21 |
Molecular characterization of NO-synthesizing neurons and assessment of their function in the maturation of the hypothalamic - pituitary - gonadal axis / Caractérisation moléculaire des neurones á nNOS et évaluation de leur rôle dans la maturation de l'axe hypothalamique impliqué dans la fonction de reproductionChachlaki, Konstantina 19 December 2016 (has links)
L’apparition de la puberté et la régulation de la fertilité chez les mammifères sont contrôlées par un réseau neuronal complexe, situé principalement dans l'hypothalamus, et qui converge vers les neurones synthétisant l'hormone de libération des gonadotrophines (GnRH). Ces neurones régulent la sécrétion des gonadotrophines, la croissance et le fonctionnement des gonades. Le développement correct du système à GnRH, incluant des changements rapides dans l'expression et la signalisation de l’hormone GnRH au sein de cette population clairsemée de quelques centaines de neurones, est essentiel pour la maturation sexuelle et le fonctionnement normal de l'axe hypothalamo-hypophyso-gonadique. Lors du développement embryonnaire, ces neurones migrent de la placode olfactive vers leur emplacement définitif, l’hypothalamus, pour y recevoir les connexions afférentes qui permettront une libération pulsatile de la GnRH et la libération subséquente des gonadotrophines (l'hormone de stimulation des follicules (FSH) et l'hormone lutéinisante (LH)). Dès les années 90, l'oxyde nitrique (NO) a été identifié comme molécule clé dans la décharge pré-ovulatoire de GnRH/LH. En effet, de nombreux travaux ont suggéré que des interactions entre les neurones exprimant la forme neuronale de l’enzyme de synthèse du NO (la nNOS) et le système GnRH étaient impliquées dans le contrôle central de la fonction de reproduction à l'âge adulte. De plus, si le NO est reconnu depuis longtemps comme un acteur majeur du contrôle central de l’ovulation à l’âge adulte, la possibilité qu’il soit aussi impliqué dans la maturation sexuelle en régulant l’activité des neurones à GnRH à des stades précoces précédant la puberté n’a pas été explorée auparavant. Cependant, même si nous avons progressé dans la connaissance des interactions entre les neurones à nNOS et des différents acteurs importants de l’axe gonadotrope, l’identité moléculaire de ces neurones reste mal connue. Au cours de cette étude, nous avons recherché 1) l'identité moléculaire des neurones á nNOS dans l'hypothalamus au cours de développement 2) si le NO régule la migration et l’intégration des neurones à GnRH dans l’hypothalamus et 3) si le NO régule la maturation sexuelle. Pendant ma thèse nous avons répertorié pour la première fois les différents neurotransmetteurs et les principaux récepteurs dans les neurones à nNOS au cours du développement post-natal. De plus, les résultats de ma thèse montrent pour la première fois une implication de la signalisation du NO dans la migration des neurones à GnRH vers l'hypothalamus et font échos à l'identification d'une série de mutations de la NOS1 chez des patients atteints du syndrome de Kallmann, une maladie génétique congénitale rare qui associe une carence en GnRH, due à un défaut de migration neuronale, et une anosmie. Enfin, mes travaux montrent que le NO est un nouveau protagoniste dans la maturation post-natale du système à GnRH, la survenue de la puberté et l’acquisition de la capacité à se reproduire. Plus généralement, les résultats de ce travail de thèse permettent d’identifier de nouveaux mécanismes potentiellement responsables de troubles développementaux dans la mise en place des circuits neuronaux contrôlant l’axe gonadotrope chez les mammifères en général et l’homme en particulier. Nous espérons que ces résultats élargiront notre compréhension de la régulation de l'axe reproducteur, offrant ainsi des possibilités nouvelles de stratégies thérapeutiques contre les troubles de la fertilité. / The onset of puberty and the regulation of fertility in mammals are governed by a complex neural network, primarily in the hypothalamus, that converges onto gonadotropin-releasing hormone (GnRH)-producing neurons, the master regulators of gonadotropin secretion and postnatal gonadal growth and function. The proper development of the GnRH system, including timely changes in GnRH expression and signaling by this sparse population of a few hundred neurons, is essential for sexual maturation and the normal functioning of the hypothalamic-pituitary-gonadal axis. As the brain develops during embryogenesis, these neurons should move from the olfactory placode into the correct brain location in adequate numbers, and then establish the afferent connections that will allow the pulsatile release of GnRH peptide, and the subsequent release of the gonadotropins (follicle stimulating hormone, i.e FSH and luteinizing hormone, ie. LH). As early as in the 90’s NO was presented as a key molecule in the preovulatory GnRH/LH surge, and results from different groups, have suggested the interaction of NOS-containing neurons with the GnRH system, and their involvement in the regulation of reproductive capacity. Even though nitric oxide has now been long recognized as a key player in the central hormonal regulation of ovulation during adulthood, no one has considered the possibility that it could act in an earlier stage as the master regulator of GnRH neurons before puberty, hence participating in the actual maturation of the neuroendocrine axis. The relationship of nNOS-expressing neurons with other important molecules of the hypothalamic axis has been well studied, whilst the molecular identity of this neuronal NOS-expressing population is poorly documented. . To this end, we address the hitherto unaddressed questions concerning 1) the molecular identity of nNOS-expressing neurons in the developing hypothalamus, 2) the putative involvement of the NO molecule in the migration of GnRH neurons and the proper establishment of their afferent connections in the hypothalamic region and 3) the plausible determinant role of NO signaling in the maturation of the reproductive system. During this study we identified for the first time the cohort of the principal neurotransmitters and important receptors expressed by these cells in the hypothalamic region during development. Additionally, our results reveal for the first time an involvement of NO signaling in the migration of GnRH neurons in the hypothalamus and are in line with the identification of a series of NOS1 mutations in Kallmann syndrome (KS), a rare congenital genetic condition presenting a unique combination of GnRH deficiency, arising from a faulty migration of the neuronal population, and anosmia. Lastly, our study identifies NO as a novel protagonist during postnatal development, in the regulation of the onset of puberty and the acquisition of reproductive competence. Overall, the results of my Phd thesis identify putative new targets causing alterations of developmental programming under pathophysiological gestational environment in mammals in general, and in humans in particular. Here we thus provide new insights into the mechanisms by which the alteration of GnRH neuronal function leads to hypogonadotropic hypogonadism and infertility. We are hopeful that our results will expand our understanding of how the neuroendocrine axis is regulated and will possibly provide opportunities for therapeutic strategies against debilitating conditions.
|
22 |
A novel role of Lipin1 in the regulation of expression and function of nNOS.Azzam, Ayat 16 May 2023 (has links)
No description available.
|
23 |
Aspects of the transcriptional and translational regulation of nitric oxide synthase 1Pierson, Shawn M. 19 April 2005 (has links)
No description available.
|
24 |
HERPESVÍRUS BOVINO TIPOS 1, 2 E 5: SENSIBILIDADE A ANTIVIRAIS IN VITRO, PATOGENIA E TERAPÊUTICA EXPERIMENTAL EM COELHOS / BOVINE HERPESVIRUSES 1, 2 AND 5: SENSITIVITY TO ANTIVIRALS IN VITRO, PATHOGENESIS AND EXPERIMENTAL THERAPY IN RABBITSDezengrini, Renata 16 December 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Aspects of bovine herpesvirus 5 (BoHV-5) pathogenesis and experimental therapies against BoHV-1 and BoHV-5 were investigated in vitro and in inoculated rabbits. In chapter 1, we investigated the role of nitric oxide (NO), a component of innate immunity against pathogens, in the neurological disease by BoHV-5 in rabbits. Spectrophotometry for NO products revealed that NO levels were significantly increased in several regions of the brain of rabbits with neurological disease [F(4, 40)=3.33; P<0.02]. Quantification of NO levels in the brain at different time points after virus inoculation revealed a gradual increase [F(12, 128)=2.82; P<0,003], correlated spatially and temporally with virus dissemination within the brain and preceding the development of neurological signs. Thus, we propose that the overproduction of NO in the brain of BoHV-5-infected rabbits may participate in the pathogenesis of neurological disease. In chapter 2, the activity of three anti-herpetic drugs was tested against BoHV-1, BoHV-2 and BoHV-5 in vitro by plaque reduction assay. Acyclovir was moderately active against the three viruses; Gancyclovir was moderately effective against BoHV-2, and to a lesser extent against BoHV-5, being poorly active against BoHV-1. Foscarnet (PFA) exhibited the most pronounced antiviral activity, being the only drug that, at the concentration of 100 ìg/mL, completely inhibited plaque formation by all three viruses. In chapter 3, we report the activity of PFA in rabbits inoculated with BoHV-1 or BoHV-5. Rabbits inoculated with BoHV-5 and treated with 100 mg/kg of PFA presented mortality rates (11/22 or 50%) statistically lower than non-treated controls (21/22 ou 95.4%) (P<0.0008). A significant reduction in the mean virus titers was observed at day 3 pi, the peak of virus shedding [F(9,108) = 2,23; P<0.03]. Reduction in virus shedding, frequency, severity and duration of ocular signs were also observed in rabbits inoculated with BoHV-1 into the conjunctival sac, comparing to the controls. The prolonged incubation period and the reduction in the duration of the clinical course of the PFA-treated group was significant (P<0.005 and P<0.04, respectively). Therefore, the activity of PFA in vivo against BoHV-1 and BoHV-5 may be exploited in further experimental therapies. In chapter 4, we investigated the effect of the inhibition of the inducible isoform of nitric oxide synthase (iNOS), associated or not with PFA treatment, on neurological infection by BoHV-5 in rabbits. Groups of BoHV-5-inoculated rabbits were treated with the iNOS inhibitor aminoguanidine (AG); with PFA; with both drugs; or maintained as virus controls. Morbidity and mortality rates were 100% (6/6) in the groups AG and CV, 66.7% (4/6) in the group PFA and 83.3% (5/6) in the group AG+PFA. The incubation period was significantly lower (P<0.05) and the onset of neurological disease occurred earlier and was more severe in the group AG. These results demonstrate that treatment with PFA reduced morbidity and mortality rates associated to BoHV-5 infection, that AG treatment anticipated the development of neurological signs, and that the development of neurolocial disease was delayed in the group treated with both drugs. Taken together, these results contribute to the knowledge of the pathogenesis of BoHV-5 neurological disease and pave the way for other experimental pathogenesis and therapy studies. / Aspectos da patogenia da infecção neurológica pelo herpesvírus bovino 5 (BoHV-5) e terapias experimentais contra o BoHV-1 e BoHV-5 foram estudados in vitro e em coelhos inoculados. O capítulo 1 relata a investigação do papel do óxido nítrico (NO), um componente da imunidade inata contra patógenos, na doença neurológica produzida pelo BoHV-5 em coelhos. Espectrofotometria para os produtos de degradação do NO revelou um aumento significativo nos seus níveis em várias regiões do encéfalo de coelhos infectados (F(4, 40)=3.33; P<0,02). A quantificação do NO no encéfalo nos dias seguintes à inoculação viral revelou um aumento gradativo (F(12, 128)=2.82; P<0,003), correlacionado temporal e espacialmente com a invasão e disseminação viral, e precedendo o desenvolvimento de sinais neurológicos. Sugere-se, assim, que a produção aumentada de NO em resposta à infecção possa participar da patogenia dessa doença neurológica. No capítulo 2, investigou-se a atividade de três fármacos antivirais frente ao BoHV-1, BoHV-2 e BoHV-5 in vitro pelo teste de redução do número de placas. O Aciclovir foi moderadamente ativo frente aos três vírus; o Ganciclovir apresentou atividade moderada frente ao BoHV-2 e, em menor grau, contra o BoHV-5, sendo ineficaz frente ao BoHV-1. O Foscarnet (PFA) apresentou a atividade antiviral mais pronunciada, sendo o único fármaco que, na concentração de 100 μg/mL, inibiu completamente a produção de placas pelos três herpesvírus bovinos. No capítulo 3, investigou-se a atividade do PFA em coelhos inoculados com o BoHV-1 ou BoHV-5. Coelhos inoculados com o BoHV-5 e tratados com 100 mg/kg do PFA apresentaram índices de mortalidade (11/22; 50%) estatisticamente inferiores aos controles não-tratados (21/22; 93,7%) (P<0,0008). Uma redução significativa no título médio de vírus foi observada no dia 3 pi, pico da excreção viral [F(9,108) = 2,23; P<0,03]. Em coelhos inoculados no saco conjuntival com o BoHV-1 e tratados com o PFA, foram observadas reduções na excreção viral, na frequência, severidade comparando-se com o grupo controle. O período de incubação prolongado e a redução na duração do curso clínico no grupo tratado foi significante (P<0,005 e P<0,04, respectivamente). A atividade antiviral do PFA in vivo contra o BoHV-1 e BoHV-5 abre a perspectiva para outras terapias experimentais. No capítulo 4, investigou-se o efeito da inibição da isoforma induzível da enzima óxido nítrico sintase (iNOS), associada ou não ao tratamento com o PFA, na infecção neurológica pelo BoHV-5 em coelhos. Grupos de coelhos inoculados com o BoHV-5 foram tratados com o inibidor da iNOS aminoguanidina (AG); com PFA; com ambos os fármacos; ou não receberam tratamento. Os índices de morbidade e mortalidade foram de 100% (6/6) nos grupos AG e controle; 66,7% (4/6) no grupo PFA e 83,3% (5/6) no grupo AG+PFA. O período de incubação foi significativamente menor (P<0,05) e os sinais neurológicos foram mais precoces e severos nos animais do grupo AG. Portanto, o tratamento com PFA reduziu a morbidade e mortalidade associadas com a infecção pelo BoHV-5; o tratamento com AG resultou no agravamento e na antecipação do quadro neurológico e no grupo tratado com ambos os fármacos observou-se um desenvolvimento mais tardio dos sinais neurológicos. Esses resultados contribuem para o conhecimento da patogenia da doença neurológica pelo BoHV-5 e abrem perspectivas para estudos adicionais de patogenia e terapêutica anti-herpesvírus.
|
25 |
Modifying function and fibrosis of cardiac and skeletal muscle from mdx micevan Erp, Christel January 2005 (has links)
Duchenne Muscular Dystrophy (DMD) is a fatal condition occurring in approximately 1 in 3500 male births and is due to the lack of a protein called dystrophin. Initially DMD was considered a skeletal myopathy, but the pathology and consequences of cardiomyopathy are being increasingly recognised. Fibrosis, resulting from continual cycles of degeneration of the muscle tissues followed by inadequate regeneration of the muscles, is progressive in both cardiac and skeletal dystrophic muscle. In the heart fibrosis interferes with contractility and rhythm whereas it affects contractile function and causes contractures in skeletal muscles. This study utilised the mdx mouse which exhibits a pathological loss of muscle fibres and fibrosis characteristic of DMD, to examine a range of mechanisms that can influence muscle function and fibrosis. Ageing and workload both appear to contribute to the development of dystrophic features in cardiac and skeletal muscle of the mdx mouse. Therefore the effect of eccentric exercise on cardiac and skeletal muscle was examined in older mdx mice. Mice ran in 30 minute sessions for five months, 5 days per week. Downhill treadmill running did not exacerbate the contractile function or fibrosis of the mdx heart or the EDL, SOL or diaphragm muscles suggesting that cytokines influence function and fibrosis to a greater extent than workload alone. The role of the cytokine TGF-beta was examined by treating mdx mice with the TGF-beta antagonist pirfenidone at 0.4, 0.8 or 1.2 per cent in drinking water for six months. Pirfenidone improved cardiac contractility (P<0.01) and coronary flow (P<0.05), to levels comparable to control mice, despite no reduction in cardiac fibrosis. Pirfenidone did not reduce fibrosis or improve function in skeletal muscle. A deficiency of neuronal nitric oxide synthase (nNOS) in DMD and mdx mice causes a lowered production of nitric oxide indicating that the substrate of nNOS, l-arginine, may be beneficial to cardiac and skeletal muscle function in mdx mice. Oral l-arginine (5 mg/g bw) improved cardiac contractility, coronary flow and reduced cardiac fibrosis (P<0.05) without improving skeletal muscle function or fibrosis. In contrast, 10 mg/g bw l-arginine improved cardiac function and coronary flow (P<0.01), despite also elevating cardiac collagen. This increment in collagen was prevented by co-administration of prednisone. The experiments described in this dissertation reveal for the first time that pharmacological treatments in mdx mice can improve cardiac structure and function. Further elucidation of the optimum time and doses of such treatments may result in future pharmacological treatments to improve cardiac function and fibrosis in DMD.
|
26 |
Gene Expression Analysis and Genetic Studies in Multiple SclerosisTajouri, Lotfi, n/a January 2005 (has links)
Multiple Sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS). As part of this disorder the myelin sheath undergoes degeneration, leading to alterations in the conductivity of axons, and impaired function. The onset of the disease occurs in young adults and clinical pathology is characterised by varying severity. These include i) Relapsing Remitting MS (RR-MS), ii) Secondary Progressive MS (SP-MS) and iii) Primary Progressive MS (PP-MS). MS is more prevalent in women and accounts for more than two thirds of all MS sufferers. MS is considered to be a multifactorial disorder with both genetic and environmental components. The prevalence of MS is dependent on geographical localisation, with lower sunlight exposure linked to higher prevalence. Also, studies show an increased risk in close relatives, or in identical twins, indicating a significant genetic component to the disorder. There are a number of genes that may plausibly be involved in MS pathophysiology. These include myelin-related genes, such as the myelin basic protein (MBP), immune-related genes, such FC receptor and osteopontin, and heat shock proteins such as xb crystallin. These candidate genes have been implicated in a variety of ways but usually through immunological and/or genetic studies. One of the most consistent findings in recent years has been the association of disease with alterations in the specific major histocompatibility complex (MHC) localised to chromosome 6p21.3, and includes MHC I, II, III. Genome wide screens have permitted the identification of loci in the genome, which are associated with MS susceptibility. The number of genes involved in MS is unknown and several case-control association studies have been undertaken to reveal the involvement of potential candidate genes. In general terms, current research is aimed at determining allelic variation of candidate genes. Such genes have been implicated in MS because they reside within susceptible regions of the chromosome associated with MS or they have a plausible potential pathophysiological role in MS. Candidate loci investigated in this study, for association with MS susceptibility, include members of the nitric oxide synthase family of metabolic proteins (inducible NOS, iNOS/NOS2A and neuronal NOS, nNOS), methylenetetrahydrofolate reductase (MTHFR), catechol-O-methyl transferase (COMT), and vitamin D receptor (VDR). The MS population used in all studies consisted of over 100 MS cases and gender, age and ethnicity matched controls. In our study of inducible and neuronal NOS genes, PCR based assays were developed to amplify a region of both promoters that contained known microsatellite variation. Supporting phyisological data suggests that the neuroinflammatory aspects of MS are associated with aberrant NO production, which may be due to aberrant regulation of NOS activity. Specific amplified products were identified by fluorescent capillary electrophoresis and allele frequencies were statistically compared using chi-squared analysis. In the nNOS and iNOS study, no association was identified with allele frequency variation and MS susceptibility (nNOS: ?2=5.63, P=0.962; iNOS: ?2=3.4; P=0.082). Similarly, no differences in allele frequencies were observed for gender or clinical course for both markers (Pvalue greater than 0.05). In short, results from this study indicate that the NOS promoter variations studied do not play a significant role in determining susceptibility to MS in the tested population. The COMT and MTHFR genes are localised at 22q12-13 and 1p36.3 respectively, regions of the genome that have been found to be positively associated with MS susceptibility. In our research, we set out to examine the G158A change in the 4th exon of the COMT gene. This functional mutation leads to an amino acid change (valine to methionine) that is directly associated with changes in the activity of COMT. The MTHFR enzyme plays a role in folate metabolism, and can be implicated in the turnover of homocysteine. Previous investigations have shown that high levels of homocysteine are encountered in MS patients, where it is also linked to demyelination in the CNS. In our study the aim was to examine the C677T variation (alanine to valine amino acid change) in the exon 4 coding region of the MTHFR gene and the G158A variation in the COMT gene. Restriction fragment length polymorphism (RFLP) analysis and gel electrophoresis was used to identify specific alleles for both COMT and MTHFR. However, as with the NOS study, no specific association was identified between MS susceptibility and variation for either of the tested COMT or MTHFR (Pvalue greater than 0.05) variants. In a final genomic investigation of the MS population, three variations in the VDR gene were analysed for association with MS susceptibility and pathology. Using RFLP analysis, three VDR variants were investigated with genotypes detected using the Taq I, Apa I and Fok I restriction enzymes. In contrast to previous genotypic analyses, this study did show a positive association, specifically between the functional variation in exon 9 of the VDR gene and MS (Taq I, 2= 7.22, P= 0.0072). Interestingly, the Apa I variant of VDR was also found to be associated with MS ( 2=4.2, P=0.04). The Taq I and Apa I variants were also found to be in very strong and significant linkage disequilibrium (D'=0.96, Pvalue less than 0.0001) and their associations were more prominent with the progressive forms of MS (SP-MS and PP-MS). In addition to genotypic analysis of a clinical population, additional research was undertaken to identify novel targets for MS susceptibility studies. Global gene expression analysis was undertaken using comparative subtractive fluorescent microarray technology to examine differences in gene activity (expression) in age and sex matched MS plaque tissue and anatomically matched normal white matter (NWM). MS plaques were obtained post mortem from MS sufferers with no drug history in the last two months before death and matched anatomically to healthy white matter from donors with no previous neurological disorders. Target arrays consisted of 5000 cDNAs and analysis was conducted using the Affymetrix 428 scanner. In this way, 139 genes were shown to be differentially regulated in MS plaque tissue compared to NWM. Of these, 69 genes showed a common pattern of expression in the chronic active and acute plaque tissues investigated (Pvalue less than 0.0001, a=0.73); while 70 transcripts were uniquely differentially expressed ( 1.5-fold) in either acute or chronic active lesions. To validate the gene expression profile results, quantitative real time reverse transcriptase (RT) PCR (Q-PCR) analysis was performed. 12 genes were selected because they were shown to be differentially expressed by array analysis in this study, or because of their involvement in MS pathology. These included transferrin (TF), superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), glutathione S-transferase pi (GSTP1), crystallin, alpha-B (CRYAB), phosphomannomutase 1 (PMM1), tubulin beta-5 (TBB5), inositol 1,4,5-trisphosphate 3-kinase B (ITPKB), calpain 1 (CAPNS1), osteopontin (SPP1 or OPN), as well as the signal transducer and activator of transcription 1 (STAT1) and protein inhibitor of activated STAT1 (PIAS1). Both absolute (copy number) and comparative differences in the relative levels of expression in MS lesions and NWM were determined for each gene. The results from this study revealed a significant correlation of real time PCR results with the microarray data, while a significant correlation was also found between comparative and absolute determinations of fold. As with the results of array analysis, a significant difference in gene expression patterning was identified between chronic active and acute plaque pathologies. For example, a up to 50-fold increase in SPP1 and ITPKB levels in acute plaques contrasted with the 5-fold or less increase in chronic active plaques (P less than 0.0.1, unpaired t-Test). Of particular note, gamma-amino butyric acid receptor ?2 (GABG2), integrin ?5 (ITGB5), complement component 4B (C4B), parathyroid hormone receptor 1 (PTHR1) were found up-regulated in MS and glial derived neurotropic factor ?2 (GDNFA2), insulin receptor (INSR), thyroid hormone receptor ZAKI4 (ZAKI4) were found down-regulated in MS. Data also revealed a decreased expression of the immune related genes STAT1 and PIAS1 in acute plaques. In conclusion, this research used both genomic analysis and technologies in gene expression to investigate both known and novel markers of MS pathology and susceptibility. The study developed tools that may be used for further investigation of clinical pathology in MS and have provided interesting initial expression data to further investigate the genes that play a role in MS development and progression.
|
27 |
Identification d'ARNs non-codants impliqués dans les dystrophinopathies / Identification of non-coding RNAs involved in dystrophinopathiesGuilbaud, Marine 30 January 2018 (has links)
Les dystrophies musculaires de Duchenne (DMD) et de Becker (BMD) sont dues à des mutations dans le gène DMD codant la Dystrophine. De nombreux aspects des mécanismes pathophysiologiques de ces maladies ne sont pas encore expliqués. Nous nous sommes intéressés à l'étude d'ARN non-codants pouvant participer à ces processus. Une première étude a été centrée sur l’identification de micro-ARNs (miARNs) impliqués dans la régulation de l’oxyde nitrique synthase neuronale (nNOS) une protéine partenaire de la Dystrophine et associée à des caractéristiques de ces pathologies telles que la fatigabilité musculaire. 617 miARNs ont été criblés par Taqman Low Density Array dans des muscles de sujets sains et de patients BMDdel45-55. 4 miARNs candidats ont été sélectionnés de cette étude pour leur surexpression chez les patients BMDdel45-55 et leur capacité théorique à cibler nNOS. Des expériences de modulation de l’expression de ces miARNs dans des myoblastes humains sains ou dystrophiques nous ont permis d’identifier que le miR-708-5p et le miR-34-5p pouvaient cibler nNOS et moduler son expression.Un deuxième axe a été mené sur l’étude des longs ARNs non-codants (lncARNs). Les introns 44 et 55, qui bornent les exons 45 à 55 délétés chez les patients BMDdel45-55, sont de grandes régions contenant des lncARNs décrits comme régulant la Dystrophine. Les points de cassure introniques des mutations de ces patients n’étant pas décrites, nous avons supposé l’existence de profils de lncARNs différents. L’analyse de l’ADN de ces patients montre en effet des profils de lncARNs différents, révélant ainsi l’importance d’une étude plus précise des zones de délétion des patients BMDdel45-55. / Duchenne (DMD) and Becker (BMD) muscular dystrophies are due to mutations in DMD gene, encoding Dystrophin. Many aspects of pathophysiological mechanisms of these diseases are not yet well understood. We were interested in the study of non-coding RNAs that could be involved in these pathological processes. A first study focused on micro-RNAs (miRNAs) that could modulate expression of the neuronal nitric oxide synthase (nNOS), a partner of Dystrophin which is linked to pathological features as muscular fatigability. 617 miRNAs were screened by Taqman Low Density Array in muscle biopsies of healthy subjects or BMDdel45-55 patients. 4 candidate miRNAs were selected from this study since they were overexpressed in BMDdel45-55 patients and for their theoretical ability to target nNOS. Experiments modulating the expression of these miRNAs in healthy or dystrophic human myoblasts enabled us to identify that miR-708-5p and miR-34-5p could target nNOS and modulate its expression.A second axis was conducted on long non-coding RNA (lncRNA). Introns 44 and 55, which bound exons 45-55 deleted in BMDdel45-55 patients, are large regions containing lncRNAs described as regulating Dystrophin. Since intronic breakpoints of DMD mutations of these pateints were not described, we have assumed the existence of different profiles of lncRNAs. DNA analysis of these patients actually showed different lncRNAs profiles, thus revealing the significance of a more precise analysis of deletion areas in DMD gene of BMDdel45-55 patients.
|
28 |
Study of reactive oxygen species (ROS) and nitric oxide (NO) as molecular mediators of the sepsis-induced diaphragmatic contractile dysfunction : protective effect of heme oxygenasesBarreiro Portela, Esther 18 June 2002 (has links)
Protein nitration is considered as a marker of reactive nitrogen species formation. Heme oxygenases (HOs) are important for the defence against oxidative stress. We evaluated the involvement of the neuronal (nNOS), the endothelial (eNOS), and the inducible (iNOS) in nitrotyrosine formation and localitzation, and both the expression and funcional significance (HO inhibition and contractility studies) of HOs in sepsis-induced muscle contractile dysfunction. Sepsis was elicited by injecting rats and transgenic mice deficient in either nNOS, eNOS, or iNOS isoforms with E.Coli lipolysaccharide (LPS). Nitrotyrosine formation and HO expressions were assessed by immunoblotting. Oxidative stress was assessed measuring protein oxidation, lipid peroxidation, and muscle glutathione. We conclude that protein tyrosine nitration occurs in normal muscles, and sepsis-mediated increase in nitrotyrosine formation is limited to the mitochondria and membrane muscle fractions. The iNOS isoform is mostly involved in nitrotyrosine formation. HOs protect normal and septic muscles from the deleterious effects of oxidants. / En un model de sepsi de disfunció diafragmàtica, s´ha avaluat el paper de les sintetases de l'òxid nítric (NOS) en la formació i localitzacio de 3-nitrotirosina, i l´expressió i significat biològic de les hemo oxigenases (HOs) (inhibidor de les HOs i estudis de contractilitat) davant l' estrès oxidatiu. La sepsi s'induí mitjançant injecció de 20 mg/kg del lipolisacàrid (LPS) d´Escherichia Coli a rates, i a ratolins deficients en les NOS induïble (iNOS), neuronal (nNOS) i endotelial (eNOS). Les proteïnes nitrificades i les HOs es van detectar amb anticossos específics. L' estrès oxidatiu s' avaluà mitjançant l' oxidació proteica, la peroxidació lipídica i el glutation muscular. Concloem que hi han proteïnes nitrificades en el múscul normal i aquestes s'incrementen durant la sepsi en les fraccions mitocondrial i membranar. L'isoforma iNOS és majorment responsable de la formació de nitrotirosina. Les HOs protegirien el múscul normal i sèptic dels efectes deleteris dels oxidants.
|
29 |
Augmentation sélective de l'expression protéique et de l'ARNm de la synthase du monoxyde d'azote dans les régions vulnérables du cerveau chez les rats déficients en thiamineKruse, Milarca C. January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
30 |
Novel Interventions in Cardiac Arrest : Targeted Temperature Management, Methylene Blue, S-PBN, Amiodarone, Milrinone and Esmolol, Endothelin and Nitric Oxide In Porcine Resuscitation ModelsZoerner, Frank January 2015 (has links)
It is a major clinical problem that survival rates after out-of-hospital cardiac arrest have not markedly improved during the last decades, despite extensive research and the introduction of new interventions. However, recent studies have demonstrated promising treatments such as targeted temperature management (TTM) and methylene blue (MB). In our first study, we investigated the effect of MB administered during experi-mental cardiopulmonary resuscitation (CPR) in the setting of postponed hypother-mia in piglets. We set out to study if MB could compensate for a delay to establish targeted TTM. The study demonstrated that MB more than compensated for 30 min delay in induction of TTM. The effect of MB added to that of TTM. The second study examined the effects of TTM and S-PBN on the endothelin system and nitric oxide synthases (NOS) after prolonged CA in a porcine CPR mod-el. The study was designed to understand the cardioprotective mechanism of S-PBN and TTM by their influence on the endothelin system and NOS regulation. We veri-fied for the first time, that these two cardioprotective postresuscitative interventions activate endothelin-1 and its receptors concomitantly with eNOS and nNOS in the myocardium. We concluded that nitric oxide and endothelin pathways are implicated in the postresuscitative cardioprotective effects of TTM. The third study compared survival and hemodynamic effects of low-dose amio-darone and vasopressin to vasopressin in a porcine hypovolemic CA model. The study was designed to evaluate whether resuscitation with amiodarone and vasopressin compared to vasopressin alone would have an impact on resuscitation success, survival, and hemodynamic parameters after hemorrhagic CA. We found that combined resuscitation with amiodarone and vasopressin after hemorrhagic circulatory arrest resulted in greater 3-hour survival, better preserved hemodynamic parameters and smaller myocardial injury compared to resuscitation with vasopressin only. In our fourth study we planned to compare hemodynamic parameters between the treatment group (milrinone, esmolol and vasopressin; MEV) and control group (vasopressin only) during resuscitation from prolonged cardiac arrest in piglets. The study was designed to demonstrate if MEV treatment improved hemodynamics or cardiac damage compared to controls. We demonstrated that MEV treatment reduced cardiac injury compared with vasopressin alone.
|
Page generated in 0.0333 seconds