• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 18
  • 13
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 119
  • 63
  • 56
  • 48
  • 40
  • 28
  • 28
  • 27
  • 24
  • 24
  • 20
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

MaSTA: a text-based machine learning approach for systems-of-systems in the big data context / MaSTA: uma abordagem de aprendizado de máquina orientado a textos para sistemas-de-sistemas no contexto de big data

Bianchi, Thiago 11 April 2019 (has links)
Systems-of-systems (SoS) have gained a very important status in industry and academia as an answer to the growing complexity of software-intensive systems. SoS are particular in the sense that their capabilities transcend the mere sum of the capacities of their diverse independent constituents. In parallel, the current growth in the amount of data collected in different formats is impressive and imposes a considerable challenge for researchers and professionals, characterizing hence the Big Data context. In this scenario, Machine Learning techniques have been increasingly explored to analyze and extract relevant knowledge from such data. SoS have also generated a large amount of data and text information and, in many situations, users of SoS need to manually register unstructured, critical texts, e.g., work orders and service requests, and also need to map them to structured information. Besides that, these are repetitive, time-/effort-consuming, and even error-prone tasks. The main objective of this Thesis is to present MaSTA, an approach composed of an innovative classification method to infer classifiers from large textual collections and an evaluation method that measures the reliability and performance levels of such classifiers. To evaluate the effectiveness of MaSTA, we conducted an experiment with a commercial SoS used by large companies that provided us four datasets containing near one million records related with three classification tasks. As a result, this experiment indicated that MaSTA is capable of automatically classifying the documents and also improve the user assertiveness by reducing the list of possible classifications. Moreover, this experiment indicated that MaSTA is a scalable solution for the Big Data scenarios in which document collections have hundreds of thousands (even millions) of documents, even produced by different constituents of an SoS. / Sistemas-de-sistemas (SoS) conquistaram um status muito importante na indústria e na academia como uma resposta à crescente complexidade dos sistemas intensivos de software. SoS são particulares no sentido de que suas capacidades transcendem a mera soma das capacidades de seus diversos constituintes independentes. Paralelamente, o crescimento atual na quantidade de dados coletados em diferentes formatos é impressionante e impõe um desafio considerável para pesquisadores e profissionais, caracterizando consequentemente o contexto de Big Data. Nesse cenário, técnicas de Aprendizado de Máquina têm sido cada vez mais exploradas para analisar e extrair conhecimento relevante de tais dados. SoS também têm gerado uma grande quantidade de dados e informações de texto e, em muitas situações, os usuários do SoS precisam registrar manualmente textos críticos não estruturados, por exemplo, ordens de serviço e solicitações de serviço, e também precisam mapeá-los para informações estruturadas. Além disso, essas tarefas são repetitivas, demoradas, e até mesmo propensas a erros. O principal objetivo desta Tese é apresentar o MaSTA, uma abordagem composta por um método de classificação inovador para inferir classificadores a partir de grandes coleções de texto e um método de avaliação que mensura os níveis de confiabilidade e desempenho desses classificadores. Para avaliar a eficácia do MaSTA, nós conduzimos um experimento com um SoS comercial utilizado por grandes empresas que nos forneceram quatro conjuntos de dados contendo quase um milhão de registros relacionados com três tarefas de classificação. Como resultado, esse experimento indicou que o MaSTA é capaz de classificar automaticamente os documentos e também melhorar a assertividade do usuário através da redução da lista de possíveis classificações. Além disso, esse experimento indicou que o MaSTA é uma solução escalável para os cenários de Big Data, nos quais as coleções de documentos têm centenas de milhares (até milhões) de documentos, até mesmo produzidos por diferentes constituintes de um SoS.
12

Seleção entre estratégias de geração automática de dados de teste por meio de métricas estáticas de softwares orientados a objetos / Selection between whole test generation strategies by analysing object oriented software static metrics

Gustavo da Mota Ramos 09 October 2018 (has links)
Produtos de software com diferentes complexidades são criados diariamente através da elicitação de demandas complexas e variadas juntamente a prazos restritos. Enquanto estes surgem, altos níveis de qualidade são esperados para tais, ou seja, enquanto os produtos tornam-se mais complexos, o nível de qualidade pode não ser aceitável enquanto o tempo hábil para testes não acompanha a complexidade. Desta maneira, o teste de software e a geração automática de dados de testes surgem com o intuito de entregar produtos contendo altos níveis de qualidade mediante baixos custos e rápidas atividades de teste. Porém, neste contexto, os profissionais de desenvolvimento dependem das estratégias de geração automáticas de testes e principalmente da seleção da técnica mais adequada para conseguir maior cobertura de código possível, este é um fator importante dados que cada técnica de geração de dados de teste possui particularidades e problemas que fazem seu uso melhor em determinados tipos de software. A partir desde cenário, o presente trabalho propõe a seleção da técnica adequada para cada classe de um software com base em suas características, expressas por meio de métricas de softwares orientados a objetos a partir do algoritmo de classificação Naive Bayes. Foi realizada uma revisão bibliográfica de dois algoritmos de geração, algoritmo de busca aleatório e algoritmo de busca genético, compreendendo assim suas vantagens e desvantagens tanto de implementação como de execução. As métricas CK também foram estudadas com o intuito de compreender como estas podem descrever melhor as características de uma classe. O conhecimento adquirido possibilitou coletar os dados de geração de testes de cada classe como cobertura de código e tempo de geração a partir de cada técnica e também as métricas CK, permitindo assim a análise destes dados em conjunto e por fim execução do algoritmo de classificação. Os resultados desta análise demonstraram que um conjunto reduzido e selecionado das métricas CK é mais eficiente e descreve melhor as características de uma classe se comparado ao uso do conjunto por completo. Os resultados apontam também que as métricas CK não influenciam o tempo de geração dos dados de teste, entretanto, as métricas CK demonstraram correlação moderada e influência na seleção do algoritmo genético, participando assim na sua seleção pelo algoritmo Naive Bayes / Software products with different complexity are created daily through analysis of complex and varied demands together with tight deadlines. While these arise, high levels of quality are expected for such, as products become more complex, the quality level may not be acceptable while the timing for testing does not keep up with complexity. In this way, software testing and automatic generation of test data arise in order to deliver products containing high levels of quality through low cost and rapid test activities. However, in this context, software developers depend on the strategies of automatic generation of tests and especially on the selection of the most adequate technique to obtain greater code coverage possible, this is an important factor given that each technique of data generation of test have peculiarities and problems that make its use better in certain types of software. From this scenario, the present work proposes the selection of the appropriate technique for each class of software based on its characteristics, expressed through object oriented software metrics from the naive bayes classification algorithm. Initially, a literature review of the two generation algorithms was carried out, random search algorithm and genetic search algorithm, thus understanding its advantages and disadvantages in both implementation and execution. The CK metrics have also been studied in order to understand how they can better describe the characteristics of a class. The acquired knowledge allowed to collect the generation data of tests of each class as code coverage and generation time from each technique and also the CK metrics, thus allowing the analysis of these data together and finally execution of the classification algorithm. The results of this analysis demonstrated that a reduced and selected set of metrics is more efficient and better describes the characteristics of a class besides demonstrating that the CK metrics have little or no influence on the generation time of the test data and on the random search algorithm . However, the CK metrics showed a medium correlation and influence in the selection of the genetic algorithm, thus participating in its selection by the algorithm naive bayes
13

SELEÇÃO DE ATRIBUTOS EM IMAGENS COLETADAS SOB CONDIÇÕES DE ILUMINAÇÃO NÃO CONTROLADA E SUA INFLUÊNCIA NO DESEMPENHO DE CLASSIFICADORES NAIVE BAYES PARA IDENTIFICAÇÃO DE OBJETOS EM ESTUFAS AGRÍCOLAS

Gaspareto, Marinaldo José 10 September 2013 (has links)
Made available in DSpace on 2017-07-21T14:19:40Z (GMT). No. of bitstreams: 1 Marinaldo Gaspareto.pdf: 1456191 bytes, checksum: ffaf0b449c6b9d107bdf1946a4619315 (MD5) Previous issue date: 2013-09-10 / A problem regarding the implementation of navigation systems for autonomous moving robots is to detect the objects of interest and obstacles which are in the environment. This study considers the detection of walls / low walls of agricultural greenhouses in digital images obtained without illumination control. The proposed approach employs techniques of digital image processing and digital classification to detect the object of interest. The classifier has been developed digital type Naive Bayes. Two important issues when employing classification methods in computer vision is the accuracy of the classifier and the complexity of computing time. The selection of attributes descriptors that comprise a classifier has great impact on these two factors, generally the fewer attributes are required, the lower the computational cost. Regarding it, this study compared the performance of two methods of feature selection based on principal component analysis, named B2 and B4 in two cases. In the first scenario the feature selection was conducted on all the data extracted from all images. The second selection was performed for images grouped by similarity. After selection, the selected attributes for each approach was used to construct the type Naive Bayes classifier with 12, 17, 22 and 27 input variables. The results indicate that the grouping of images is useful when: (a) the distance from the center of the group to the center of the original database exceeds a threshold and (b) a correlation among the descriptors variables and the target variable is greater than in the group as a whole complete data. Keywords: Greenhouses, Autonomous navigation, Selection attributes, Naive Bayes classifiers. / Um problema relativo à implementação de sistemas de navegação para robôs autônomos móveis é a detecção dos objetos de interesse e dos obstáculos que estão no ambiente. Este trabalho considera a detecção das paredes/muretas de estufas agrícolas em imagens digitais adquiridas sem controle de iluminação. A abordagem proposta emprega técnicas de processamento digital de imagens e classificação digital para detectar o objeto de interesse. O classificador digital desenvolvido foi do tipo Naive Bayes. Duas questões importantes quando do emprego de métodos de classificação em visão computacional são a acurácia do classificador e a complexidade de tempo de computação. A seleção dos atributos descritores que compõem um classificador tem grande impacto sobre estes dois fatores, de um modo geral, quanto menos atributos forem necessários, menor o custo computacional. Considerando isso, este trabalho comparou o desempenho de dois métodos de seleção de atributos baseados na análise de componentes principais, chamados B2 e B4 em duas situações. Na primeira situação, a seleção de atributos foi realizada sobre o conjunto dos dados extraídos de todas as imagens. Na segunda, a seleção foi realizada para imagens agrupadas por similaridade. Após a seleção, os atributos selecionados em cada uma das abordagens foram usados para construir classificadores do tipo Naive Bayes com 12, 17, 22 e 27 variáveis de entrada. Os resultados indicam que o agrupamento de imagens é útil quando: (a) a distância do centro do grupo ao centro da base original ultrapassa um limiar e (b) a correlação entre as variáveis descritoras e a variável meta é maior no grupo do que no conjunto completo de dados.
14

[en] A STUDY OF MULTILABEL TEXT CLASSIFICATION ALGORITHMS USING NAIVE-BAYES / [pt] UM ESTUDO DE ALGORITMOS PARA CLASSIFICAÇÃO AUTOMÁTICA DE TEXTOS UTILIZANDO NAIVE-BAYES

DAVID STEINBRUCH 12 March 2007 (has links)
[pt] A quantidade de informação eletrônica vem crescendo de forma acelerada, motivada principalmente pela facilidade de publicação e divulgação que a Internet proporciona. Desta forma, é necessária a organização da informação de forma a facilitar a sua aquisição. Muitos trabalhos propuseram resolver este problema através da classificação automática de textos associando a eles vários rótulos (classificação multirótulo). No entanto, estes trabalhos transformam este problema em subproblemas de classificação binária, considerando que existe independência entre as categorias. Além disso, utilizam limiares (thresholds), que são muito específicos para o conjunto de treinamento utilizado, não possuindo grande capacidade de generalização na aprendizagem. Esta dissertação propõe dois algoritmos de classificação automática de textos baseados no algoritmo multinomial naive Bayes e sua utilização em um ambiente on-line de classificação automática de textos com realimentação de relevância pelo usuário. Para testar a eficiência dos algoritmos propostos, foram realizados experimentos na base de notícias Reuters 21758 e na base de documentos médicos Ohsumed. / [en] The amount of electronic information has been growing fast, mainly due to the easiness of publication and spreading that Internet provides. Therefore, is necessary the organisation of information to facilitate its retrieval. Many works have solved this problem through the automatic text classification, associating to them several labels (multilabel classification). However, those works have transformed this problem into binary classification subproblems, considering there is not dependence among categories. Moreover, they have used thresholds, which are very sepecific of the classifier document base, and so, does not have great generalization capacity in the learning process. This thesis proposes two text classifiers based on the multinomial algorithm naive Bayes and its usage in an on-line text classification environment with user relevance feedback. In order to test the proposed algorithms efficiency, experiments have been performed on the Reuters 21578 news base, and on the Ohsumed medical document base.
15

Seleção entre estratégias de geração automática de dados de teste por meio de métricas estáticas de softwares orientados a objetos / Selection between whole test generation strategies by analysing object oriented software static metrics

Ramos, Gustavo da Mota 09 October 2018 (has links)
Produtos de software com diferentes complexidades são criados diariamente através da elicitação de demandas complexas e variadas juntamente a prazos restritos. Enquanto estes surgem, altos níveis de qualidade são esperados para tais, ou seja, enquanto os produtos tornam-se mais complexos, o nível de qualidade pode não ser aceitável enquanto o tempo hábil para testes não acompanha a complexidade. Desta maneira, o teste de software e a geração automática de dados de testes surgem com o intuito de entregar produtos contendo altos níveis de qualidade mediante baixos custos e rápidas atividades de teste. Porém, neste contexto, os profissionais de desenvolvimento dependem das estratégias de geração automáticas de testes e principalmente da seleção da técnica mais adequada para conseguir maior cobertura de código possível, este é um fator importante dados que cada técnica de geração de dados de teste possui particularidades e problemas que fazem seu uso melhor em determinados tipos de software. A partir desde cenário, o presente trabalho propõe a seleção da técnica adequada para cada classe de um software com base em suas características, expressas por meio de métricas de softwares orientados a objetos a partir do algoritmo de classificação Naive Bayes. Foi realizada uma revisão bibliográfica de dois algoritmos de geração, algoritmo de busca aleatório e algoritmo de busca genético, compreendendo assim suas vantagens e desvantagens tanto de implementação como de execução. As métricas CK também foram estudadas com o intuito de compreender como estas podem descrever melhor as características de uma classe. O conhecimento adquirido possibilitou coletar os dados de geração de testes de cada classe como cobertura de código e tempo de geração a partir de cada técnica e também as métricas CK, permitindo assim a análise destes dados em conjunto e por fim execução do algoritmo de classificação. Os resultados desta análise demonstraram que um conjunto reduzido e selecionado das métricas CK é mais eficiente e descreve melhor as características de uma classe se comparado ao uso do conjunto por completo. Os resultados apontam também que as métricas CK não influenciam o tempo de geração dos dados de teste, entretanto, as métricas CK demonstraram correlação moderada e influência na seleção do algoritmo genético, participando assim na sua seleção pelo algoritmo Naive Bayes / Software products with different complexity are created daily through analysis of complex and varied demands together with tight deadlines. While these arise, high levels of quality are expected for such, as products become more complex, the quality level may not be acceptable while the timing for testing does not keep up with complexity. In this way, software testing and automatic generation of test data arise in order to deliver products containing high levels of quality through low cost and rapid test activities. However, in this context, software developers depend on the strategies of automatic generation of tests and especially on the selection of the most adequate technique to obtain greater code coverage possible, this is an important factor given that each technique of data generation of test have peculiarities and problems that make its use better in certain types of software. From this scenario, the present work proposes the selection of the appropriate technique for each class of software based on its characteristics, expressed through object oriented software metrics from the naive bayes classification algorithm. Initially, a literature review of the two generation algorithms was carried out, random search algorithm and genetic search algorithm, thus understanding its advantages and disadvantages in both implementation and execution. The CK metrics have also been studied in order to understand how they can better describe the characteristics of a class. The acquired knowledge allowed to collect the generation data of tests of each class as code coverage and generation time from each technique and also the CK metrics, thus allowing the analysis of these data together and finally execution of the classification algorithm. The results of this analysis demonstrated that a reduced and selected set of metrics is more efficient and better describes the characteristics of a class besides demonstrating that the CK metrics have little or no influence on the generation time of the test data and on the random search algorithm . However, the CK metrics showed a medium correlation and influence in the selection of the genetic algorithm, thus participating in its selection by the algorithm naive bayes
16

Applicering av maskininlärning för att predicera utfall av Kickstarter-projekt / Application of machine learning to predict outcome of Kickstarter-projects

Lidén, Rickard, In, Gabriel January 2021 (has links)
Crowdfunding är i den moderna digitala världen ett populärt sätt att samla in pengar till sitt projekt. Kickstarter är en av de ledande sidorna för crowdfunding. Predicering av ett Kickstarter-projekts framgång eller misslyckande kan därav vara av stort intresse för entreprenörer.Studiens syfte är att jämföra fyra olika algoritmers prediceringsförmåga på två olika Kickstarter-dataset. Det ena datasetet sträcker sig mellan åren 2020-2021, och det andra mellan åren 2016-2021. Algoritmerna som jämförs är KNN, Naive Bayes, MLP, och Random Forest.Av dessa fyra modeller så skapades i denna studie de bästa produktionsmodellerna av KNN och Random Forest. KNN var bäst för 2020-2021-datasetet, med 77,0% träffsäkerhet. Random Forest var bäst för 2016-2021-datasetet, med 76,8% träffsäkerhet. / Crowdfunding has in the modern, digitalized world become a popular method for gathering money for a project. Kickstarter is one of the most popular websites for crowdfunding. This means that predicting the success or failure of a Kickstarter-project by way of machine learning could be of great interest to entrepreneurs.The purpose of this study is to compare the predictive abilities of four different algorithms on two different Kickstarter-datasets. One dataset contains data in the span of the years 2020-2021, and the other contains data from 2016-2021. The algorithms used in this study are KNN, Naive Bayes, MLP and Random Forest.Out of these four algorithms, the top-performing prediction abilities for the two datasets were found in KNN and Random Forest. KNN was the best-performing algorithm for 2020-2021, with 77,0% accuracy. Random Forest had the top score for 2016-2021, with 76,8% accuracy. The language used in this study is Swedish.
17

Anomaly-based intrusion detection using Tree Augmented Naive Bayes Classifier

Wester, Philip January 2021 (has links)
With the rise of information technology and the dependence on these systems, it becomes increasingly more important to keep the systems secure. The possibility to detect an intrusion with intrusion detection systems (IDS) is one of multiple fundamental technologies that may increase the security of a system. One of the bigger challenges of an IDS, is to detect types of intrusions that have previously not been encountered, so called unknown intrusions. These types of intrusions are generally detected by using methods collectively called anomaly detection methods. In this thesis I evaluate the performance of the algorithm Tree Augmented Naive Bayes Classifier (TAN) as an intrusion detection classifier. More specifically, I created a TAN program from scratch in Python and tested the program on two data sets containing data traffic. The thesis aims to create a better understanding of how TAN works and evaluate if it is a reasonable algorithm for intrusion detection. The results show that TAN is able to perform at an acceptable level with a reasonably high accuracy. The results also highlights the importance of using the smoothing operator included in the standard version of TAN. / Med informationsteknikens utveckling och det ökade beroendet av dessa system, blir det alltmer viktigt att hålla systemen säkra. Intrångsdetektionssystem (IDS) är en av många fundamentala teknologier som kan öka säkerheten i ett system. En av de större utmaningarna inom IDS, är att upptäcka typer av intrång som tidigare inte stötts på, så kallade okända intrång. Dessa intrång upptäcks oftast med hjälp av metoder som kollektivt kallas för avvikelsedetektionsmetoder. I denna uppsats utvärderar jag algoritmen Tree Augmented Naive Bayes Classifiers (TAN) prestation som en intrångsdetektionsklassificerare. Jag programmerade ett TAN-program, i Python, och testade detta program på två dataset som innehöll datatrafik. Denna uppsats ämnar att skapa en bättre förståelse för hur TAN fungerar, samt utvärdera om det är en lämplig algoritm för detektion av intrång. Resultaten visar att TAN kan prestera på en acceptabel nivå, med rimligt hög noggrannhet. Resultaten markerar även betydelsen av "smoothing operator", som inkluderas i standardversionen av TAN.
18

Sentimentanalys av svenskt aktieforum för att förutspå aktierörelse / Sentiment analysis of Swedish stock trading forum for predicting stock market movement

Ouadria, Michel Sebastian, Ciobanu, Ann-Stephanie January 2020 (has links)
Förevarande studie undersöker möjligheten att förutsäga aktierörelse på en dagligbasis med sentimentanalys av inlägg från ett svenskt aktieforum. Sentimentanalys används för att finna subjektivitet i form av känslor (sentiment) ur text. Textdata extraherades från ett svenskt aktieforum för att förutsäga aktierörelsen för den relaterade aktien. All data aggregerades inom en bestämd tidsperiod på två år. Undersökningen utnyttjade maskininlärning för att träna tre maskininlärningsmodeller med textdata och aktiedata. Resultatet påvisade ingen tydlig korrelation mellan sentiment och aktierörelse. Vidare uppnåddes inte samma resultat som tidigare arbeten inom området. Den högst uppnådda noggrannheten med modellerna beräknades till 64%. / The present study examines the possibility of predicting stock movement on a daily basis with sentiment analysis of posts in a swedish stock trading forum. Sentiment analysis is used to find subjectivity in the form of emotions (sentiment) from text. Textdata was extracted from a stock forum to predict the share movement of the related share. All data was aggregated within a fixed period of two years. The analysis utilizes machine learning to train three machine learning models with textdata and stockdata. The result showed no clear correlation between sentiment and stock movement. Furthermore, the result was not able to replicate accuracy as previous work in the field. The highest accuracy achieved with the models was calculated at 64%.
19

A wearable real-time system for physical activity recognition and fall detection

Yang, Xiuxin 23 September 2010 (has links)
This thesis work designs and implements a wearable system to recognize physical activities and detect fall in real time. Recognizing peoples physical activity has a broad range of applications. These include helping people maintaining their energy balance by developing health assessment and intervention tools, investigating the links between common diseases and levels of physical activity, and providing feedback to motivate individuals to exercise. In addition, fall detection has become a hot research topic due to the increasing population over 65 throughout the world, as well as the serious effects and problems caused by fall.<p> In this work, the Sun SPOT wireless sensor system is used as the hardware platform to recognize physical activity and detect fall. The sensors with tri-axis accelerometers are used to collect acceleration data, which are further processed and extracted with useful information. The evaluation results from various algorithms indicate that Naive Bayes algorithm works better than other popular algorithms both in accuracy and implementation in this particular application.<p> This wearable system works in two modes: indoor and outdoor, depending on users demand. Naive Bayes classifier is successfully implemented in the Sun SPOT sensor. The results of evaluating sampling rate denote that 20 Hz is an optimal sampling frequency in this application. If only one sensor is available to recognize physical activity, the best location is attaching it to the thigh. If two sensors are available, the combination at the left thigh and the right thigh is the best option, 90.52% overall accuracy in the experiment.<p> For fall detection, a master sensor is attached to the chest, and a slave sensor is attached to the thigh to collect acceleration data. The results show that all falls are successfully detected. Forward, backward, leftward and rightward falls have been distinguished from standing and walking using the fall detection algorithm. Normal physical activities are not misclassified as fall, and there is no false alarm in fall detection while the user is wearing the system in daily life.
20

Applying Data Mining Techniques on Continuous Sensed Data : For daily living activity recognition

Li, Yunjie January 2014 (has links)
Nowadays, with the rapid development of the Internet of Things, the applicationfield of wearable sensors has been continuously expanded and extended, especiallyin the areas of remote electronic medical treatment, smart homes ect. Human dailyactivities recognition based on the sensing data is one of the challenges. With avariety of data mining techniques, the activities can be automatically recognized. Butdue to the diversity and the complexity of the sensor data, not every kind of datamining technique can performed very easily, until after a systematic analysis andimprovement. In this thesis, several data mining techniques were involved in theanalysis of a continuous sensing dataset in order to achieve the objective of humandaily activities recognition. This work studied several data mining techniques andfocuses on three of them; Decision Tree, Naive Bayes and neural network, analyzedand compared these techniques according to the classification results. The paper alsoproposed some improvements to the data mining techniques according to thespecific dataset. The comparison of the three classification results showed that eachclassifier has its own limitations and advantages. The proposed idea of combing theDecision Tree model with the neural network model significantly increased theclassification accuracy in this experiment.

Page generated in 0.1479 seconds