• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis, Functionalization, and Characterization of Dominant UV Emitting Upconverting Nanocrystals and Absolute Quantum Yield and Power Dependence Metrics for the Elucidation of Upconversion Mechanisms

Stecher, Joshua T. January 2015 (has links)
<p>The discovery, formulation, and characterization of novel compositions of matter for aid in the diagnosis and treatment of disease has ever been a compelling force behind nanomaterials development. In instances of disease originating from oncogenic mutation, proliferation, and metathesis; cancer has long been a most difficult dysfunction to diagnosis and treat in virtue of its innate alteration and disregulation of otherwise well-managed and healthful cellular processes. To date, cancer therapies have relied largely on highly toxic chemotherapy or radiation treatments, addressing the overarching problem of individual cellular mutations in a global sense, often deleterious to the overall health of the patient. Ever-progressing work on nanomaterial-based applications to either promote cancer diagnosis or implement novel therapeutic means of drug delivery, activation, or the precisely-targeted destruction of cancer cell lines has been afforded much attention in the integrated biological and materials science fields. Recent developments in nanosized laser materials incorporating lanthanide-doped sensitizer and activator pairs and the development of numerous crystallographic, co-dopant, morphological, and/or surface-appended optimizations to these materials have given rise to a novel class of nanomaterials, with unique photophysical properties that have direct import into light-based activation of chemical processes, triggered non-invasively through biological tissues, and merging intra-cellularly targetable nanocrystalline compositions and ex vivo light activation. Upconverting nanocrystals (UCNCs) are one such class of nanomaterial wherein near-infrared (NIR) light, at the nadir of tissue absorption, can serve to sequentially or cooperatively excite long-lived lanthanide (Ln3+) 4f excited states and, through various energy transfer processes coupled between both the UCNC material composition and its integral Ln3+ dopants, are capable of building an excited state population capable of emitting in higher frequencies than its incident NIR excitation.</p><p>In the study of these UCNCs, the prospect of activating intra-cellular photodynamic processes or drugs of low cellular toxicity, until light activated in a precisely localized regime (e.g. the nucleus of a cell), has motivated extensive research into the generation of novel UCNC materials, in multiple compositions and on multiple size scales to direct the mechanisms of upconversion (UC) to produce high fluence ultraviolet (UV) photons upon NIR (972 nm) excitation. Continuing optimizations have yielded a high ytterbium (Yb) sensitizer, cubic &#945;-NaYbF4 UCNC composition, codoped with a thulium activator, to generate excited state saturated UV transitions, 1I6 &#8594; 3F4 (349 nm) and 1D2 &#8594; 3H6 (362 nm), and their refinement to afford dominant UV emissive spectral signatures at low NIR laser excitation. Their photophysical dynamics are sparsely described in the literature, breaking from both fields of laser photonics and conventional inorganic nanoscience, and require renewed emphasis to be afforded in exacting crystallographic, photophysical, and size dependent effect characterization, heavily directing the structure-function relationships of luminescent Ln3+ dopants and their host crystal matrices. Requisite in this study is a call for the optimization of uniform, monodisperse, and reproducible preparations of unique UCNCs and precise characterization of the properties they display and the origins thereof.</p><p>Offered herein are the enveloping efforts to more fully understand the mechanistic processes of UC of both poorly characterized, literature standard materials, novel UCNCs tuned for enhancement of UC emission in the UV, and the adaptations to each that ultimately affect their photophysical dynamics. A tandem course of this research follows from inorganic shelling, passivation methodologies to ameliorate crystallographic surface defects and UC luminescence quenching sites to overall enhance the dominant UV emissivity of novel co-doped UCNC. These state-of-the-art UC materials are: 1) &#945;-NaYbF4: Tm3+, interlaced with gallium, chromium, yttrium, and other trivalent metal ions, serving to finely modulate UC mechanistic processes and enhance luminescent properties and 2) sodium co-doped LaF3 and BaLaF4 (0.5%Tm, 20%Yb), displaying 3 and 2 orders of magnitude enhancement of UV emissions due to controlled perturbation of the local crystal field environment. The Core @ Shell architectural derivatives of these materials exhibit an eminent departure from classical luminescent fluorophores, phosphors, or quantum confined luminescent nanomaterials, in both degree of luminescent flux generation and the complicated mechanistic processes they are derived from.</p><p>To a great extent, this work attempts to establish testable grounds for comparison of UCNCs; extending from interrogation of photophysical lifetime measurements, excitation versus emissive flux power dependence studies, high resolution X-ray photoelectron spectroscopy (HR-XPS) and power diffraction (HR-XRD) assessments of crystallographic defects and perturbations on the atomic scale, and the establishment of new metrics of radiant flux versus absolute quantum yield for use in comparison of UCNCs towards their applicability in areas of variable or limited excitation flux and the ultimate utility of discerning hit-to-lead UCNC materials for medical nanodevice compositions. A salient component affecting these metrics is the direct surface interactions with respect to solvents, coordinating ligands, and appended functional moieties for enhancement of UCNCs towards specific applications; largely directed towards cancer biology and medical study. In a confluence of inquisition of UCNCs and their high energy, UV luminescent properties, interfacing with the surface presenting effects of solublization and bio-targeting molecular functionalization; literature standard, &#946;-NaYF4 (2%Er, 20%Yb) UCNCs have been generated in highly uniform compositions to assess the size-dependent effects with respect to luminescent quenching surrounding a UCNC surface and functionalization methodologies have been offered as a proof of concept towards the construction of an optimized biomolecular targeting nanodevice, with known limits and predictable interactions, both to NIR excitation light and potential intra-cellular biological environments.</p><p>The ultimate goal of these explorations is the innovative fusion of the above concepts into a nanotherapeutic device involving: 1) the generation of a well-studied and predictable NIR-absorbing and dominant UV-emissive UCNC, with defined co-dopant optimizations and employing an optimal Core @ Shell architecture, 2) the requisite surface functionalization needed to afford aqueous solubility and a means of covalently conjugating targeting molecules of interest, and 3) the ultimate and equal assessment of such a composite system with respect to possible alternate materials in the literature and novel UCNCs currently under development. To date, no such convergent study has been conducted to any degree of reproducibility or certainty of desired and defined functionality. In this work is described in detail each optimized component for such a device or potentially one marked by differing, but assessable conditions for alternate applications. The optimization of a sub-10 nm, dominant UV-emissive UCNC, the crystallographic and photophysical origins of its UC mechanism under varied conditions, and the optimal means of their employment (both in terms of establishing equivalent metrics and utility in cancer nanotherapeutics), assessment, and readdressing of, as yet undiscovered limits to these materials are presented.</p> / Dissertation
2

Upconversion Lumineszierende Nanopartikel als Marker in der Biologie: Die Synthese und Funktionalisierung von NaYF4:Yb,Er-Nanopartikeln und deren Einsatz als Marker für Aufnahme und Translokation von Nanopartikeln in Pflanzen

Nordmann, Jörg 13 February 2014 (has links)
Nanopartikel (NP) finden in immer mehr Produkten des täglichen Lebens Verwendung, werden im Tonnenmaßstab produziert und werden so auch zunehmend in die Umwelt gelangen. Man weiß sehr wenig über die Wechselwirkungen von synthetischen NP mit der Umwelt, insbesondere mit Pflanzen. Bislang ist weitestgehend unbekannt, ob, wie und mit welcher Geschwindigkeit NP aufgenommen und im Pflanzenkörper verteilt werden. In dieser Arbeit wird die Aufnahme und Verteilung von NP in verschiedenen Pflanzenarten untersucht. Besonderes Augenmerk wurde dabei auf die Aufnahmekinetik der NP gelegt. Die Untersuchungen wurden mit polydispersen und monodispersen NP verschiedener Größen (15 nm und 30 * 60 nm) durchgeführt. Um die Aufnahme verfolgen zu können, wurden für die Untersuchung NP verwendet, die den optischen Effekt der Aufwärtskonversion zeigen (englisch: Upconversion luminescent nanoparticles (UCNP)). Hierbei handelt es sich um NaYF4-NP der hexagonalen Kristallstruktur dotiert mit Yb3+ und Er3+. Die Upconversion Lumineszenz ist ein nichtlinearer optischer Prozess, bei dem die Absorption von zwei oder mehr Photonen längerer Wellenlänge (ca. 974 nm) zur Emission eines Photons kürzerer Wellenlänge (blau, grün und rot) führt. Die UCNP lassen sich als Multifunktionsmarker einsetzen, da sie mittels Fluoreszenzmikroskopie, Elektronenmikroskop und Röntgenfluoreszenzspektroskopie nachweisbar sind. Im Rahmen dieser Arbeit wird eine neue Synthesemethode von hexagonalen NaYF4:Yb20%,Er2%-NP vorgestellt. Hierbei werden 2 bis 4 nm große NaYF4:Yb20%,Er2%-NP der kubischen Kristallstruktur als einzige Monomerquelle (Opferpartikel) bei der Synthese der NaYF4:Yb20%,Er2%-NP der hexagonalen Kristallstruktur verwendet, wobei die Opferpartikel in einem Ölsäure enthaltenden Lösungsmittel aufgeheizt oder in dieses bei hoher Temperatur (> 300 °C) injiziert werden. Mit Hilfe der Opferpartikelsynthese lassen sich hexagonale NaYF4:Yb20%,Er2%-NP im Grammmaßstab unter Kontrolle der Größe, Phase und Form herstellen. Neben monodispersen NP mit definierten Größen lassen sich Kern-Schale NP herstellen, die eine starke Steigerung der Fluoreszenzintensität zeigen.
3

Investigation, manipulation, and coupling of single nanoscopic and quantum emitters

Schietinger, Stefan 16 November 2012 (has links)
Die hier vorgelegte Dissertation beschäftigt sich mit Untersuchungen an nanoskopischen Emittern und den Möglichkeiten, deren Fluoreszenzverhalten durch kontrollierte Ankopplung an photonische und plasmonische Strukturen zu beeinflussen. Zum einen werden mit Ytterbium- und Erbium-Ionen kodotierte NaYF4 -Nanokristalle untersucht, die hervorragende Eigenschaften bei der Umwandlung von niederenergetischen Photonen in solche höherer Energie besitzen. Das so entstehende Fluoreszenzlicht einer Ansammlung von Nanokristallen wird auf seine Abhängigkeit von der Anregungsintensität untersucht. Mit der Hilfe eines Rasterkraftmikroskops (AFM) wird eine Abhängigkeit der spektralen Zusammensetzung des Fluoreszenzlichts einzelner Nanokristalle von deren Größe im Bereich von wenigen bis 50 nm aufgezeigt. Durch gezielte Manipulation mit dem AFM werden ebenfalls einzelne Nanokristalle an Goldnanokügelchen gekoppelt und die Mechanismen der beobachteten plasmonischen Verstärkung der Emission durch zeitaufgelöste Messungen analysiert. Einzelne Stickstoff-Fehlstellen-Zentren in Nanodiamanten werden in einem zweiten Themenkomplex als Einzelphotonenquellen eigesetzt. Diese werden durch den Einsatz einer Nahfeld-Sonde auf Mikrokugel-Resonatoren aufgebracht, wodurch die Emission aufgrund der Ankopplung an die Flüstergalerie-Moden der Kugeln die typischen, scharfen Überhöhungen im Spektrum aufweist. Diese Methode lässt sich nicht nur verwenden, um zwei oder mehr Emitter an die selben Resonanzen einer Kugel zu koppeln. Es ist auch möglich, die Kugeln in einem Vorbereitungsschritt zu charakterisieren, und so kann insbesondere eine spektrale Übereinstimmung zwischen einer der Resonanzen und dem Emitter erreicht werden. Desweiterne wird demonstriert, wie durch die Kopplung an eine plasmonische Antenne aus Goldnanokugeln mittels AFM auch die Effizienz der Einzelphotonenquelle gesteigert werden kann. / The topic of the dissertation presented here is the investigation of nanoscopic emitters and the possibilities to influence their fluorescence behavior by controlled coupling to photonic and plasmonic structures. NaYF4 nanocrystals codoped with ytterbium and erbium are investigated since they provide excellent properties in upconverting of low-energetic photons to photons with higher energy. The fluorescence light that is generated in this process of a small cluster of nanocrystals is investigated on its dependence on the excitation intensity. With the help of an atomic force microscope (AFM) a dependence of the spectral composition of the fluorescence light from single nanocrystals on their size ranging between a few to 50 nm is demonstrated. By selective manipulation with the AFM, individual nanocrystals are coupled to gold nanospheres and the mechanisms of the observed plasmonic amplification of the emission is analyzed with time-resolved measurements. Single nitrogen–vacancy centers in nanodiamonds are employed as single-photon sources in a second subject area. A near-field probe is employed to attach these single quantum systems to microspherical resonators, by which their emission features the typical peaks in the spectrum due to the coupling to the whispering gallery modes of the spheres. This method can not only be applied to couple two or more single-photon emitters to the very same modes of a microsphere, but the resonators themselves can be pre-characterized to match one of the modes with the emitter. Furthermore, it will be demonstrated how the efficiency of a single-photon source can be enhanced by coupling the nitrogen-vacancy center to a plasmonic antenna made of gold nanospheres.
4

Steigerung der Quantenausbeute von aufwärtskonvertierenden NaYF4-Nanokristallen

Homann, Christian 26 November 2019 (has links)
Nanopartikel auf Basis von NaYF4 erfreuen sich großer Beliebtheit durch ihre vielseitigen Einsatzmöglichkeiten. Durch die Dotierung mit Ytterbium und Erbium im Wirtsgitter ist es beispielsweise möglich, niedrigenergetisches Infrarotlicht in höher-ergetisches, sichtbares Licht umzuwandeln. Zudem lässt sich NaYF4 auch im Nanometermaßstab präparieren, sodass ein Einsatz in Zellen oder lebenden Organismen möglich ist, wo die zur Anregung verwendete infrarote Strahlung ohne Probleme das Gewebe durchdringen kann. Zu Beginn dieser Arbeit zeigten aufwärtskonvertierende Nanomaterialien wie NaYF4 :Yb,Er jedoch auch nach Umhüllen mit einer inaktiven Schale aus undotiertem NaYF4 nur sehr geringe Lumineszenz-Quantenausbeuten und kurze Energieniveau-Lebenszeiten. Im Rahmen dieser Arbeit wurde die Synthesemethode zur Herstellung von aufwärtskonvertierenden NaYF4 -Nanopartikeln durch den Einsatz neuer Eduktmaterialien modifiziert und die Auswirkung der Modifikationen auf die Partikeleigenschaften näher untersucht. So konnte gezeigt werden, dass durch den Einsatz einer alternativen Fluoridquelle (NaHF2) Partikel mit sehr engen Partikelgrößenverteilungen hergestellt werden können. Jedoch zeigte sich auch, dass die mit NaHF2 präparierten Partikel sich nicht mit einer Schale aus undotiertem NaYF4 umhüllen ließen. Im zweiten Teil dieser Arbeit wurde daher der Fokus auf die Verbesserung der optischen Eigenschaften gelegt. Durch die Verwendung von getrockneten Lösungsmitteln und wasserfreien Seltenerdacetaten, sowie NH4F als Fluoridquelle gelang es erstmals, aufwärtskonvertierende Kern/Schale-Nanopartikel (<50 nm) mit einer sehr hohen Lumineszenz-Quantenausbeute, ähnlich dem des makrokristallinen Referenzmaterials, herzustellen. Auch bei sehr kleinen Kern/Schale-Partikeln (≤15 nm) konnten Quantenausbeuten erzielt werden, die nur um einen Faktor 3-4 niedriger sind als beim Referenzmaterial. Dabei zeigte sich durch die Messung der Energieniveau-Lebenszeiten, dass die größten Verlustprozesse durch die Yb3+ Emission bei 940 nm auftraten und diese durch aufbringen einer Schale unterbunden werden konnten.
5

Synthese, Charakterisierung und Untersuchung der spektroskopischen Eigenschaften von Nanopartikeln mit Gagarinit- und Apatitstruktur

Wehmeier, Jannis 14 January 2022 (has links)
Hexagonales ß-NaREF4 und Strontiumchlorapatit (Sr5(PO4)3Cl) haben sich als Wirtsgitter für Ionen der Lanthanoide bewährt und bilden die Basis für eine Reihe von (Nano-)Materialien mit hervorragenden Lumineszenzeigenschaften. Die Struktur der ß- Natriumseltenerdtetrafluoride leitet sich von der des natürlich vorkommenden Minerals Gagarinit (NaCaYF6) ab. In der hier vorliegenden Arbeit wurde die Synthese von Nanopartikeln mit Gagarinitstruktur und der Zusammensetzung ß-Na1,5- x/2MExRE1,5- x/2F6 (ME = Ca2+, Sr2+) untersucht, sowie deren Dotierung mit dreiwertigen Lanthanoidionen. Es wird gezeigt, dass die Nukleations- und Wachstumsmechanismen von Nanopartikeln mit Gagarinitstruktur grundsätzlich den bekannten Mechanismen bei ß-NaREF4-Nanopartikeln entsprechen. Es wird ferner gezeigt, dass beim Übergang von ß-NaREF4 zu ß-Na1,5- x/2MExRE1,5- x/2F6 (ME = Ca oder Sr) eine Stabilisierung der kubischen a-Phase von NaREF4 und eine Verringerung der Anzahl an Keimen der ß-Phase auftritt. Zusätzlich werden durch den Einbau von Sr2+ die Gitterparameter vergrößert, wodurch sich a-NaSrGdF6 ideal als Schalenmaterial zur Umhüllung von ß-NaREF4- Kernen der leichten Lanthanoide eignet. Die Ergebnisse der Röntgenfluoreszenzanalyse und die spektroskopische Untersuchung von ß-Na1,5- x/2SrxEu1,5- x/2F6-Nanopartikeln legen nahe, dass das Erdalkaliion die Natrium- und Seltenerdionen auf der 1f-Position im Kristallgitter von ß-NaREF4 ersetzt. Die Ergebnisse der Fluoreszenzspektroskopie des Eu3+-dotierten Materials zeigen insbesondere, dass der Einbau von Sr2+-Ionen die lokale Symmetrie der optisch aktiven Eu3+-Ionen erhöht. Weiterhin wird gezeigt, dass sich Sr5(PO4)3Cl-Nanopartikel mithilfe von Phosphatsalzen organischer Basen auch in dem von der NaREF4-Nanopartikelsynthese bekannten Lösungsmittelgemisch Ölsäure/Octadecen herstellen lassen. Durch Variation der Anionenkonzentrationen, Einbau von verschiedenen Dotierungsionen und Anwendung von Kern-Schale-Synthesemethoden lassen sich Nanopartikel mit Apatitstruktur in unterschiedlichen Größen und Morphologien herstellen. Neben kleinen sphärischen Partikeln können durch geeignete Wahl der genannten Parameter sowohl entlang der c-Achse elongierte Stäbchen gewonnen werden, als auch in c-Richtung gestauchte, plättchenförmige Partikel, die sich entlang dieser Achse in langen Ketten anordnen.

Page generated in 0.0161 seconds