• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 312
  • 93
  • 90
  • 45
  • 11
  • 8
  • 8
  • 8
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 695
  • 131
  • 116
  • 106
  • 88
  • 70
  • 57
  • 54
  • 51
  • 48
  • 46
  • 45
  • 44
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Chain Extension of Polyamide-6 & Polyamide-6/Organoclay Nanocomposites. Control of thermal degradation of polyamide-6/organoclay nanocomposites during extrusion using a novel chain extender

Tuna, Basak January 2016 (has links)
Novel solutions to offset thermal degradation of polyamide-6 (PA-6) and organoclay (organically modified layered silicates) nanocomposites during melt compounding have been investigated. In this research, a novel chain extender (Joncryl ADR 3400) has been used to improve thermal stability of PA-6 and PA- 6/organoclay nanocomposites during melt compounding. The materials were compounded using a linear twin extruder and various laboratory scale mixers. The effects of organoclay and chain extender were studied using both processing methods. In order to replicate large scale production used in industry, a comprehensive plan of experimental work was carried out under different processing conditions (extrusion temperature and screw speed), organoclay and chain extender loading using a linear twin screw extruder. Rheology, mechanical and thermal properties were analysed and selected samples were also characterised by TEM and FTIR. Process induced degradation of PA-6 during the melt compounding was found to have significant influence on the rheological and mechanical properties. Rheological and mechanical characterisation clearly showed showed that incorporation of the chain extender minimised thermal degradation of PA-6 and nanocomposites during melt processing. Visual analysis of selected nanocomposites using TEM confirmed that chain extender increased the dispersion of nanoclays in the PA- 6 matrix. The crystallinity of the PA-6 was slightly affected by addition of organoclay and chain extender. The samples obtained by linear twin screw extrusion showed higher rheological properties than the samples from laboratory scale mixers suggesting better mixing and less thermal degradation during extrusion. / Republic of Turkey, Ministry of National Education. / The full text was made available at the end of the embargo, 31st Dec 2019.
432

Bioactive Cellulose Nanocrystal Reinforced 3D Printable Poly(epsilon-caprolactone) Nanocomposite for Bone Tissue Engineering

Hong, Jung Ki 07 May 2015 (has links)
Polymeric bone scaffolds are a promising tissue engineering approach for the repair of critical-size bone defects. Porous three-dimensional (3D) scaffolds play an essential role as templates to guide new tissue formation. However, there are critical challenges arising from the poor mechanical properties and low bioactivity of bioresorbable polymers, such as poly(epsilon-caprolactone) (PCL) in bone tissue engineering applications. This research investigates the potential use of cellulose nanocrystals (CNCs) as multi-functional additives that enhance the mechanical properties and increase the biomineralization rate of PCL. To this end, an in vitro biomineralization study of both sulfuric acid hydrolyzed-CNCs (SH-CNCs) and surface oxidized-CNCs (SO-CNCs) has been performed in simulated body fluid in order to evaluate the bioactivity of the surface functional groups, sulfate and carboxyl groups, respectively. PCL nanocomposites were prepared with different SO-CNC contents and the chemical/physical properties of the nanocomposites were analyzed. 3D porous scaffolds with fully interconnected pores and well-controlled pore sizes were fabricated from the PCL nanocomposites with a 3D printer. The mechanical stability of the scaffolds were studied using creep test under dry and submersion conditions. Lastly, the biocompatibility of CNCs and 3D printed porous scaffolds were assessed in vitro. The carboxyl groups on the surface of SO-CNCs provided a significantly improved calcium ion binding ability which could play an important role in the biomineralization (bioactivity) by induction of mineral formation for bone tissue engineering applications. In addition, the mechanical properties of porous PCL nanocomposite scaffolds were pronouncedly reinforced by incorporation of SO-CNCs. Both the compressive modulus and creep resistance of the PCL scaffolds were enhanced either in dry or in submersion conditions at 37 degrees Celsius. Lastly, the biocompatibility study demonstrated that both the CNCs and material fabrication processes (e.g., PCL nanocomposites and 3D printing) were not toxic to the preosteoblasts (MC3T3 cells). Also, the SO-CNCs showed a positive effect on biomineralization of PCL scaffolds (i.e., accelerated calcium or mineral deposits on the surface of the scaffolds) during in vitro study. Overall, the SO-CNCs could play a critical role in the development of scaffold materials as a potential candidate for reinforcing nanofillers in bone tissue engineering applications. / Ph. D.
433

Nanocomposite Dispersion: Quantifying the Structure-Function Relationship

Gibbons, Luke J. 04 November 2011 (has links)
The dispersion quality of nanoinclusions within a matrix material is often overlooked when relating the effect of nanoscale structures on functional performance and processing/property relationships for nanocomposite materials. This is due in part to the difficulty in visualizing the nanoinclusion and ambiguity in the description of dispersion. Understanding the relationships between the composition of the nanofiller, matrix chemistry, processing procedures and resulting dispersion is a necessary step to tailor the physical properties. A method is presented that incorporates high-contrast imaging, an emerging scanning electron microscopy technique to visualize conductive nanofillers deep within insulating materials, with various image processing procedures to allow for the quantification and validation of dispersion parameters. This method makes it possible to quantify the dispersion of various single wall carbon nanotube (SWCNT)-polymer composites as a function of processing conditions, composition of SWCNT and polymer matrix chemistry. Furthermore, the methodology is utilized to show that SWCNT dispersion exhibits fractal-like behavior thus allowing for simplified quantitative dispersion analysis. The dispersion analysis methodology will be corroborated through comparison to results from small angle neutron scattering dispersion analysis. Additionally, the material property improvement of SWCNT nanocomposites are linked to the dispersion state of the nanostructure allowing for correlation between dispersion techniques, quantified dispersion of SWCNT at the microscopic scale and the material properties measured at the macroscopic scale. / Ph. D.
434

<b>Multi-phase Nitride-based Metamaterial Thin Films towards Tunable Microstructure and Coupled Multifunctionalities</b>

Jiawei Song (9357755) 16 October 2024 (has links)
<p dir="ltr">Hybrid metamaterials have garnered significant attention in recent years owing to their unique properties not found in natural materials. These materials are engineered by integrating two or more distinct materials at the nanoscale, forming various microstructures such as particle-in-matrix, pillar-in-matrix, and multilayers. The recent development of vertically aligned nanocomposites (VANs) offers a platform in forming pillar-in-matrix metamaterials in a self-assembled fashion. Transition metal nitrides, such as titanium nitride (TiN), are interesting materials for VAN designs due to their outstanding plasmonic properties, chemical stability, and compatibility with various functional materials. However, the current range of material selection and morphological demonstrations in two-phase nitride-based nanocomposites is limited. There is a growing need for a deeper understanding of the self-assembly growth mechanism and greater freedom in structural and property tunability of nitride-based VANs to develop the next generation of integrated photonic and electronic devices.</p><p dir="ltr">This dissertation investigates the design, growth mechanisms, and tunability of nitride-based VANs for advanced metamaterial applications. The first chapter focuses on integrating ferromagnetic CoFe<sub>2</sub> into a plasmonic TiN matrix to achieve anisotropic optical and magnetic properties, as well as coupling effects between the two phases. In the second chapter, a third phase, gold (Au), is introduced into TiN-CoFe<sub>2</sub> VANs in a core-shell configuration, demonstrating enhanced tunability in microstructure and resultant properties, such as distinct hyperbolic behavior and switchable magnetic easy axis. The third chapter extends the exploration into three-dimensional (3D) nanostructured films by combining different VAN films (e.g., TiN-CoFe<sub>2</sub>, TaN-CoFe<sub>2</sub>) in multilayer configurations, demonstrating highly tunable optical properties along with ferromagnetic response. This 3D nanocomposite approach highlights the potential for advanced tunability in metamaterials beyond traditional two-phase VAN designs. The fourth chapter explores the control of stoichiometry and phase composition in TiN-CuO systems. By systematically adjusting oxygen partial pressure during deposition, a gradual transition from metallic to dielectric behavior in these nanocomposite films has been observed. This investigation provides valuable insights into the comprehensive understanding of the interaction processes within hybrid nanocomposites during self-assembly. Overall, this thesis presents diverse methodologies for tuning microstructures and functionalities within nitride-based VAN systems, showing potentials for advanced applications in optics, magnetics, and beyond in metamaterial research.</p>
435

Design Optimization of Functionalized Silica-Polymer Nanocomposite through Finite Element and Molecular Dynamics Modeling

Almahmoud, Omar H. M. 08 1900 (has links)
This dissertation focuses on studying membrane air dehumidification for a membrane moisture exchanger in a membrane heat pump system. The study has two parts: an optimization of membrane moisture exchanger for air dehumidification in the macroscale, and diffusion of water vapor in polymer nanocomposites membrane for humid air dehumidification in the nanoscale. In the first part of the research, the mass transport of water vapor molecules through hydrophilic silica nanochannel chains in hydrophobic polyurethane matrix was studied by simulations and experiments for different membrane moisture exchanger design configurations. The mass transport across the polymer nanocomposite membrane occurs with the diffusion of moist air water vapor molecules in the membrane moisture exchanger in a membrane heat pump air conditioning system for air dehumidification purposes. The hydrophobic polyurethane matrix containing the hydrophilic silica nanochannel chains membrane is responsible for transporting water vapor molecules from the feed side to the permeate side of the membrane without allowing air molecules to pass through.In the second part of the research, diffusion analysis of the polymer nanocomposite membrane were performed in the nanoscale for the polymer nanocomposite membrane. The diffusion phenomena through the polymer, the polymer nanocomposite without modifying the silica surfaces, and the polymer nanocomposite with two different silica modified surfaces were studied in order to obtain the highest water vapor removal through the membrane. Different membrane moisture exchanger configurations for optimal water vapor removal were compared to get the desired membrane moisture exchanger design using the finite element method (FEM) with the COMSOL Multiphysics software package. The prediction of mass transport through different membrane configurations can be done by obtaining the mass flux value for each configuration. An experimental setup of one membrane moisture exchanger design was introduced to verify the simulation results. Also, for different membrane structures, permeability was measured according to the ASTM E-96 method. The prediction of water vapor diffusion through the polymer nanocomposite was studied by molecular dynamics simulation with the MAPS 4.3 and LAMMPS software packages. As a new nanocomposite material used in air dehumidification application, water vapor diffusivity through Silica-Polyurethane nanocomposite membranes was measured by the random movement of water vapor molecules through the formed nanochannels in the nanocomposite. For the diffusivity value, the Einstein's relationship was employed for the movement of each single water vapor molecule during the simulation time for all suggested membranes. The results of the proposed research will contribute to enhancing the energy efficiency of air conditioning systems by choosing the membrane moisture exchanger configuration which maximizes water vapor removal while, at the same time, enhancing the silica surfaces with the desired surface modifier that will maximize diffusion through the membrane itself.
436

Compréhension des mécanismes réactionnels dans un procédé hybride de dépôt de couches minces nanocomposites couplant plasma et injection de solution colloïdale

Chouteau, Simon 04 1900 (has links)
Ce travail de thèse se place dans le contexte du dépôt de couches minces nanocomposites par des procédés à plasma à basse pression assistés par aérosols. Cinq études ont été réalisées dans le but de comprendre les mécanismes fondamentaux propres à ce type de procédé. Dans un premier temps, l’étude de la croissance des couches minces nanocomposites par ellipsométrie spectroscopique in situ a montré que l’apport de matière à l’échantillon se faisait alternativement riche en matériau matrice, puis en nanoparticules. Par la suite, l’étude microscopique de la surface des échantillons et la simulation de l’évaporation des gouttelettes dans le plasma a permis d’identifier l’ébullition « flash » comme étant le mécanisme principal de pulvérisation des aérosols dans le plasma à basse pression. Dans un troisième temps, l’étude de l’interaction aérosol-surface a permis de mettre en évidence l’apparition de l’évaporation « stick-slip » puis de l’effet Leidenfrost sur les surfaces chaudes. Ensuite, des mesures de spectroscopie d’émission optique résolues en temps couplées à un modèle collisionnel-radiatif ont permis d’examiner l’interaction aérosol-plasma suite à l’injection pulsée de liquide dans un plasma d’argon. Ainsi, l’évolution temporelle des propriétés fondamentales du plasma ont été déterminées, mettant en évidence les variations de température électronique et de densité électronique provoquées par l’injection d’aérosol. Enfin, les connaissances tirées des études précédentes ont été mises en application lors de la synthèse de couches minces nanocomposites contenant des nanomatériaux de natures variées, à savoir des clusters moléculaires, des nanoparticules sphériques et des nanotubes de carbone. / This work focuses on the growth of nanocomposite thin films using aerosol-assisted low-pressure plasma processes. Five studies were carried out with the aim of understanding the fundamental mechanisms involved in this specific category of processes. First, a study of nanocomposite thin film growth using in situ spectroscopic ellipsometry showed that the material input to the sample was alternately matrix- and nanoparticles-predominant. Second, so-called "flash" boiling was identified as the main mechanism for droplet formation in the low-pressure plasma, by confronting an evaporation model to the measured droplet size on the samples’ surface. Third, the study of aerosol-surface interaction revealed that hot surfaces lead to "stick-slip" evaporation and Leidenfrost-induced motion on hot surfaces. Then, time-resolved optical emission spectroscopy measurements coupled to a collisional-radiative model were used to look into the aerosol-plasma interaction after the pulsed injection of liquid into a low-pressure argon plasma. The evolution of fundamental plasma properties was determined, bringing to light the variations in electron temperature and electron density caused by aerosol injection. Finally, the insight gained from the previous studies has been applied to grow nanocomposite thin films containing various nanomaterials, namely molecular clusters, spherical nanoparticles, and carbon nanotubes.
437

Mécanismes de dispersion de suspensions concentrées de silices nanométriques dans un élastomère : impact de la stratégie de mélange sur l'efficacité et la cinétique de dispersion / Mechanisms of dispersion for nanoscale and concentrated suspensions of silica in an elastomer : impact of the strategy of mixing on the efficiency and the kinetics of dispersion

Vincent, Frédéric 04 November 2011 (has links)
L’objectif de ce travail est une approche pluridisciplinaire dans le but de comprendre l’impact des phénomènes microscopiques, l’interaction charge-matrice avec ou sans agent de couplage et la dispersion des charges sur les propriétés macroscopiques. La caractérisation de l’impact de la stratégie de mélange avec ou sans un agent de couplage, la cinétique, l’état final et les différents scénarii de dispersion possibles sont ainsi étudiés. L’incorporation de microperles de silice dans une matrice SBR est réalisée dans un mélangeur interne. Finalement, la silice est dispersée à l’échelle nanométrique (10-100 nm). Les nanocomposites obtenus sont alors caractérisés par des techniques complémentaires (spectroscopie mécanique, MET, mesure du taux d’élastomère lié à la charge) dans le but de caractériser quantitativement les interactions charge-matrice et charge-charge. L’outil rhéologique est un outil très sensible pour caractériser l’évolution de la dispersion de charges dans une matrice élastomère. En particulier, le module de conservation G’ montre un plateau significatif pour les faibles fréquences de déformation. Ce plateau est très sensible à l’état de dispersion ainsi qu’à la nature des interactions entre les charges. En couplant les mesures rhéologiques, l'analyse d'image faite sur des photos MET et la mesure du taux d’élastomère lié, il est possible d’établir un scénario de dispersion de la silice dans l'élastomère en fonction des conditions de mélange et de mettre en évidence les paramètres élémentaires de la dispersion impliqués. En complément, la modélisation de certains modules montre toute sa pertinence dans la caractérisation de la rupture des agglomérats ou de l’évolution des interactions charge-charge au cours du mélangeage. Enfin, la dimension fractale des réseaux de charges obtenus est déterminée à partir de nos descripteurs de la dispersion / Filler dispersion in an elastomeric matrix, states and mechanisms of dispersion had to be investigated throughout the mixing process. This work focuses on a multidisciplinary approach to understand how microscopic phenomena, like rubber-filler interaction or filler dispersions, affect macroscopic properties such as rheological behavior. The incorporation of silica is realized in an internal mixer under temperature control. Finally, silica is dispersed at the nanoscale (10-100 nm). Afterwards, nanocomposites are characterized using complementary techniques in order to discuss quantitatively the nature of rubber-filler and filler-filler interactions and their effect on rheological properties. Thus, the global evolution of dispersion during the mixing is understood through these various tests. Different mechanisms in the dispersion have been observed. First, intense particle size reduction occurs at the earliest mixing times. Then, the aggregate size does not change while the amount of physically bound rubber at the surface of aggregate increases and levels off. For some silica, a second dispersion stage has been observed after the diffusion of the elastomer to the core of the aggregates. Rheology has showed to be a very sensitive tool to characterize the evolution of the dispersion in the system. Particularly, the complex shear modulus exhibits a significant plateau (Ge), at low frequency, which is very sensitive to the dispersion state and the nature of the interaction between the fillers. There is a striking correlation between the value of plateau Ge and the bound rubber content. Finally, a dispersion scenario has been established and fundamental interaction parameters have been identified
438

Multi-functional nanocomposites for the mechanical actuation and magnetoelectric conversion / Nanocomposites multifonctionnels pour l'actionnement mécanique et la conversion magneto-électrique

Zhang, Jiawei 13 December 2011 (has links)
L’effet magnétoélectrique (ME) se traduit par la possibilité d’induire une magnétisation à l’aide d’un champ électrique (effet direct) ou celle d’induire une polarisation électrique à l’aide d’un champ magnétique (effet inverse). Les composites laminés qui possèdent de grands coefficients ME ont généré beaucoup d’intérêt dans le domaine des capteurs, des modulateurs, des interrupteurs et des inverseurs de phase. Dans cette thèse, nous présentons les performances de composites dits laminés à deux ou trois couches. Il a été montré que l’on pouvait obtenir des performances en conversion magnéto-électrique directe en associant des phases magnétostrictives et piézoélectriques. Une modélisation de leur comportement basée sur un oscillateur mécanique a été proposée. Elle a été en particulier utilisée pour simuler le couplage mécanique entre deux couches. Une autre approche pour développer des dispositifs originaux a consisté à utiliser un champ magnétique alternatif pour induire des courants de Foucault dans des électrodes métalliques et une Force de Lorentz en présence d’un deuxième champ magnétique continu. Si ces électrodes recouvrent un matériau piézoélectrique, la force de Lorentz sera alors convertie en signal électrique suivant l’effet direct. Cette approche permet donc de développer des dispositifs de conversion électromagnétique sans phase magnétique. Différents prototypes utilisant un bimorphe piézoélectrique, un film de PVDF et une céramique piézoélectrique ont été réalisés et caractérisés. Un signal électrique proportionnel à la composante continue du champ magnétique a été mis en évidence, ce qui ouvre des applications pour la détection magnétique. Cette thèse s’est également intéressée à l’augmentation du coefficient d’électrostriction par injection de charges électriques en utilisant la technique de décharge Corona. Cette étude a été réalisée sur du polypropylène, connu pour sa capacité à stocker des charges électriques. Le mécanisme de stockage de charge et l’effet sur l’électrostriction ont été étudiées par la mesure du potentiel de surface, la mesure des courants thermo-stimulés, la calorimétrie différentielle et l’interférométrie Laser. L’injection de charges a contribué à une augmentation de la permittivité et par la même à celle du coefficient d’électrostriction, en accord avec un modèle simple de distribution de charges dans l’échantillon. / Magnetoelectric (ME) interactions in matter correspond to the appearance of magnetization by means of an electric field (direct effect) or the appearance of electric polarization by means of a magnetic field (converse effect). The composite laminates which possess large ME coefficient, have attracted much attention in the field of sensors, modulators, switches and phase inverters. In this thesis, we report on the ME performances of the bi- and tri- layered composites. It is shown that their ME couplings can be achieved by combining magnetostrictive and piezoelectric layers. A model based on a driven damped oscillation is established for the piezoelectric/magnetostrictive laminated composite. It is used to simulate the mechanical coupling between the two layers. In addition, we report that the ME coupling can be achieved without magnetic phase but only with eddy current induced Lorentz forces in the metal electrodes of a piezoelectric material induced by ac magnetic field. The models based on the Lorentz effect inducing ME coupling in PZT unimorph bender, polyvinylidene fluoride (PVDF) film and PZT ceramic disc are thus established. The results show the good sensitivity and linear ME response versus dc magnetic field change. Thus, the room temperature magnetic field detection is achievable using the product property between magnetic forces and piezoelectricity. Besides, we report on the electrostrictive performance of cellular polypropylene electret after high-voltage corona poling. We use the Surface Potential test, Thermal Stimulated Depolarization Current experiment and Differential Scanning Calorimetry experiment to analyse its charge storage mechanism. The result show that the electrostrictive coefficient and relative permittivity of the charged samples increase. Last but not least, in order to explain this phenomenon, a mathematic model based on the charged sample has been established.
439

Polyuréthanes électrostrictifs et nanocomposites : caractérisation et analyse des mécanismes de couplages électromécaniques / Electrostrictive polyurethanes and nanocomposites : characterization and analyse of the mechanisms of electromechanical couplings

Wongtimnoi, Komkrisd 19 December 2011 (has links)
Depuis quelques années on s'intéresse aux actionneurs base polymères, souvent appelés polymères électroactifs électroniques (EAPS) pour intégrer dans des microsystèmes électromécaniques (MEMS). Trois mécanismes sont à l'origine du couplage électromécanique : (i) la piézoélectricité qui apparait dans certaines phases cristallines, (ii) la force "de Maxwell" lorsqu'un champ électrique aux bornes du condensateur constitué d'un polymère souples placé entre deux électrodes, et (iii) l'électrostriction, phénomène intrinsèque aux matériaux polaires, mal connu. Les deux derniers se traduisent par une dépendance quadratique de la déformation macroscopique avec le champ électrique appliqué. Parmi les EAPs électrostrictifs, on cite souvent certains polyuréthanes (PU) qui a conduit à ce choix pour ce travail de thèse. Une première partie a consisté à analyser en détail l'électrostriction de 3 PUs, copolymères à blocs de deux types d'unités de répétition, les unes conduisant à des segments rigides très polaires, les autres à des segments souples peu polaires. La séparation de phase qui apparait lors de la mise en œuvre de ces PUs (contenant des fractions différentes de segments souples et rigides) semble propice à l'apparition de leur électrostriction. C'est ce qu'indique une modélisation récemment proposée qui prédit un facteur de près de 1000 entre forces de Maxwell (ici négligeables) et électrostriction. Le comportement des matériaux résultent clairement de la compétition entre contraintes d'origine électrostatique (dipôles des phases polaires dans un gradient de champ électrique) et contraintes mécaniques liées à la rigidité des phases. L’influence systématique de l'épaisseur des films sur leur activité électromagnétique a été rendue compte: les films minces présentent une plus faible déformation à champ électrique donné que les films plus épais. Les films obtenus par évaporation du solvant utilisé pour dissoudre les PU présentent probablement un gradient de microstructure : en surface, l'évaporation rapide limite la séparation de phase, alors qu'elle est plus avancée à cœur. C’est cohérent avec la modélisation reposant sur la présence de gradient de constante diélectrique au sein des films. Dans une dernière partie, on a cherché à augmenter encore l'électrostriction de ces matériaux en dispersant des particules conductrices à conduction électronique, de taille nanométrique (noir de carbone et nanotubes de carbone). On observe trois effets, l'un correspondant à l'augmentation de la constante diélectrique apparente (celle diverge au seuil de percolation), et un deuxième effet à une augmentation des forces d'attraction locales. En revanche, le troisième effet qui contrecarre les forces d'origine électrostatique puisqu'il résulte de l'augmentation de la rigidité dû à la présence des particules rigides. Là encore, la compétition entre contraintes électrostatique et mécanique conduit à un optimum en termes de fraction volumique de particules renforçantes. / Piezoelectric ceramics are commonly used for actuation applications. However, they suffer from several drawbacks particularly such low electric field-induced strains and difficult implementation inside microelectromechanical systems (MEMS). Recently, electroactive polymers (EAPs) have attracted considerable interest, especially following the publication of elevated electric field-induced strain values. The results have rendered EAPs very attractive for replacing the lead-based ceramics. Three mechanisms are responsible for the electromechanical coupling in electronic EAPs: (i) The piezoelectricity that appears in some crystalline phases, (ii) The “Maxwell” forces when applying an electric field through a capacitor which consists of a flexible polymer film placed between two electrodes, and (iii) The electrostriction, an intrinsic phenomenon related to polar materials, which is still poorly understood. The last two mechanisms result in a quadratic dependence of the deformation with the applied electric field. Among the electrostrictive EAPs, some polyurethanes (PU) have been often cited, and have therefore guided the choice of the materials for this work. The first part was to analyze the electrostrictive behavior of three PUs, made of two partially miscible types of repeating units: the high polar hard segments and the low polar soft segments. The phase separation occurred during the elaboration process of these PU films seems favorable to the emergence of electrostrictive behavior. A model predicted recently an almost 1000 factor between the electrostriction and the Maxwell stress (here negligible). This is clearly related to the competition between the electrostatic strains (polar phases dipoles in a field gradient) and the mechanical stresses. The thickness of films was found to have a strong influence on electromechanical activity: thin films present a lower strain for a given electric field compared to thick films. Depending on the solvent evaporation during the film elaboration, the films exhibit a thickness gradient in the microstructure: Fast evaporation on the surface inhibits the phase separation, whereas it is more favored in the core. This is consistent with the modeling based on the gradient of dielectric constant in PU. In the last part, we aimed to further increase the electrostriction of PU by filling with nanoscale conductive particles (carbon black or carbon nanotubes). This normally results three effects, one corresponding to the increase of the dielectric constant in the vicinity of the percolation threshold, a second effect relates to an increase in local attractive forces which behave as internal constraints. In contrast, the third effect counteracts the electrostatic forces since it results from the increased stiffness due to the hard particles. Again, the competition between electrostatic and mechanical stress leads to an optimum induced-deformation associated to a fraction of reinforcing particles.
440

Elaboration et caractérisation de composites Alumine/Zircone à vocation orthopédique / Elaboration and characterization of alumina/zirconia composites for orthopedic applications

Biotteau, Katia 10 September 2012 (has links)
Ce travail de thèse a pour objectif l’élaboration et la caractérisation de composites Alumine/Zircone obtenus par voies conventionnelles, et dédiés à un usage orthopédique. Ces composites présentent une biocompatibilité prouvée, d’excellentes propriétés mécaniques ainsi qu’une grande stabilité. Ils sont plus résistants, plus fiables que l’alumine ou la zircone seules et permettent d’envisager des composants de tailles et formes plus exigeantes mécaniquement. Actuellement ces composites semblent les plus adaptés pour la réalisation de prothèses orthopédiques mais peuvent encore être optimisés via la modification des microstructures. La première partie de ce travail a concerné l’étude de la réalisation industrielle de composants de grande taille à partir d’une poudre. Les différentes étapes de l’élaboration sont traitées : pressage des composants, frittage et usinage. Cette première partie est majoritairement consacrée à l’étude des gradients thermique dans une sphère lors du frittage. Nous montrons qu’il est possible de modéliser et de mesurer les gradients thermiques dans le matériau de manière très réaliste, ainsi que d’obtenir des ordres de grandeur des contraintes mécaniques. On pourra ainsi envisager de tester numériquement les cycles de frittage en fonction de la géométrie des pièces frittées. Nous étudions par ailleurs la possibilité de réaliser un usinage des composants après un traitement de préfrittage, qui permettrait de diminuer les coûts et simplifier l’élaboration de composants de grande taille. La seconde partie de ce mémoire a permis de montrer que différents types de microstructures, présentant des propriétés mécaniques différentes, peuvent être obtenues par simple mélange de poudre. Ceci est possible par l’utilisation d’un traitement thermique adapté, la variation du taux de zircone et grâce à l’ajout de dopants (Si, Ca et Mg) jouant sur la mobilité des joints de grains d’alumine. Lors de l’utilisation de Ca ou Mg, le taux de zircone et la température ont un effet prépondérant sur l’aspect des microstructures, permettant d’obtenir des micro/micro-composites (< 16vol% de zircone et >1500°C) et nano/nano-composites (25vol% de zircone et T < 1500°C). Seul l’ajout conjoint de Si et de Ca pour des échantillons contenant 2,5vol% de zircone permet de conduire à des micro/nano-composites avec une grande proportion de zircone intragranulaire. Les observations sur des composites avec un taux de zircone proche du taux de percolation (16vol%) permettent de mettre en évidence l’ensemble des types de renforcement observés dans la littérature, en fonction de la température et des dopants utilisés. La variété des microstructures obtenues permet de progresser dans le contrôle des microstructures des composites alumine-zircone, mais aussi d’envisager d’autres applications de ces composites en fonction des mécanismes de renforcement observés et de leurs propriétés mécaniques et structurales. / The aim of this work was to elaborate and characterize zirconia toughened alumina composites with different microstructures, using a simple process. These composites are obtained by colloidal process and are dedicated to orthopedic application. ZTA composites offer both higher strength and toughness than alumina, a lower sensitivity to ageing than zirconia, and also a proven biocompatibility. They open the door to component designs not reachable with other, more brittle materials. Nowadays, these composites are the safest for orthopedic implants application, but can still be improved. The first part of our study is dedicated to a numerical modeling of a large femoral head during sintering. It is so possible to obtain a realistic model of thermal and mechanical strain gradient. However, the modeling should be enhanced by a thorough study of the elastic-viscous-plastic behavior of the composite at high temperature. Then some experiments of sintering with various load or pressure and speed should be practice to determine precisely the sintering related strain. The possibility of machining in the pre-sintered state, with the aim of reducing machining costs and simplify the process of large components, is investigated. The second part is focused on the development of various microstructures with specific mechanical properties and reinforcement behaviors. Such structures were achieved by adjusting the amount of zirconia, controlling the grain growth with dopants to improve or inhibit the alumina grain growth (Si, Ca and Mg), and by adjusting the sintering thermal treatment. The use of calcium associated or not with magnesium seems useless as compared to the predominant influence of the zirconia content. Adjusting zirconia amount led to micro-composites (< 16vol% of zirconia and >1500°C) and nano-composites (25vol% of zirconia and < 1500°C). Only Si/Ca co-doped ZTA composites with small amount of zirconia (2.5vol %) leads to almost homogeneous micro/nano composites with a large proportion of intragranular zirconia particles at high temperature. Around the percolation threshold (16vol% of zirconia) all types of reinforcement mechanisms that could be observed in ZTA composites (referred to literature) can be observed, depending on the thermal treatment and the dopants used. The range of microstructures obtained in this study leads us to investigate other applications for these composites depending of its reinforcement behavior and its mechanical and structural properties.

Page generated in 0.0786 seconds