of the high-side switches is derived. The ZVS condition depends on the normalized control variable and the load condition. The gain equation models the load-dependent characteristic and the peak gain boundary. The theoretical peak voltage gain of the SRB converter is smaller than the maximum gain of the SCB converter. A smaller normalized load condition results in a larger peak voltage gain of the SRB converter.
The large-signal model of the SRB converter characterizes the low-frequency behavior of the low-pass filters with the series capacitor and the high-frequency behavior of the resonant elements. A design recommendation of t_off f_r<0.5 is suggested to avoid the oscillation between the series capacitor Cs and the output inductors Lo. In other words, the off-duration of the low-side switches is less than half of 1/fr, and therefore the negative damping effect from the parallel resonant tank to the vCs response is reduced. The transfer functions of the SRB converter are presented and compared with those of the SCB converter. The series resonator brings in an extra damping effect to the response of output capacitor voltage.
The understanding of the analytical relationships among the resonant tank energy, voltage gain, and component stresses was utilized to guide the converter design of the converter's parameters. A normalized load condition at √2 minimizes the stresses of the series resonator by balancing the peak energy in the resonant elements Lr and Cr. The f_s variation with voltage gain M is less than 10%. The non-resonant components C_s, L_oa, and L_ob are designed according to the specified switching ripples.
The ac winding loss complicates the winding design of a resonant inductor. This work replaces the rectangular window with a rhombic window to reduce the eddy current loss caused by the fringing effect. The window ratio k_y is added as a design variable. The impacts of the design variables on the inductance, core loss, and winding loss are discussed. The air-gap length l_g is designed to control the inductance. A larger k_y design results in a short inductor length l_c and a smaller winding loss. The disadvantages include a smaller energy density design and a larger core loss due to the smaller cross-sectional area. In the design example presented in the thesis, the presence of the rhombic shape increases the gap-to-winding distance by two times, and also reduces the y-component of the magnetic field by a factor of two. The total inductor loss is reduced by 56% compared to a conventional design with a rectangular winding window while keeping the same inductance and the same inductor volume.
This dissertation implements a resonator, replacing the series capacitor, in an SCB converter. The resultant SRB converter shows a 30% reduction in loss and a 50% increase in power density. The root cause of the divergence issue is identified by modeling the negative damping effect caused by resonant elements. The presented transient design guideline clears the barriers to closed-loop regulation and commercialization of the SRB converter. This work also reshapes winding windows from rectangle to rhombus which is a low-cost change that reduces magnetic loss by half. The theoretical analysis and design procedures are demonstrated in a 200 W prototype with 7% peak efficiency increase compared to the commonly used 30 W commercial SCB product. / Doctor of Philosophy / High step-down dc/dc converters are widely adopted in a variety of areas such as industrial, automotive, and telecommunication areas. The 48 V power delivery system becomes increasingly popular for powering high-current and low-voltage chips. The Series-Capacitor Buck (SCB) converter doubles the duty ratio and equalizes the current between the two phases. Hard switching has hindered efforts to reduce volume via increased switching frequency although a monolithically integrated SCB converter has boosted current density. A Series-Resonator Buck (SRB) converter is realized by adding a resonant tank in series with the series capacitor Cs. All switches turn on at zero-voltage (ZVOn), and the low-side switches turn off at zero-current (ZCOff). The challenges to designing the SRB converter include characterizing the design variables' impacts on the converter performances and designing low-loss resonant components as the series resonator.
The resultant SRB converter shows a 30% reduction in loss and a 50% increase in power density. The root cause of the divergence issue is identified by modeling the negative damping effect caused by the resonant elements. The presented transient design guideline clears the barriers of closed-loop regulation and commercialization of the SRB converter. This work also reshapes winding windows from rectangle to rhombus, which is a low-cost change that reduces magnetic loss by half. The theoretical analysis and design procedures are demonstrated in a 200 W prototype with 7% peak efficiency increase compared to the commonly used 30 W commercial SCB product.
|
773 |
[pt] OTIMIZAÇÃO SIMULTÂNEA DA QUANTIDADE, LOCALIZAÇÃO E DIMENSIONAMENTO DE UNIDADES ESTACIONÁRIAS DE PRODUÇÃO POR ALGORITMOS GENÉTICOS / [en] SIMULTANEOUS OPTIMIZATION OF THE QUANTITY, LOCATION AND SIZING OF PRODUCTION UNITS BY GENETIC ALGORITHMSALEXANDRE FRANKENTHAL FIGUEIRA 27 November 2018 (has links)
[pt] Os custos de instalação e as taxas de produção ao longo da vida de um reservatório de óleo e gás são influenciados diretamente pela localização, quantidade e capacidade das Unidades Estacionárias de Produção (UEPs). A distância entre um poço e a UEP a qual foi alocado é um fator impactante na perda de carga a que os fluídos são submetidos. A dissipação de energia aumenta quando essa distância é maior e todo o sistema de produção recebe a interferência negativa desta perda, o que compromete as taxas de recuperação. A necessidade de respeitar as restrições de capacidade das UEPs faz com que outras decisões precisem ser tomadas no mesmo momento em que se decide a localização de cada uma. Este trabalho descreve um modelo baseado em Algoritmos Genéticos para a otimização simultânea da quantidade, localização e dimensionamento de Unidades Estacionárias de Produção (UEPs). Para lidar com as restrições lineares e não lineares do problema utiliza-se a técnica chamada de GENOCOP III - Genetic Algorithm for Numerical Optimization of Constrained Problems e funções de penalidade. O objetivo da otimização é maximizar o Valor Presente Líquido (VPL) que depende da curva de produção de cada configuração obtida como possível solução. Para obter a curva de produção são realizadas simulações de reservatório que utilizam tabelas de escoamento multifásico para representar o sistema de produção externo ao reservatório. O modelo de solução foi testado em um modelo de reservatório baseado em um caso real. Os resultados encontrados indicam que a utilização deste modelo de solução como ferramenta pode auxiliar a tomada de decisão dos especialistas responsáveis pelo desenvolvimento de campos de petróleo. / [en] Installation costs and production rates over the life of an oil and gas reservoir are directly influenced by the location, number and capacity of the Production Units. The distance between a well and the Production Unit to which it has been allocated is an important factor in the loss of fluids pressure. The power dissipation increases when the distance is bigger and the entire production system receives the negative interference of this loss, compromising recovery rates. There is a need to take into account restrictions that apply to the capacity of Production Unit at the same time as there localization are decided. This paper describes a model with genetic algorithms for the simultaneous optimization of the quantity, location and sizing of Production Units. To deal with the constraints of the problem we use a technique called GENOCOP III - Genetic Algorithm for Numerical Optimization of Constrained Problems. The goal of the optimization is to maximize the Net Present Value (NPV) which depends on the production curve of each configuration obtained as a possible solution. The production curves are obtained by reservoir simulations with multiphase flow tables that represent the system external to the reservoir. The solution model was tested in a reservoir model based on a real case. The results indicate that using this solution model as a tool can assist the decision making of experts responsible for oil field development.
|
774 |
Entwicklung optischer Messtechnik zur Untersuchung der wechselseitigen Beeinflussung von Erstarrung und KonvektionAnders, Sten 05 April 2022 (has links)
Konvektions- und Erstarrungsvorgänge sind sowohl in natürlichen als auch in technischen Prozessen von grundlegender Bedeutung und stehen dabei miteinander in komplexer Wechselwirkung. Die vorliegende Arbeit beschreibt die Entwicklung eines experimentellen Aufbaus, mit dem sich vielfältige Formen dendritischer Erstarrung und thermosolutaler Konvektion in optisch transparenten Materialsystemen initiieren lassen. Besonderes Augenmerk liegt dabei auf der Implementierung optischer Messtechnik und automatisierter Bildauswertung.
Die hier entwickelte komplexe Bildverarbeitung erlaubt die simultane Anwendung verschiedener Verfahren der Strömungs- und Temperaturmessung: Eine automatisierte Bildsegmentierung quantifiziert unterschiedliche Feststofffraktionen; mittels Lagrangian Particle Tracking (LPT) werden die Trajektorien frei beweglicher Kristalle bestimmt und Particle Image Velocimetry/Thermometry (PIV/T) misst Strömungs- und Temperaturfeld im Fluid.
Für die simultane Verwendung dieser Verfahren unter Minimierung von Quereffekten stellt die vorliegende Arbeit eine Reihe von Erweiterungen und Neuentwicklungen oben genannter Standardverfahren vor: Mit dem neuartigen Ansatz des Spectral Random Masking kann das Geschwindigkeitsfeld einer (unmaskierten) Teilchenfraktion (PIV-Tracer) ohne den Einfluss einer zweiten (maskierten) Teilchenfraktion (Blasen oder Feststoffpartikel) bestimmt werden. Dieser neuartige Algorithmus maskiert entsprechende Bildbereiche mittels zufälliger Intensitätsmuster und vermeidet so Probleme herkömmlicher Verfahren. Die Verwendung von Thermochromic Liquid Crystal (TLC)-Partikeln als Strömungstracer ermöglicht zusätzlich zur Particle Image Velocimetry (PIV) die Visualisierung des Temperaturfeldes mittels Liquid Crystal Thermometry (LCT). Um dabei genaue quantitative Messungen bei Anwesenheit mehrerer Feststofffraktionen zu erreichen, wurde eine neue Methode der Farbinterpolation entwickelt. Diese generiert RGB-Bilder, welche nur die Färbung der TLC-Partikel repräsentieren. Die anschließende Verarbeitung von RGB-Tripeln und räumlichen Farbabhängigkeiten durch ein künstliches neuronales Netz (KNN) ermöglicht es, verlässliche globale Temperaturfelder zu bestimmen. Die Kombination dieses KNN-Systems mit einem entsprechenden Kalibrierverfahren verbessert dabei die Genauigkeit und den messbaren Temperaturbereich der Liquid Crystal Thermometry (LCT) im Vergleich zu herkömmlichen Verfahren.
Mit dem hier etablierten experimentellen Aufbau und Messschema können quantitative globale Studien zur gegenseitigen Beeinflussung von Erstarrung und Strömung unter simultaner Betrachtung verschiedener Feldgrößen durchgeführt werden. Damit ist ein tieferes Verständnis der komplexen physikalischen Vorgänge möglich. Die vorliegende Arbeit demonstriert dies anhand einer experimentellen Studie über die doppelt-diffusive Konvektion während der Kristallisation einer wässrigen Ammoniumchloridlösung NH4Cl(aq).:Zusammenfassung
Danksagung
1. Einleitung
2. Physikalische Grundlagen
2.1. Konvektion
2.1.1. Freie thermische Konvektion
2.1.2. Doppelt-diffusive Konvektion
2.2. Erstarrung
2.3. Wechselwirkung zwischen Erstarrung und Strömung
3. Methoden der bildgebenden optischen Messtechnik
3.1. Digitale Bildverarbeitung
3.2. Optische Strömungsmessung
3.2.1. Particle Image Velocimetry
3.2.2. Lagrangian Particle Tracking
3.3. Liquid Crystal Thermometry
3.3.1. Farbkalibrierung
3.3.2. Simultane Temperatur- und Strömungsmessung
3.4. Bisheriger Einsatz optischer Messtechniken für Erstarrungsexperimente
4. Experimenteller Aufbau
4.1. Ammoniumchlorid als transparentes Modellsystem
4.2. Messzelle
4.3. Labortechnik
4.3.1. Temperaturmesstechnik
4.3.2. Temperaturregelung
4.3.3. Temperaturregime und experimenteller Ablauf
4.4. Bildgebung
4.4.1. Laser-Lichtschnittverfahren
4.4.2. Durchlichtverfahren
4.4.3. LED-Lichtschnittverfahren
4.4.4. Kombinationsmöglichkeiten und Einsatz der Bildgebungsverfahren
5. Implementierung und Weiterentwicklung der digitalen Bildverarbeitung
5.1. Detektion und Quantifizierung verschiedener Feststofffraktionen
5.1.1. Bildsegmentierung
5.1.1.1. Statische Hintergrundmaskierung
5.1.1.2. Dynamische Segmentierung
5.1.2. Bestimmung der Feststoffanteile
5.1.3. Quantifizierung der Bewegung der äquiaxialen Kristalle
5.2. Bestimmung des Geschwindigkeitsfeldes der kontinuierlichen Phase
5.2.1. Spectral Random Masking
5.2.2. PIV-Analyse der kontinuierlichen Phase
5.3. Messung des Temperaturfeldes der kontinuierlichen Phase
5.3.1. Farbinterpolation mittels maskierter Faltung
5.3.2. Kalibrierung der Liquid Crystal Thermometry
5.3.2.1. Bestimmung des Farbspiels der TLC-Partikel
5.3.2.2. Temperaturmessung mittels künstlicher neuronaler Netze
5.3.3. Anwendung und Genauigkeit der Temperaturmessung
5.4. Simultane Quantifizierung von Erstarrung, Strömung und Temperatur
6. Demonstration der Messtechnik anhand ausgewählter Experimente
6.1. Analyse globaler Merkmale der Erstarrungsexperimente
6.1.1. Entwicklung verschiedener Konvektionsregime
6.1.2. Wachstum verschiedener Kristallfraktionen
6.2. Bedingungen lokaler äquiaxialer Erstarrung
6.2.1. Äquiaxiales Kristallwachstum infolge lokaler Unterkühlung
6.2.2. Nukleation äquiaxialer Kristalle durch kolumnares Kristallwachstum
6.3. Erkenntnisgewinn und Möglichkeiten der Experimente
7. Zusammenfassung und Ausblick
7.1. Bewertung des experimentellen Aufbaus und der entwickelten Messtechnik
7.2. Optimierungsmöglichkeiten der Messtechnik
7.3. Möglichkeiten und Bedeutung zukünftiger experimenteller Untersuchungen
A. Technische Zeichnungen
B. Materialeigenschaften der verwendeten NH4 Cl-Lösungen
C. Weiterführende Details der Temperaturmessung und -regelung
C.1. Kalibrierung der Thermoelemente
C.2. Kalibrierung der Thermistoren
C.3. Entwicklung und Einrichtung eines Peltier-Luftkühlers
D. Weiterführende Details und Illustrationen der entwickelten Bildverarbeitung
D.1. Verwendete Python Bibliotheken
D.2. Signalflussplan des Spectral Random Masking
D.3. Particle Image Velocimetry/Thermometry
D.4. Empfindlichkeitsanalyse des künstlichen neuronalen Netzes
D.5. Abschätzung der Genauigkeit der LCT während der Experimente
E. Erstarrungsexperimente
E.1. Lichtschnittbeleuchtung
E.1.1. Thermisch stabile Schichtung
E.1.2. Thermisch instabile Schichtung
E.1.3. Thermisch neutrale Schichtung
E.2. Hintergrundbeleuchtung und doppelwandiger Behälter
E.2.1. Thermisch stabile Schichtung
E.2.2. Thermisch instabile Schichtung
Symbolverzeichnis
Indexverzeichnis
Abkürzungsverzeichnis
Literatur
Selbstständigkeitserklärung / Convection and solidification processes are of fundamental importance in both natural and technical processes and are subject to complex interaction. The present work presents the development of an experimental setup to initiate various forms of dendritic solidification and thermosolutal convection in optically transparent material systems. Special attention is given to the implementation of optical measurement techniques and automated image processing.
The complex image processing developed here allows the simultaneous application of different methods for flow and temperature measurement: An automated image segmentation quantifies different solid fractions; with Lagrangian Particle Tracking (LPT) the trajectories of free moving crystals are determined and Particle Image Velocimetry/Thermometry (PIV/T) measures flow and temperature field in the fluid.
For the simultaneous use of these methods while minimizing cross-effects, this thesis illustrates a number of extensions and new developments of the above mentioned standard methods: With the novel approach of Spectral Random Masking the velocity field of an unmasked particle fraction (PIV tracer) can be determined without the influence of a second (masked) particle fraction (bubbles or solid particles). This novel algorithm masks corresponding image areas by random intensity patterns and thus avoids typical problems of conventional methods. The use of Thermochromic Liquid Crystal (TLC) particles as flow tracers enables the visualization of the temperature field by Liquid Crystal Thermometry (LCT) in addition to flow measurements by Particle Image Velocimetry (PIV). To achieve accurate quantitative measurements in the presence of several solid fractions, a new method of color interpolation was developed. This method generates RGB-images, which only represent the coloration of the TLC particles. The subsequent processing of RGB triples and spatial color dependencies using an artificial neural network (ANN) allows to determine reliable global temperature fields. The combination of this ANN system with a corresponding calibration procedure improves the accuracy and measurable temperature range of the LCT compared to conventional methods.
With the experimental setup and measurement scheme established here, quantitative global studies on the mutual influence of solidification and flow can be performed under simultaneous consideration of different physical quantities. Compared to previous studies, this allows a deeper understanding of the complex physical processes. The present work demonstrates this with an experimental study of double diffusive convection during crystallization of an aqueous ammonium chloride solution NH4Cl(aq).:Zusammenfassung
Danksagung
1. Einleitung
2. Physikalische Grundlagen
2.1. Konvektion
2.1.1. Freie thermische Konvektion
2.1.2. Doppelt-diffusive Konvektion
2.2. Erstarrung
2.3. Wechselwirkung zwischen Erstarrung und Strömung
3. Methoden der bildgebenden optischen Messtechnik
3.1. Digitale Bildverarbeitung
3.2. Optische Strömungsmessung
3.2.1. Particle Image Velocimetry
3.2.2. Lagrangian Particle Tracking
3.3. Liquid Crystal Thermometry
3.3.1. Farbkalibrierung
3.3.2. Simultane Temperatur- und Strömungsmessung
3.4. Bisheriger Einsatz optischer Messtechniken für Erstarrungsexperimente
4. Experimenteller Aufbau
4.1. Ammoniumchlorid als transparentes Modellsystem
4.2. Messzelle
4.3. Labortechnik
4.3.1. Temperaturmesstechnik
4.3.2. Temperaturregelung
4.3.3. Temperaturregime und experimenteller Ablauf
4.4. Bildgebung
4.4.1. Laser-Lichtschnittverfahren
4.4.2. Durchlichtverfahren
4.4.3. LED-Lichtschnittverfahren
4.4.4. Kombinationsmöglichkeiten und Einsatz der Bildgebungsverfahren
5. Implementierung und Weiterentwicklung der digitalen Bildverarbeitung
5.1. Detektion und Quantifizierung verschiedener Feststofffraktionen
5.1.1. Bildsegmentierung
5.1.1.1. Statische Hintergrundmaskierung
5.1.1.2. Dynamische Segmentierung
5.1.2. Bestimmung der Feststoffanteile
5.1.3. Quantifizierung der Bewegung der äquiaxialen Kristalle
5.2. Bestimmung des Geschwindigkeitsfeldes der kontinuierlichen Phase
5.2.1. Spectral Random Masking
5.2.2. PIV-Analyse der kontinuierlichen Phase
5.3. Messung des Temperaturfeldes der kontinuierlichen Phase
5.3.1. Farbinterpolation mittels maskierter Faltung
5.3.2. Kalibrierung der Liquid Crystal Thermometry
5.3.2.1. Bestimmung des Farbspiels der TLC-Partikel
5.3.2.2. Temperaturmessung mittels künstlicher neuronaler Netze
5.3.3. Anwendung und Genauigkeit der Temperaturmessung
5.4. Simultane Quantifizierung von Erstarrung, Strömung und Temperatur
6. Demonstration der Messtechnik anhand ausgewählter Experimente
6.1. Analyse globaler Merkmale der Erstarrungsexperimente
6.1.1. Entwicklung verschiedener Konvektionsregime
6.1.2. Wachstum verschiedener Kristallfraktionen
6.2. Bedingungen lokaler äquiaxialer Erstarrung
6.2.1. Äquiaxiales Kristallwachstum infolge lokaler Unterkühlung
6.2.2. Nukleation äquiaxialer Kristalle durch kolumnares Kristallwachstum
6.3. Erkenntnisgewinn und Möglichkeiten der Experimente
7. Zusammenfassung und Ausblick
7.1. Bewertung des experimentellen Aufbaus und der entwickelten Messtechnik
7.2. Optimierungsmöglichkeiten der Messtechnik
7.3. Möglichkeiten und Bedeutung zukünftiger experimenteller Untersuchungen
A. Technische Zeichnungen
B. Materialeigenschaften der verwendeten NH4 Cl-Lösungen
C. Weiterführende Details der Temperaturmessung und -regelung
C.1. Kalibrierung der Thermoelemente
C.2. Kalibrierung der Thermistoren
C.3. Entwicklung und Einrichtung eines Peltier-Luftkühlers
D. Weiterführende Details und Illustrationen der entwickelten Bildverarbeitung
D.1. Verwendete Python Bibliotheken
D.2. Signalflussplan des Spectral Random Masking
D.3. Particle Image Velocimetry/Thermometry
D.4. Empfindlichkeitsanalyse des künstlichen neuronalen Netzes
D.5. Abschätzung der Genauigkeit der LCT während der Experimente
E. Erstarrungsexperimente
E.1. Lichtschnittbeleuchtung
E.1.1. Thermisch stabile Schichtung
E.1.2. Thermisch instabile Schichtung
E.1.3. Thermisch neutrale Schichtung
E.2. Hintergrundbeleuchtung und doppelwandiger Behälter
E.2.1. Thermisch stabile Schichtung
E.2.2. Thermisch instabile Schichtung
Symbolverzeichnis
Indexverzeichnis
Abkürzungsverzeichnis
Literatur
Selbstständigkeitserklärung
|
775 |
Numerical Methods for Modeling Dynamic Features Related to Solid Body Motion, Cavitation, and Fluid Inertia in Hydraulic MachinesZubin U Mistry (17125369) 12 March 2024 (has links)
<p dir="ltr">Positive displacement machines are used in various industries spanning the power spectrum, from industrial robotics to heavy construction equipment to aviation. These machines should be highly efficient, compact, and reliable. It is very advantageous for designers to use virtual simulations to design and improve the performance of these units as they significantly reduce cost and downtime. The recent trends of electrification and the goal to increase power density force these units to work at higher pressures and higher rotational speeds while maintaining their efficiencies and reliability. This push means that the simulation models need to advance to account for various aspects during the operation of these machines. </p><p dir="ltr">These machines typically have several bodies in relative motion with each other. Quantifying these motions and solving for their effect on the fluid enclosed are vital as they influence the machine's performance. The push towards higher rotational speeds introduces unwanted cavitation and aeration in these units. To model these effects, keeping the design evaluation time low is key for a designer. The lumped parameter approach offers the benefit of computational speed, but a major drawback that comes along with it is that it typically assumes fluid inertia to be negligible. These effects cannot be ignored, as quantifying and making design considerations to negate these effects can be beneficial. Therefore, this thesis addresses these key challenges of cavitation dynamics, body dynamics, and accounting for fluid inertia effects using a lumped parameter formulation.</p><p dir="ltr">To account for dynamics features related to cavitation, this thesis proposes a novel approach combining the two types of cavitation, i.e., gaseous and vaporous, by considering that both vapor and undissolved gas co-occupy a spherical bubble. The size of the spherical bubble is solved using the Rayleigh-Plesset equation, and the transfer of gas through the bubble interface is solved using Henry's Law and diffusion of the dissolved gas in the liquid. These equations are coupled with a novel pressure derivative equation. To account for body dynamics, this thesis introduces a novel approach for solving the positions of the bodies of a hydraulic machine while introducing new methods to solve contact dynamics and the application of Elasto Hydrodynamic Lubrication (EHL) friction at those contact locations. This thesis also proposes strategies to account for fluid inertia effects in a lumped parameter-based approach, taking as a reference an External Gear Machine. This thesis proposes a method to study the effects of fluid inertia on the pressurization and depressurization of the tooth space volumes of these units. The approach is based on considering the fluid inertia in the pressurization grooves and inside the control volumes with a peculiar sub-division. Further, frequency-dependent friction is also modeled to provide realistic damping of the fluid inside these channels.</p><p dir="ltr">To show the validity of the proposed dynamic cavitation model, the instantaneous pressure of a closed fluid volume undergoing expansion/compression is compared with multiple experimental sources, showing an improvement in accuracy compared to existing models. This modeling is then further applied to a gerotor machine and validated with experiments. Integrating this modeling technique with current displacement chamber simulation can further improve the understanding of cavitation in hydraulic systems. Formulations for body dynamics are tested on a prototype Gerotor and Vane unit. For both gerotor and vane units, comparisons of simulation results to experimental results for various dynamic quantities, such as pressure ripple, volumetric, and hydromechanical efficiency for multiple operating conditions, have been done. Extensive validation is performed for the case of gerotors where shaft torque ripple and the motion of the outer gear is experimentally validated. The thesis also comments on the distribution of the different torque loss contributions. The model for fluid inertia effects has been validated by comparing the lumped parameter model with a full three-dimensional Navier Stokes solver. The quantities compared, such as tooth space volume pressures and outlet volumetric flow rate, show a good match between the two approaches for varying operating speeds. A comparison with the experiments supports the modeling approach as well. The thesis also discusses which operating conditions and geometries play a significant role that governs the necessity to model such fluid inertia effects in the first place.</p>
|
776 |
Développement d’un code numérique pour la simulation et l’étude de l’hydrodynamique et de la physico-chimie de milieux diphasiques incompressibles. Cas d’une goutte d’eau dans l’huile de paraffine / Development of a numerical code for the simulation and study of the hydrodynamics and the physical chemistry of incompressible two-phase media. Case of a droplet of water in paraffin oilFanzar, Abdelaziz 25 September 2014 (has links)
Depuis plusieurs décennies, une importante activité scientifique se concentre sur la description numérique, théorique ou expérimentale de l'hydrodynamique des écoulements multiphasiques. Ces écoulements sont caractérisés par l'existence d'interfaces, et d'une force à l'interface, la tension superficielle, séparant généralement deux fluides non miscibles. Un cas d'étude dans ce contexte est le problème du drainage d'une unique goutte dans une phase continue, l'ensemble étant soumis à la gravité. Ce système fait apparaître des écoulements récemment décrits pour une goutte d'eau dans l'huile de paraffine. Ce système constitue également un modèle simple pour l'étude des propriétés aux interfaces, Mais d'un point de vue numérique, se pose alors le problème de la stabilité des algorithmes pouvant être utilisés. Les effets aux interfaces impliquent en effet des domaines spatiaux très limités dans lesquels les grandeurs physiques entre les deux fluides sont discontinues. D'importants artéfacts numériques peuvent alors être générés dans les simulations et faire perdre la richesse de la physico-chimie du système considéré. Le problème de la simulation d'écoulements multiphasiques intéresse aussi bien le monde académique que le monde industriel. L'objectif de ce travail de thèse est donc d'implémenter les techniques numériques les plus récentes et de développer un code pour permettre la simulation de l'hydrodynamique de systèmes dispersés. Pour parvenir à ce but, il reste encore des problèmes algorithmiques importants à résoudre comme la prise en compte des effets thermocapillaires et thermosolutaux. Ces deux derniers points sont l'objet de cette thèse. / For several decades, an important scientific activity has focused on the numerical, theoretical and experimental hydrodynamics of drops. This work presents numerical results of a single droplet in the gravity field and in non-isothermal conditions. The simulation such a multiphase system is important in both academic and industrial world. This is particularly the case in the field of emulsions, wetting problems and evaporation. To achieve this goal, there are still important algorithmic problems due to the free moving interfaces and the description of capillary effects. Here, a Volume of Fluid technique has been implemented with high order temporal and spatial schemes to preserve the sharpness of the drop interface. The system under consideration is a simplified model consisting in a single water droplet in a continuous paraffin oil phase. These liquids are immiscible and non-compressible and the overall evolution is unsteady. Capillary contributions such as temperature and surfactant dependent surface tension are fully accounted for. This presentation is aimed to show the capabilities of VOF techniques for the simulations of unsteady multiphase systems in non-isothermal configurations. The role of the droplet initial position and temperature field is described with good numerical stability. There are still important problems remaining in the simulation of free interface systems with such a technique. Spurious currents induced by the description of capillarity can in particular come into play. But these latter can be controlled once the droplet average velocity due to drainage becomes large enough.
|
777 |
[en] PERFORMANCE VERIFICATION METHODOLOGY OF MULTIPHASE FLOW METERS IN ALLOCATION MEASUREMENT IN THE OIL AND GAS INDUSTRY / [pt] METODOLOGIA DE VERIFICAÇÃO DE DESEMPENHO DE MEDIDORES DE VAZÃO DE FLUIDO MULTIFÁSICO NA MEDIÇÃO PARA APROPRIAÇÃO NA INDÚSTRIA DE ÓLEO E GÁS NATURALLUIZ OCTAVIO VIEIRA PEREIRA 20 February 2019 (has links)
[pt] O medidor de vazão de fluido multifásico (MM) se desenvolveu impulsionado principalmente pela necessidade da indústria de óleo e gás em medir a vazão da produção dos poços que comumente é composta por petróleo, gás e água. Em outubro de 2015, a Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP) publicou o Regulamento Técnico de Medição de Fluido Multifásico para Apropriação de Petróleo, Gás Natural e Água que apresenta os requisitos através de planos que as empresas operadoras de óleo e gás precisam preparar e submeter para obter a autorização para aplicar o MM na medição para apropriação. Contudo, esse regulamento não especifica a metodologia que deve ser utilizada no denominado plano de verificação de desempenho para avaliar desempenho do MM no campo, cabendo a cada operadora desenvolver a sua metodologia para esse fim e apresentar a ANP. Este trabalho propõe e aplica uma metodologia para verificação de desempenho para MM com resultados de testes realizados em laboratório com fluidos reais e em campo de produção de petróleo e gás. É observado que testes com tempo curto de duração, inferior a 1000 segundos, tendem a gerar incertezas mais elevadas do que testes com longa duração, com mais de 1000 segundos, como os realizados na plataforma. Sendo assim, os resultados de incerteza de medição maiores gerados no laboratório com tempos de integração
curtos podem ser considerados mais conservativos que os resultados dos testes realizados na plataforma. / [en] The multiphase flowrate (MM) was driven by the necessity of the oil and gas industry to measure the production flow of the wells that are commonly composed of oil, gas and water. In October 2015, the National Agency for Petroleum, Natural Gas and Biofuels (ANP) published the Technical Regulation for Measurement of Multiphase Fluid for Petroleum, Natural Gas and Water produced, which presents
the requirements through plans that oil and gas companies need to prepare and submit for authorization to apply the MM in the measurement for allocation. However, this regulation does not specify the methodology that should be used in the so-called performance verification plan to evaluate the performance of the MM in the field, it being incumbent on each operator to develop its methodology for this
purpose and present the ANP. This work proposes and applies a methodology for performance verification for MM with test results performed in the laboratory with real fluids and in oil and gas field. It was observed that short duration tests, below 1000 seconds, tend to generate higher uncertainties than long tests, higher than 1000 seconds, such as those performed on the platform. Thus, the higher measurement uncertainty results generated in the laboratory with short integration times can be considered more conservative than the results of the tests performed in the platform.
|
778 |
EOS based simulations of thermal and compositional flows in porous media / Simulation compositionnelle thermique d'écoulements en milieux poreux, utilisant une équation d'étatMartin, Petitfrere 12 September 2014 (has links)
Les calculs d'équilibres à triphasiques et quadriphasiques sont au cœur des simulations de réservoirs impliquant des processus de récupérations tertiaires. Dans les procédés d'injection de gaz ou de vapeur, le système huile-gaz est enrichi d'une nouvelle phase qui joue un rôle important dans la récupération de l'huile en place. Les calculs d'équilibres représentent la majeure partie des temps de calculs dans les simulations de réservoir compositionnelles où les routines thermodynamiques sont appelées un nombre conséquent de fois. Il est donc important de concevoir des algorithmes qui soient fiables, robustes et rapides. Dans la littérature peu de simulateurs basés sur des équations d'état sont applicables aux procédés de récupération thermique. A notre connaissance, il n'existe pas de simulation thermique complètement compositionnelle de ces procédés pour des cas d'applications aux huiles lourdes. Ces simulations apparaissent essentielles et pourraient offrir des outils améliorés pour l’étude prédictive de certains champs. Dans cette thèse, des algorithmes robustes et efficaces de calculs d’équilibre multiphasiques sont proposés permettant de surmonter les difficultés rencontrés durant les simulations d'injection de vapeur pour des huiles lourdes. La plupart des algorithmes d'équilibre de phases sont basés sur la méthode de Newton et utilisent les variables conventionnelles comme variables indépendantes. Dans un premier temps, des améliorations de ces algorithmes sont proposées. Les variables réduites permettent de réduire la dimensionnalité du système de nc (nombre de composants) dans le cas des variables conventionnelles, à M (M<<nc), et sont déjà utilisées dans certains simulateurs de réservoirs commerciaux. La méthode de réduction proposée par Nichita and Graciaa (Fluid Phase Equil. 302 (2011) 226-233) est étendue à l'analyse de stabilité et aux calculs d'équilibres multiphasiques. A l'inverse des précédentes méthodes de réduction, les variables ne sont pas bornées. La méthode de Newton nécessite une Hessienne définie positive pour pouvoir être utilisée. D'autres méthodes de minimisations sont testées permettant de s'affranchir de cette contrainte; les méthodes Quasi-Newton et Trust-Region qui garantissent une direction de descente à chaque itération. Ces dernières présentent un grand intérêt puisqu'elles permettent de réaliser des pas supra-linéaires (même lorsque la Hessienne n'est pas définie positive) et quadratiques (Trust-Region) ou proches de quadratiques (Quasi-Newton) dans le cas contraire. Un nouveau vecteur de variables indépendantes est proposé (construit afin d'obtenir une meilleure mise échelle du problème) et utilisé au sein d'un algorithme BFGS modifié. De même, une méthode de Trust-Region est développée pour les problèmes de tests de stabilités et d'équilibres multiphasiques. Ensuite, considérant le fluide comme semi-continu, une méthodologie basée sur une procédure de quadrature Gaussienne est proposée pour calculer mathématiquement les pseudo-composants capables de représenter le comportement du fluide. La méthodologie peut être vue comme une procédure de groupement/dégroupement, applicable pour tout nombre de points de quadratures et toute composition de mélange. Dans une dernière partie, un algorithme général pour le calcul d’équilibre multiphasique est présenté incluant tous les algorithmes développés. Ce dernier est testé et validé contre des données expérimentales et de la littérature. Des simulations triphasiques et quadriphasiques d'injection de CO2 démontrent la capacité du programme à traiter un nombre arbitraire de phases. Des simulations de balayages par la vapeur sont réalisées pour des réservoirs montrant d'importantes hétérogénéités. Finalement, une simulation complètement compositionnelle du processus de Steam Assisted Gravity Drainage est réalisée. A notre connaissance, il s'agit de la première simulation de la sorte pour des cas d'applications d'huiles lourdes. / Three to four phase equilibrium calculations are in the heart of tertiary recovery simulations. In gas/steam injection processes, additional phases emerging from the oil-gas system are added to the set and have a significant impact on the oil recovery. The most important computational effort in many chemical process simulators and in petroleum compositional reservoir simulations is required by phase equilibrium and thermodynamic property calculations. In field scale reservoir simulations, a huge number of phase equilibrium calculations is required. For all these reasons, the algorithms must be robust and time-saving. In the literature, few simulators based on equations of state (EoS) are applicable to thermal recovery processes such as steam injection. To the best of our knowledge, no fully compositional thermal simulation of the steam injection process has been proposed with extra-heavy oils; these simulations are essential and will offer improved tools for predictive studies of the heavy oil fields. Thus, in this thesis different algorithms of improved efficiency and robustness for multiphase equilibrium calculations are proposed, able to handle conditions encountered during the simulation of steam injection for heavy oil mixtures. Most of the phase equilibrium calculations are based on the Newton method and use conventional independent variables. These algorithms are first investigated and different improvements are proposed. Michelsen’s (Fluid Phase Equil. 9 (1982) 21-40) method for multiphase-split problems is modified to take full advantage of symmetry (in the construction of the Jacobian matrix and the resolution of the linear system). The reduction methods enable to reduce the space of study from nc (number of components) for conventional variables to M (M<<nc) and are already used in some commercial reservoir simulators. The reduction method proposed by Nichita and Graciaa (Fluid Phase Equil. 302 (2011) 226-233) is extended to phase stability analysis and multiphase-split calculations. Unlike previous reduction methods, the set of variables is unbounded and the convergence path is the same as in conventional methods using the logarithm of equilibrium constants as variables. The Newton method requires a positive definite Hessian for convergence. Other kinds of minimization methods are investigated which overcome this constraint; the Quasi-Newton and Trust-region methods always guarantee a descent direction. These methods represent an interesting alternative since they can reach supra-linear steps even when the Hessian is non-positive definite, and can reach quadratic steps (Trust-Region) or nearly quadratic steps (Quasi-Newton) otherwise. A new set of independent variables is proposed (designed to ensure a better scaling of the problem) for a modified BFGS (which ensures the positive definiteness of the approximation of the Hessian matrix) algorithm and a Trust-Region method is also proposed for the stability-testing and phase-split problems. Subsequently, by assuming the fluid composition as semi-continuous, a methodology based on a Gaussian quadrature is proposed to mathematically compute a set of pseudo-components capable of representing the fluid behavior. The methodology can be seen as a lumping-delumping procedure, applicable to any number of quadrature points and to any feed distribution. In a last part, a general multiphase flash procedure implementing all the developed algorithms is presented, and tested against experimental and literature data. Three- and four phase CO2 injection simulations demonstrate the capability of the program to handle any number of phases. Simulations of steam flooding are performed for highly heterogeneous reservoirs. Finally, a fully compositional simulation of the steam assisted gravity drainage process is realized. To the best of our knowledge, this is the first simulation of the kind for heavy oil mixtures.
|
779 |
Transport Phenomena in Complex Two and Three-Phase Flow SystemsAkbar, Muhammad Khalid 22 November 2004 (has links)
Two and three-phase flow processes involving gas, liquid and solid, are common in nature and industry, and include some of the most complex and poorly-understood transport problems. In this research hydrodynamics, heat and mass transfer processes in complex two and three-phase flows were investigated. The interfacial surface area concentration in a short vertical column subject to the through flow of fiber-liquid-gas slurry was experimentally measured using the gas absorption technique. The experimental data were statistically analyzed for parametric effects, and were empirically correlated. The absorption of a gaseous species by a slurry droplet with internal circulation and containing reactive micro-particles was simulated, and parametrically studied. The micro-particles were found to enhance the absorption rate. The absorption rate was sensitive to droplet recirculation, and shrinkage of particles with time resulted in declining absorption rates. The transport of soot particles, suspended in laminar hot gas flowing in a tube, was modeled and parametrically studied. Due to coupled thermal radiation and thermophoresis, a radially-nonuniform temperature profile develops, leading to sharp, non-uniform radial soot-concentration profiles. The assumption of monodisperse particles leads to over-prediction of thermophoresis. The transport and removal of particles suspended in bubbles rising in a stagnant liquid pool were modeled based on a Eulerian – Monte Carlo method. The bubble hydrodynamics were treated in Eulerian frame, using the Volume-of-Fluid (VOF) technique, while particle equations of motion were numerically solved in Lagrangian frame. The bubbles undergo shape change, and have complex internal circulation, all of which influence the particle removal. Model predictions were also compared with experimental data. Using a resemblance between two-phase flow in microchannels, and in large channels at microgravity, a simple Weber number-based two-phase flow regime map was developed for microchannels. Based on the available air-water experimental data, a criterion for the prediction of conditions that lead to flow regime transition out of the stratified-wavy flow pattern in horizontal annular channels was proposed. The thermocapillary effects on liquid-vapor interface shape during heterogeneous bubble ebullition in microchannels were analytically studied.
|
780 |
A Numerical Study of the Gas-Particle Flow in Pipework and Flow Splitting Devices of Coal-Fired Power PlantSchneider, Helfried, Frank, Thomas, Pachler, Klaus, Bernert, Klaus 17 April 2002 (has links) (PDF)
In power plants using large utility coal-fired boilers for generation of electricity the coal is pulverised in coal mills and then it has to be pneumatically transported and distributed to a larger number of burners (e.g. 30-40) circumferentially arranged in several rows around the burning chamber of the boiler. Besides the large pipework flow splitting devices are necessary for distribution of an equal amount of pulverised fuel (PF) to each of the burners. So called trifurcators (without inner fittings or guiding vanes) and ''riffle'' type bifurcators are commonly used to split the gas-coal particle flow into two or three pipes/channels with an equal amount of PF mass flow rate in each outflow cross section of the flow splitting device. These PF flow splitting devices are subject of a number of problems. First of all an uneven distribution of PF over the burners of a large utility boiler leads to operational and maintenance problems, increased level of unburned carbon and higher rates of NOX emissions. Maldistribution of fuel between burners caused by non uniform concentration of the PF (particle roping) in pipe and channel bends prior to flow splitting devices leads to uncontrolled differences in the fuel to air ratio between burners. This results in localised regions in the furnace which are fuel rich, where insufficient air causes incomplete combustion of the fuel. Other regions in the furnace become fuel lean, forming high local concentrations of NOX due to the high local concentrations of O2. Otherwise PF maldistribution can impact on power plant maintenance in terms of uneven wear on PF pipework, flow splitters as well as the effects on boiler panels (PF deposition, corrosion, slagging).
In order to address these problems in establishing uniform PF distribution over the outlet cross sections of flow splitting devices in the pipework of coal-fired power plants the present paper deals with numerical prediction and analysis of the complex gas and coal particle (PF) flow through trifurcators and ''riffle'' type bifurcators. The numerical investigation is based on a 3-dimensional Eulerian- Lagrangian approach (MISTRAL/PartFlow-3D) developed by Frank et al. The numerical method is capable to predict isothermal, incompressible, steady gas- particle flows in 3-dimensional, geometrically complex flow geometries using boundary fitted, block-structured, numerical grids. Due to the very high numerical effort of the investigated gas-particle flows the numerical approach has been developed with special emphasis on efficient parallel computing on clusters of workstations or other high performance computing architectures. Besides the aerodynamically interaction between the carrier fluid phase and the PF particles the gas-particle flow is mainly influenced by particle-wall interactions with the outer wall boundaries and the inner fittings and guiding vanes of the investigated flow splitting devices. In order to allow accurate quantitative prediction of the motion of the disperse phase the numerical model requires detailed information about the particle-wall collision process. In commonly used physical models of the particle-wall interaction this is the knowledge or experimental prediction of the restitution coefficients (dynamic friction coefficient, coefficient of restitution) for the used combination of particle and wall material, e.g. PF particles on steel.
In the present investigation these parameters of the particle-wall interaction model have been obtained from special experiments in two test facilities. Basic experiments to clarify the details of the particle-wall interaction process were made in a test facility with a spherical disk accelerator. This test facility furthermore provides the opportunity to investigate the bouncing process under normal pressure as well as under vacuum conditions, thus excluding aerodynamically influences on the motion of small particles in the near vicinity of solid wall surfaces (especially under small angles of attack). In this experiments spherical glass beads were used as particle material. In a second test facility we have investigated the real impact of non-spherical pulverised fuel particles on a steel/ceramic target. In this experiments PF particles were accelerated by an injector using inert gas like e.g. CO2 or N2 as the carrier phase in order to avoid dust explosion hazards. The obtained data for the particle-wall collision models were compared to those obtained for glass spheres, where bouncing models are proofed to be valid. Furthermore the second test facility was used to obtain particle erosion rates for PF particles on steel targets as a function of impact angles and velocities.
The results of experimental investigations has been incorporated into the numerical model. Hereafter the numerical approach MISTRAL/PartFlow-3D has been applied to the PF flow through a ''riffle'' type bifurcator. Using ICEM/CFD-Hexa as grid generator a numerical mesh with approximately 4 million grid cells has been designed for approximation of the complex geometry of the flow splitting device with all its interior fittings and guiding vanes. Based on a predicted gas flow field a large number of PF particles are tracked throughout the flow geometry of the flow-splitter. Besides mean quantities of the particle flow field like e.g. local particle concentrations, mean particle velocities, distribution of mean particle diameter, etc. it is now possible to obtain information about particle erosion on riffle plates and guiding vanes of the flow splitting device. Furthermore the influence of different roping patterns in front of the flow splitter on the uniformness of PF mass flow rate splitting after the bifurcator has been investigated numerically.
Results show the efficient operation of the investigated bifurcator in absence of particle roping, this means under conditions of an uniform PF particle concentration distribution in the inflow cross section of the bifurcator. If particle roping occurs and particle concentration differs over the pipe cross section in front of the bifurcator the equal PF particle mass flow rate splitting can be strongly deteriorated in dependence on the location and intensity of the particle rope or particle concentration irregularities. The presented results show the importance of further development of efficient rope splitting devices for applications in coal-fired power plants. Numerical analysis can be used as an efficient tool for their investigation and further optimisation under various operating and flow conditions.
|
Page generated in 0.0597 seconds