Spelling suggestions: "subject:"nanodraht"" "subject:"nanodrahts""
41 |
Multiskalensimulation des Ladungstransports in Silizium-Nanodraht-Transistoren: Evaluation der Grenzen des Simulationsmodells: Ist die Bestimmung von physikalischen Parameten aus gemessenem Strom-Spannungs-Kennlinien möglich?Eckert, Hagen 05 November 2012 (has links)
Durch Multiskalensimulationen wird der Ladungstransport in nanodrahtbasierten Schottky-Barrieren-Feldeffekt-Transistoren im Materialsystem Ni2Si/Si untersucht. Die Bedingungen an die Genauigkeit der verwendeten Eingangsparameter werden bestimmt und Vorhersagen über optimale Material- und Geräteparameter werden getroffen. Es wird die Frage beantwortet, ob die Bestimmung von physikalischen Parametern aus einzelnen gemessenen Strom-Spannungs-Kennlinie möglich ist. Der Feldeffekt wird durch Berechnungen auf Basis der Finiten-Elemente-Methode und die resultierenden Stromflüsse durch ein quantenmechanisches Transportmodell ermittelt. In der Untersuchung der geometrischen Eingangsparameter wird gezeigt, dass bis auf den Radius des Nanodrahtes die in einem Experiment zu erwartenden Messfehler keinen drastischen Einfluss auf die Strom-Spannungs-Kennlinie haben. Signifikant ist hingegen der Einfluss der Temperatur, der effektiven Ladungsträgermassen und der Höhe der Schottky-Barriere. Da diese drei Eingangsparameter des betrachteten Systems mit relativ großen Ungenauigkeiten behaftet sind, ist die Bestimmung von physikalischen Parametern aus einzelnen gemessenen Strom-Spannungs-Kennlinien auf die erhoffte Weise nicht möglich. Die Arbeit zeigt auch, dass bereits moderate Veränderungen der Arbeitstemperatur einen bedeutenden Einfluss auf die Strom-Spannungs-Kennlinie haben. Für die Konstruktion von Transistoren mit hoher Stromdichte kann anhand der ermittelten Daten die Verkleinerung der aktiven Region durch Oxidation vorgeschlagen werden.:Kurzfassung/Abstract I
Verwendete Symbole IV
Verwendete Parameter VI
Verwendete Abkürzungen VII
1 Motivation 8
2 Grundlagen 9
2.1 Modellbildung und Simulation 9
2.2 Schottky-Diode 10
2.3 Feldeffekt-Transistor 12
2.4 Feldeffekt-Transistor auf der Basis von Silizium-Nanodrähten 13
3 Methoden 17
3.1 Simulationsmodell 17
3.2 Finite-Elemente-Methode 20
3.3 Landauer-Büttiker-Formalismus 21
3.4 Hamiltonoperator 22
3.5 Transmissionsfunktion 23
3.6 Büttiker Sonde 24
4 Ergebnisse und Diskussion 26
4.1 Implementierung des Simulationsprogrammes 26
4.2 Berechnung der Basis-Strom-Spannungs-Kennlinie 31
4.3 Wahl der Simulationsparameter 35
4.4 Abhängigkeit von geometrischen Parametern 41
4.5 Abhängigkeit von physikalischen Parametern 49
5 Zusammenfassung, Schlussfolgerungen und Ausblick 55
Abbildungsverzeichnis 59
Literatur 62 / Charge transport in nanowire-based Schottky-barrier field-effect transistors in the material system Ni2Si/Si is examined by multi-scale simulations. The requirements for the accuracy of the input parameters are determined and predictions about optimum material and device parameters are made. The question is answered, whether the determination of physical parameters from individual measured current-voltage curves is possible? The field effect is described by calculations based on the finite element method and the resulting currents are calculated with a quantum mechanical transport model. In the study of the geometric input parameters it is shown that experimental uncertainties do not drastically affect the current-voltage characteristic, except from the nanowire radius. However, significant is the influence of the temperature, the effective charge carrier mass and the height of the Schottky-barrier. Since these three input parameters are known only with low experimental accuracy for the considered system, the determination of physical parameters from individual measured current-voltage curves is not possible in the expected way. The results also show that moderate changes of the working temperature have a significant influence on the current-voltage characteristic. For the construction of transistors with high current density the reduction of the active region by oxidation is proposed.:Kurzfassung/Abstract I
Verwendete Symbole IV
Verwendete Parameter VI
Verwendete Abkürzungen VII
1 Motivation 8
2 Grundlagen 9
2.1 Modellbildung und Simulation 9
2.2 Schottky-Diode 10
2.3 Feldeffekt-Transistor 12
2.4 Feldeffekt-Transistor auf der Basis von Silizium-Nanodrähten 13
3 Methoden 17
3.1 Simulationsmodell 17
3.2 Finite-Elemente-Methode 20
3.3 Landauer-Büttiker-Formalismus 21
3.4 Hamiltonoperator 22
3.5 Transmissionsfunktion 23
3.6 Büttiker Sonde 24
4 Ergebnisse und Diskussion 26
4.1 Implementierung des Simulationsprogrammes 26
4.2 Berechnung der Basis-Strom-Spannungs-Kennlinie 31
4.3 Wahl der Simulationsparameter 35
4.4 Abhängigkeit von geometrischen Parametern 41
4.5 Abhängigkeit von physikalischen Parametern 49
5 Zusammenfassung, Schlussfolgerungen und Ausblick 55
Abbildungsverzeichnis 59
Literatur 62
|
42 |
Simulation of the electron transport through silicon nanowires and across NiSi2-Si interfacesFuchs, Florian 25 April 2022 (has links)
Die fortschreitenden Entwicklungen in der Mikro- und Nanotechnologie erfordern eine solide Unterstützung durch Simulationen. Numerische Bauelementesimulationen waren und sind dabei
unerlässliche Werkzeuge, die jedoch zunehmend an ihre Grenzen kommen. So basieren sie auf Parametern, die für beliebige Atomanordnungen nicht verfügbar sind, und scheitern für stark verkleinerte Strukturen infolge zunehmender Relevanz von Quanteneffekten.
Diese Arbeit behandelt den Transport in Siliziumnanodrähten sowie durch NiSi2-Si-Grenzflächen. Dichtefunktionaltheorie wird dabei verwendet, um die stabile Atomanordnung und alle für den elektronischen Transport relevanten quantenmechanischen Effekte zu beschreiben.
Bei der Untersuchung der Nanodrähte liegt das Hauptaugenmerk auf der radialen Abhängigkeit der elektronischen Struktur sowie deren Änderung bei Variation des Durchmessers. Dabei zeigt sich, dass der Kern der Nanodrähte für den Ladungstransport bestimmend ist. Weiterhin kann ein Durchmesser von ungefähr 5 nm identifiziert werden, oberhalb dessen die Zustandsdichte im Nanodraht große Ähnlichkeiten mit jener des Silizium-Volumenkristalls aufweist und der Draht somit zunehmend mit Näherungen für den perfekt periodischen Kristall beschrieben werden kann.
Der Fokus bei der Untersuchung der NiSi2-Si-Grenzflächen liegt auf der Symmetrie von Elektron- und Lochströmen im Tunnelregime, welche für die Entwicklung von rekonfigurierbaren Feldeffekttransistoren besondere Relevanz hat. Verschiedene NiSi2-Si-Grenzflächen und Verzerrungszustände werden dabei systematisch untersucht. Je nach Grenzfläche ist die Symmetrie dabei sehr unterschiedlich und zeigt auch ein sehr unterschiedliches Verhalten bei externer Verzerrung.
Weiterhin werden grundlegende physikalische Größen mit Bezug zu NiSi2-Si-Grenzflächen betrachtet. So wird beispielsweise die Stabilität anhand von Grenzflächen-Energien ermittelt. Am stabilsten sind {111}-Grenzflächen, was deren bevorzugtes Auftreten in Experimenten erklärt. Weitere wichtige Größen, deren Verzerrungsabhängigkeit untersucht wird, sind die Schottky-Barrierenhöhe, die effektive Masse der Ladungsträger sowie die Austrittsarbeiten von NiSi2- und
Si-Oberflächen.
Ein Beitrag zur Modellentwicklung numerischer Bauelementesimulationen wird durch einen Vergleich zwischen den Ergebnissen von Dichtefunktionaltheorie-basierten Transportrechnungen und denen eines vereinfachten Models basierend auf der Wentzel-Kramers-Brillouin-Näherung geliefert. Diese Näherung ist Teil vieler numerischer Bauelementesimulatoren und erlaubt die Berechnung des Tunnelstroms basierend auf grundlegenden physikalischen Größen. Der Vergleich
ermöglicht eine Evaluierung des vereinfachten Models, welches anschließend genutzt wird, um den Einfluss der grundlegenden physikalischen Größen auf den Tunneltransport zu untersuchen.:Index of Abbreviations
1. Introduction
2. Silicon Based Devices and Silicon Nanowires
2.1. Introduction
2.2. The Reconfigurable Field-effect Transistor
2.2.1. Design and Functionality
2.2.2. Fabrication
2.3. Overview Over Silicon Nanowires
2.3.1. Geometric Structure
2.3.2. Fabrication Techniques
2.3.3. Electronic Properties
3. Simulation Tools
3.1. Introduction
3.2. Electronic Structure Calculations
3.2.1. Introduction and Basis Functions
3.2.2. Density Functional Theory
3.2.3. Description of Exchange and Correlation Effects
3.2.4. Practical Aspects of Density Functional Theory
3.3. Electron Transport
3.3.1. Introduction
3.3.2. Scattering Theory
3.3.3. Wentzel-Kramers-Brillouin Approximation for a Triangular Barrier
3.3.4. Non-equilibrium Green’s Function Formalism
A. Radially Resolved Electronic Structure and Charge Carrier Transport in Silicon Nanowires
A.1. Introduction
A.2. Model System
A.3. Results and Discussion
A.4. Summary and Conclusions
A.5. Appendix A: Computational Details
A.6. Appendix B: Supplementary Material
A.6.1. Comparison of the Band Gap Between Relaxed and Unrelaxed SiNWs
A.6.2. Band Structures for Some of the Calculated SiNWs
A.6.3. Radially Resolved Density of States for Some of the Calculated SiNWs
B. Electron Transport Through NiSi2-Si Contacts and Their Role in Reconfigurable
Field-effect Transistors
B.1. Introduction
B.2. Model for Reconfigurable Field-effect Transistors
B.2.1. Atomistic Quantum Transport Model to Describe Transport Across the Contact Interface
B.2.2. Simplified Compact Model to Calculate the Device Characteristics
B.3. Results and Discussion
B.3.1. Characteristics of a Reconfigurable Field-effect Transistor
B.3.2. Variation of the Crystal Orientations and Influence of the Schottky Barrier
B.3.3. Comparison to Fabricated Reconfigurable Field-effect Transistors
B.4. Summary and Conclusions
B.5. Appendix: Supplementary Material
B.5.1. Band Structure and Density of States of the Contact Metal
B.5.2. Relaxation Procedure
B.5.3. Total Transmission Through Multiple Barriers
C. Formation and Crystallographic Orientation of NiSi2-Si Interfaces
C.1. Introduction
C.2. Fabrication and characterization methods
C.3. Model System and Simulation Details
C.4. Results and discussion
C.4.1. Atomic structure of the interface
C.4.2. Discussion of ways to modify the interface orientation
C.5. Summary
C.6. Appendix: Supplementary Material
D. NiSi2-Si Interfaces Under Strain: From Bulk and Interface Properties to Tunneling Transport
D.1. Introduction
D.2. Model System and Simulation Approach
D.3. Computational Details
D.3.1. Electronic Structure Calculations (Geometry Relaxations)
D.3.2. Electronic Structure Calculations (Electronic Structure)
D.3.3. Device Calculations
D.4. Tunneling Transport From First-principles Calculations
D.4.1. Evaluation of the Current
D.4.2. Isotropic Strain
D.4.3. Anisotropic Strain
D.5. Transport Related Properties and Effective Modeling Schemes
D.5.1. Schottky Barrier Height
D.5.2. Simplified Transport Model
D.5.3. Models for the Schottky Barrier Height
D.6. Summary and Conclusions
D.7. Appendix: Supplementary Material
D.7.1. Schottky Barriers of the {110} Interface Under Anisotropic Strain
D.7.2. Silicon Band Structure, Electric Field, and Number of Transmission Channels
D.7.3. k∥-resolved Material Properties
D.7.4. Evaluation of the Work Functions and Electron Affinities
D.7.5. Verification of the Work Function Calculation
4. Discussion
5. Ongoing Work and Possible Extensions
6. Summary
Bibliography
List of Figures
List of Tables
Acknowledgements
Selbstständigkeitserklärung
Curriculum Vitae
Scientific Contributions / The ongoing developments in micro- and nanotechnologies require a profound support from simulations. Numerical device simulations were and still are essential tools to support the device development. However, they gradually reach their limits as they rely on parameters, which are not always available, and neglect quantum effects for small structures.
This work addresses the transport in silicon nanowires and through NiSi2-Si interfaces. By using density functional theory, the atomic structure is considered, and all electron transport related quantum effects are taken into account.
Silicon nanowires are investigated with special attention to their radially resolved electronic structure and the corresponding modifications when the silicon diameter is reduced. The charge transport occurs mostly in the nanowire core. A diameter of around 5 nm can be identified, above which the nanowire core exhibits a similar density of states as bulk silicon. Thus, bulk approximations become increasingly valid above this diameter.
NiSi2-Si interfaces are studied with focus on the symmetry between electron and hole currents in the tunneling regime. The symmetry is especially relevant for the development of reconfigurable field-effect transistors. Different NiSi2-Si interfaces and strain states are studied systematically. The symmetry is found to be different between the interfaces. Changes of the symmetry upon external strain are also very interface dependent.
Furthermore, fundamental physical properties related to NiSi2-Si interfaces are evaluated. The stability of the different interfaces is compared in terms of interface energies. {111} interfaces are most stable, which explains their preferred occurrence in experiments. Other properties, whose strain dependence is studied, include the Schottky barrier height, the effective mass of the carriers, and work functions.
A contribution to the development of numerical device simulators will be given by comparing the results from density functional theory based transport calculations and a model based on the Wentzel-Kramers-Brillouin approximation. This approximation, which is often employed in numerical device simulators, offers a relation between interface properties and the tunneling transport. The comparison allows an evaluation of the simplified model, which is then used to investigate the relation between the fundamental physical properties and the tunneling transport.:Index of Abbreviations
1. Introduction
2. Silicon Based Devices and Silicon Nanowires
2.1. Introduction
2.2. The Reconfigurable Field-effect Transistor
2.2.1. Design and Functionality
2.2.2. Fabrication
2.3. Overview Over Silicon Nanowires
2.3.1. Geometric Structure
2.3.2. Fabrication Techniques
2.3.3. Electronic Properties
3. Simulation Tools
3.1. Introduction
3.2. Electronic Structure Calculations
3.2.1. Introduction and Basis Functions
3.2.2. Density Functional Theory
3.2.3. Description of Exchange and Correlation Effects
3.2.4. Practical Aspects of Density Functional Theory
3.3. Electron Transport
3.3.1. Introduction
3.3.2. Scattering Theory
3.3.3. Wentzel-Kramers-Brillouin Approximation for a Triangular Barrier
3.3.4. Non-equilibrium Green’s Function Formalism
A. Radially Resolved Electronic Structure and Charge Carrier Transport in Silicon Nanowires
A.1. Introduction
A.2. Model System
A.3. Results and Discussion
A.4. Summary and Conclusions
A.5. Appendix A: Computational Details
A.6. Appendix B: Supplementary Material
A.6.1. Comparison of the Band Gap Between Relaxed and Unrelaxed SiNWs
A.6.2. Band Structures for Some of the Calculated SiNWs
A.6.3. Radially Resolved Density of States for Some of the Calculated SiNWs
B. Electron Transport Through NiSi2-Si Contacts and Their Role in Reconfigurable
Field-effect Transistors
B.1. Introduction
B.2. Model for Reconfigurable Field-effect Transistors
B.2.1. Atomistic Quantum Transport Model to Describe Transport Across the Contact Interface
B.2.2. Simplified Compact Model to Calculate the Device Characteristics
B.3. Results and Discussion
B.3.1. Characteristics of a Reconfigurable Field-effect Transistor
B.3.2. Variation of the Crystal Orientations and Influence of the Schottky Barrier
B.3.3. Comparison to Fabricated Reconfigurable Field-effect Transistors
B.4. Summary and Conclusions
B.5. Appendix: Supplementary Material
B.5.1. Band Structure and Density of States of the Contact Metal
B.5.2. Relaxation Procedure
B.5.3. Total Transmission Through Multiple Barriers
C. Formation and Crystallographic Orientation of NiSi2-Si Interfaces
C.1. Introduction
C.2. Fabrication and characterization methods
C.3. Model System and Simulation Details
C.4. Results and discussion
C.4.1. Atomic structure of the interface
C.4.2. Discussion of ways to modify the interface orientation
C.5. Summary
C.6. Appendix: Supplementary Material
D. NiSi2-Si Interfaces Under Strain: From Bulk and Interface Properties to Tunneling Transport
D.1. Introduction
D.2. Model System and Simulation Approach
D.3. Computational Details
D.3.1. Electronic Structure Calculations (Geometry Relaxations)
D.3.2. Electronic Structure Calculations (Electronic Structure)
D.3.3. Device Calculations
D.4. Tunneling Transport From First-principles Calculations
D.4.1. Evaluation of the Current
D.4.2. Isotropic Strain
D.4.3. Anisotropic Strain
D.5. Transport Related Properties and Effective Modeling Schemes
D.5.1. Schottky Barrier Height
D.5.2. Simplified Transport Model
D.5.3. Models for the Schottky Barrier Height
D.6. Summary and Conclusions
D.7. Appendix: Supplementary Material
D.7.1. Schottky Barriers of the {110} Interface Under Anisotropic Strain
D.7.2. Silicon Band Structure, Electric Field, and Number of Transmission Channels
D.7.3. k∥-resolved Material Properties
D.7.4. Evaluation of the Work Functions and Electron Affinities
D.7.5. Verification of the Work Function Calculation
4. Discussion
5. Ongoing Work and Possible Extensions
6. Summary
Bibliography
List of Figures
List of Tables
Acknowledgements
Selbstständigkeitserklärung
Curriculum Vitae
Scientific Contributions
|
43 |
Growth and properties of GaAs/(In,Ga)As core-shell nanowire arrays on SiKüpers, Hanno 07 September 2018 (has links)
Diese Arbeit präsentiert Untersuchungen zum Wachstum von GaAs Nanodrähten (NWs) und (In,Ga)As Hüllen mittels Molekularstrahlepitaxie (MBE) mit sekundärem Fokus auf den optischen Eigenschaften solcher Kern-Hülle Strukturen. Das ortsselektive Wachstum von GaAs NWs auf mit Oxidmasken beschichteten Si Substraten wird untersucht, wobei der entscheidende Einfluss der Oberflächenpreparation auf die vertikale Ausbeute von NW Feldern aufgedeckt wird. Basierend auf diesen Ergebnissen wird ein zweistufiger Wachstumprozess präsentiert der es ermöglicht NWs mit dünner und gerade Morphologie zu erhalten ohne die vertikale Ausbeute zu verringern. Für die detaillierte Beschreibung der NW Form wird ein Wachstumsmo- dell entwickelt, das die Einflüsse der Veränderung der Tropfen Größe während des Wachstums sowie direktes des Wachstums auf den NW Seitenwänden umfassend beschreibt. Dieses Wachstumsmodell wird benutzt für die Vorhersage der NW Form über einen großen Parameterraum um geeignete Bedingungen für die Realisierung von erwünschten NW Formen und Dimensionen zu finden. Ausgehend von diesen NW Feldern werden die optimalen Parameter für das Wachstum von (In,Ga)As Hüllen untersucht und wir zeigen, dass die Anordnung der Materialquellen im MBE System die Materialqualität entscheidend beeinflusst. Die dreidimensionale Struktur der NWs in Kombination mit der Substratrotation und der Richtungsabhängigkeit der Materialflüsse in MBE resultieren in unterschiedlichen Flusssequenzen auf der NW Seitenfacette welche die Wachstumsdynamik und infolgedessen die Punktde- fektdichte bestimmen. An Proben mit optimaler (In,Ga)As Hülle und äußerer GaAs Hülle zeigen wir, dass thermionische Emission mit anschließender nichtstrahlender Rekombination auf der Oberfläche zu einem starken thermischen Verlöschen der Lumineszenz Intensität führt, welches durch das Hinzufügen einer AlAs Barrierenhülle zur äußeren Hüllenstruktur erfolgreich unterdrückt werden kann. Abschließend wird ein Prozess präsentiert der das ex-situ Tempern von NWs bei hohen Temperaturen ermöglicht, was in der Reduzierung von Inhomogenitäten in den (In,Ga)As Hüllenquantentöpfen führt und in beispiellosen optischen Eigenschaften resultiert. / This thesis presents an investigation of the growth of GaAs nanowires (NWs) and (In,Ga)As shells by molecular beam epitaxy (MBE) with a second focus on the optical properties of these core-shell structures. The selective-area growth of GaAs NWs on Si substrates covered by an oxide mask is investigated, revealing the crucial impact of the surface preparation on the vertical yield of NW arrays. Based on these results, a two-step growth approach is presented that enables the growth of thin and untapered NWs while maintaining the high vertical yield. For a detailed quantitative description of the NW shape evolution, a growth model is derived that comprehensively describes the NW shape resulting from changes of the droplet size during elongation and direct vapour-solid growth on the NW sidewalls. This growth model is used to predict the NW shape over a large parameter space to find suitable conditions for the realization of desired NW shapes and dimensions. Using these GaAs NW arrays as templates, the optimum parameters for the growth of (In,Ga)As shells are investigated and we show that the locations of the sources in the MBE system crucially affect the material quality. Here, the three-dimensional structure of the NWs in combination with the substrate rotation and the directionality of material fluxes in MBE results in different flux sequences on the NW sidefacets that determine the growth dynamics and hence, the point defect density. For GaAs NWs with optimum (In,Ga)As shell and outer GaAs shell, we demonstrate that thermionic emission with successive nonradiative recombination at the surface leads to a strong thermal quenching of the luminescence intensity, which is succesfully suppressed by the addition of an AlAs barrier shell to the outer shell structure. Finally, a process is presented that enables the ex-situ annealing of NWs at high temperatures resulting in the reduction of alloy inhomogeneities in the (In,Ga)As shell quantum wells and small emission linewidths.
|
44 |
Investigation and comparison of GaN nanowire nucleation and growth by the catalyst-assisted and self-induced approachesCheze, Caroline 24 February 2011 (has links)
Diese Arbeit befasst sich mit der Keimbildung und den Wachstumsmechanismen von GaN-Nanodrähten (NWs), die mittels Molekularstrahlepitaxie (MBE) hergestellt wurden. Die Hauptneuheiten dieser Studie sind der intensive Gebrauch von in-situ Messmethoden und der direkte Vergleich zwischen katalysatorfreien und katalysatorinduzierten NWs. In der MBE bilden sich GaN-NWs auf Silizium ohne Katalysator. Auf Saphir dagegen wachsen NWs unter den gleichen Bedingungen nur in der Anwesenheit von Ni-Partikeln. Die Nukleationsprozesse sind für beide Ansätze fundamental verschieden. In dem katalysatorinduzierten Ansatz reagiert Ga stark mit den Ni-Keimen, deren Kristallstruktur für das Nanodraht-Wachstum entscheidend sind, während in dem katalysatorfreien Ansatz bildet N eine Zwischenschicht mit Si vor der ausgeprägten GaN-Nukleation. Mittels beider Ansätze wachsen einkristalline wurtzite GaN-NWs in Ga-polarer Richtung. Allerdings sind unter denselben Wachstumsbedingungen die katalysatorinduzierten NWs länger als die katalysatorfrei gewachsenen und enthalten viele Stapelfehler. Im Vergleich sind die katalysatorfreien größtenteils defektfrei und ihre Photolumineszenz ist viel intensiver als jene der katalysatorinduzierten NWs. Alle diese Unterschiede können auf den Katalysator zurückgefürt werden. Die Ni-Partikel sammeln die an den Nanodraht-Spitzen ankommenden Ga-Atome ef?zienter ein als die unbedeckte oberste Facette im katalysatorfreien Fall. Außerdem können Stapelfehler sowohl aus der zusätzlichen Festkörperphase des Ni-Katalysators als auch aus der Verunreinigung der NWs mit Katalysatormaterial resultieren. Solch eine Kontaminierung würde schließlich nicht-strahlende Rekombinationszentren verursachen. Somit mag die Verwendung von Katalysatorkeimen zusätzliche Möglichkeiten bieten, das Wachstum von NWs zu kontrollieren. Jedoch sind sowohl die strukturellen als auch die optischen Materialeigenschaften der katalysatorfreien NWs überlegen. / This work focuses on the nucleation and growth mechanisms of GaN nanowires (NWs) by molecular beam epitaxy (MBE). The main novelties of this study are the intensive employment of in-situ techniques and the direct comparison of self-induced and catalyst-induced NWs. On silicon substrates, GaN NWs form in MBE without the use of any external catalyst seed. On sapphire, in contrast, NWs grow under identical conditions only in the presence of Ni seeds. The processes leading to NW nucleation are fundamentally different for both approaches. In the catalyst-assisted approach, Ga strongly reacts with the catalyst Ni particles whose crystal structure and phases are decisive for the NW growth, while in the catalyst-free approach, N forms an interfacial layer with Si before the intense nucleation of GaN starts. Both approaches yield monocrystalline wurtzite GaN NWs, which grow in the Ga-polar direction. However, the catalyst-assisted NWs are longer than the catalyst-free ones after growth under identical conditions, and they contain many stacking faults. By comparison the catalyst-free NWs are largely free of defects and their photoluminescence is much more intense than the one of the catalyst-assisted NWs. All of these differences can be explained as effects of the catalyst. The seed captures Ga atoms arriving at the NW tip more efficiently than the bare top facet in the catalyst-free approach. In addition, stacking faults could result from both the presence of the additional solid phase constituted by the catalyst-particles and the contamination of the NWs by the catalyst material. Finally, such contamination would generate non-radiative recombination centers. Thus, the use of catalyst seeds may offer an additional way to control the growth of NWs, but both the structural and the optical material quality of catalyst-free NWs are superior.
|
45 |
Luminescence of group-III-V nanowires containing heterostructuresLähnemann, Jonas 30 July 2013 (has links)
In dieser Dissertation wird die spektrale und örtliche Verteilung der Lumineszenz von Heterostrukturen in selbstorganisierten Nanodrähten (ND) mit Hilfe von Kathodolumineszenz-Spektroskopie (KL) im Rasterelektronenmikroskop untersucht. Diese Methode wird ergänzt durch Messungen der kontinuierlichen und zeitaufgelösten Mikro-Photolumineszenz. Drei verschiedene Strukturen werden behandelt: (i) GaAs-ND bestehend aus Segmenten der Wurtzit (WZ) bzw. Zinkblende (ZB) Kristallstrukturen, (ii) auf GaN-ND überwachsene GaN-Mikrokristalle und (iii) (In,Ga)N Einschlüsse in GaN-ND. Die gemischte Kristallstruktur der GaAs-ND führt zu komplexen Emissionsspektren. Dabei wird entweder ausschließlich Lumineszenz bei Energien unterhalb der ZB Bandlücke, oder aber zusätzlich bei höheren Energien, gemessen. Diese Differenz wird durch unterschiedliche Dicken der ZB und WZ Segmente erklärt. Messungen bei Raumtemperatur zeigen, dass die Bandlücke von WZ-GaAs mindestens 55 meV größer als die von ZB-GaAs ist. Die Lumineszenz-Spektren der GaN-Mikrokristalle enthalten verschiedene Emissionslinien, die auf Stapelfehler (SF) zurückzuführen sind. SF sind ZB Quantentöpfe verschiedener Dicke in einem WZ-Kristall und es wird gezeigt, dass ihre Emissionsenergie durch die spontane Polarisation bestimmt wird. Aus einer detaillierten statistischen Analyse der Emissionsenergien der verschiedenen SF-Typen werden Emissionsenergien von 3.42, 3.35 und 3.29 eV für die intrinsischen (I1 und I2) sowie für extrinsische SF ermittelt. Aus den entsprechenden Energiedifferenzen wird -0.022C/m² als experimenteller Wert für die spontane Polarisation von GaN bestimmt. Die Bedeutung sowohl der piezoelektrischen Polarisation als auch die der Lokalisierung von Ladungsträgern wird für (In,Ga)N-Einschlüsse in GaN-ND gezeigt. Hierbei spielt nicht nur die Lokalisierung von Exzitonen, sondern auch die individueller Elektronen und Löcher an unterschiedlichen Potentialminima eine Rolle. / In this thesis, the spectral and spatial luminescence distribution of heterostructures in self-induced nanowires (NWs) is investigated by cathodoluminescence spectroscopy in a scanning electron microscope. This method is complemented by data from both continuous and time-resolved micro-photoluminescence measurements. Three different structures are considered: (i) GaAs NWs containing segments of the wurtzite (WZ) and zincblende (ZB) polytypes, (ii) GaN microcrystals overgrown on GaN NWs, and (iii) (In,Ga)N insertions embedded in GaN NWs. The polytypism of GaAs NWs results in complex emission spectra. The observation of luminescence either exclusively at energies below the ZB band gap or also at higher energies is explained by differences in the distribution of ZB and WZ segment thicknesses. Measurements at room temperature suggest that the band gap of WZ GaAs is at least 55 meV larger than that of the ZB phase. The luminescence spectra of the GaN microcrystals contain distinct emission lines associated with stacking faults (SFs). SFs essentially constitute ZB quantum wells of varying thickness in a WZ matrix and it is shown that their emission energy is dominated by the spontaneous polarization. Through a detailed statistical analysis of the emission energies of the different SF types, emission energies of 3.42, 3.35 and 3.29 eV are determined for the intrinsic (I1 and I2) as well as the extrinsic SFs, respectively. From the corresponding energy differences, an experimental value of -0.022C/m² is derived for the spontaneous polarization of GaN. The importance of both carrier localization and the quantum confined Stark effect induced by the piezoelectric polarization is shown for the luminescence of (In,Ga)N insertions in GaN NWs. Not only localized excitons, but also electrons and holes individually localized at different potential minima contribute to the observed emission.
|
46 |
Ab initio Beschreibung der elektronischen Struktur und der Transporteigenschaften von metallischen Nanodrähten / Ab initio description of the electronic structure and the transport properties of metallic nanowiresOpitz, Jörg 16 August 2002 (has links) (PDF)
Ab initio calculations of the electronic structure of freestanding Cu and Na nanowires with a diameter of few atoms are presented. The calculations are based on density functional theory in local density approximation using a Screened Korringa-Kohn-Rostoker-Green's function method. The method was extended for the description of quasi-onedimensional systems. Translational invariance in direction of the wire is assumed. The dependence of the bandstructure and the density of states from thickness and shape of the cross-section is discussed. The quantum confinement of the eigenstates is analysed. By comparing the results of the Na and Cu wires, the influence of the d-electrons is shown. Based on the Landauer theory of transport the conductance is obtained within a Green's function formalism. The numerical description of the conductance is tested for ideal translationally invariant Na and Cu wires. The influence of substitutional transition metal impurities on the electronic structure and the conductance of the 2x2 Cu wire is studied. A spin-dependent discussion is given for magnetic impurities. / Es werden ab initio Berechnungen der elektronischen Struktur freistehender Na- und Cu-Nanodrähte mit einem Durchmesser von wenigen Atomen präsentiert. Für die Berechnung wird eine Screened Korringa-Kohn-Rostoker-Grennsche Funktionsmethode genutzt, die auf der Spindichtefunktionaltheorie in lokaler-Spindichtenäherung basiert. Diese Methode wurde für die Beschreibung von quasieindimensionalen Systemen erweitert. Die Drähte werden als translationsinvariant in Drahtrichtung beschrieben. Es wird die Abhängigkeit der Bandstruktur und der Zustandsdichte von der Dicke und der Form des Querschnitts diskutiert. Das Quantenconfinement der Eigenzustände wird analysiert. Durch den Vergleich der Resultate für den Na- und den Cu-Draht kann der Einfluss der d-Elektronen gezeigt werden. Ausgehend von der Landauer-Theorie des Transports wird der Leitwert im Rahmen eines Greenschen Funktions-Formalismus berechnet. Diese neue numerische Beschreibung des Leitwertes wird an idealen translationsinvarianten Drähten getestet. Es wird der Einfluss von substitutionellen 3d-Übergangsmetall-Störungen auf die elektronische Struktur und auf den Leitwert von 2x2-Cu-Drähten studiert. Im Fall magnetischer Defekte wird dieser Einfluss spinabhängig diskutiert.
|
47 |
Untersuchung von Oxidationsprozessen an Siliziumnanodrähten mittels MolekulardynamikHeinze, Georg 04 January 2018 (has links) (PDF)
Siliziumnanodrähte (SiNWs) bieten eine aussichtsreiche Grundlage zur Entwicklung neuartiger nanoelektronischer Bauelemente, wie Feldeffekttransistoren oder Sensoren. Dabei ist insbesondere die Oxidation der Drähte interessant, weil diese weitreichenden Einfluss auf die elektronischen Eigenschaften der Bauelemente hat, die aus den SiNWs gefertigt werden. Die Größe der untersuchten Strukturen erfordert eine atomistische Analyse des Oxidationsprozesses.
In der vorliegenden Arbeit wird der bisher wenig verstandene Beginn der Oxidation dünner Drähte molekulardynamisch simuliert, wobei als Potential ein reaktives Kraftfeld dient. Dabei wird sich intensiv mit dem Transfer elektrischer Ladungen zwischen Atomen unterschiedlicher Elektronegativitäten während der Simulationen auseinandergesetzt. Desweiteren werden Strukturen, die während der Oxidation von SiNWs der Orientierungen <100> und <110> bei Temperaturen von 300 K und 1200 K entstehen, untersucht. Ein Fokuspunkt dieser Untersuchungen ist die Analyse der Anzahl am Draht adsorbierter Sauerstoffatome während der frühen Oxidationsphase.
Darüber hinaus wird die Dichte der entstehenden Strukturen beleuchtet. Dies geschieht mit einer hohen radialen Auflösung und erstmalig während der gesamten Simulation. Hierbei zeigt sich, dass während des Übergangs von kristallinem Silizium zu amorphem Siliziumdioxid zwischen den Siliziumatomen Sauerstoff eingelagert wird, die Kristallstruktur des Siliziums sich zunächst jedoch noch nicht auflöst. Dadurch entsteht ein charakteristisches Muster hoher und niedriger Dichten, das von der ursprünglichen Kristallstruktur des SiNW abhängt.
|
48 |
Vertically Integrated Reconfigurable Nanowire ArraysBaldauf, Tim, Heinzig, André, Mikolajick, Thomas, Weber, Walter M. 26 November 2021 (has links)
This letter discusses a feasible variant of vertically integrated reconfigurable field effect transistors (RFET) based on top-down nanowires. The structures were studied by 3-D device simulations. Subdividing the structure into two vertical pillars allows a lean technological realization as well as simple access to the electrodes. In addition of enabling p- and n-FET operations like a horizontal RFET, the device delivers higher performance. We show that by the integration of additional vertical pillars and select gates, a higher device functionality and flexibility in interconnection are provided.
|
49 |
Ab initio Beschreibung der elektronischen Struktur und der Transporteigenschaften von metallischen NanodrähtenOpitz, Jörg 02 September 2002 (has links)
Ab initio calculations of the electronic structure of freestanding Cu and Na nanowires with a diameter of few atoms are presented. The calculations are based on density functional theory in local density approximation using a Screened Korringa-Kohn-Rostoker-Green's function method. The method was extended for the description of quasi-onedimensional systems. Translational invariance in direction of the wire is assumed. The dependence of the bandstructure and the density of states from thickness and shape of the cross-section is discussed. The quantum confinement of the eigenstates is analysed. By comparing the results of the Na and Cu wires, the influence of the d-electrons is shown. Based on the Landauer theory of transport the conductance is obtained within a Green's function formalism. The numerical description of the conductance is tested for ideal translationally invariant Na and Cu wires. The influence of substitutional transition metal impurities on the electronic structure and the conductance of the 2x2 Cu wire is studied. A spin-dependent discussion is given for magnetic impurities. / Es werden ab initio Berechnungen der elektronischen Struktur freistehender Na- und Cu-Nanodrähte mit einem Durchmesser von wenigen Atomen präsentiert. Für die Berechnung wird eine Screened Korringa-Kohn-Rostoker-Grennsche Funktionsmethode genutzt, die auf der Spindichtefunktionaltheorie in lokaler-Spindichtenäherung basiert. Diese Methode wurde für die Beschreibung von quasieindimensionalen Systemen erweitert. Die Drähte werden als translationsinvariant in Drahtrichtung beschrieben. Es wird die Abhängigkeit der Bandstruktur und der Zustandsdichte von der Dicke und der Form des Querschnitts diskutiert. Das Quantenconfinement der Eigenzustände wird analysiert. Durch den Vergleich der Resultate für den Na- und den Cu-Draht kann der Einfluss der d-Elektronen gezeigt werden. Ausgehend von der Landauer-Theorie des Transports wird der Leitwert im Rahmen eines Greenschen Funktions-Formalismus berechnet. Diese neue numerische Beschreibung des Leitwertes wird an idealen translationsinvarianten Drähten getestet. Es wird der Einfluss von substitutionellen 3d-Übergangsmetall-Störungen auf die elektronische Struktur und auf den Leitwert von 2x2-Cu-Drähten studiert. Im Fall magnetischer Defekte wird dieser Einfluss spinabhängig diskutiert.
|
50 |
Elektrische Charakterisierung PLD-gewachsener Zinkoxid-NanodrähteZimmermann, Gregor 14 October 2010 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der elektrischen Charakterisierung von Zinkoxid-Nanodrähten, die mittels gepulster Laserablation (PLD) hergestellt wurden.
Ausgehend von den so generierten ZnO-Nanodraht-Ensembles werden Methoden zu deren elektrischer Untersuchung diskutiert und auf praktische Anwendbarkeit hin verglichen. Die entwickelten Methoden werden auf Ensembles von auf n-leitenden ZnO- und ZnO:Ga-Dünnschichten aufgewachsenen Phosphor-dotierten ZnO-Nanodrähten angewendet. Deren reproduzierbares, in Strom–Spannungs- (I–U-) Kennlinien beobachtetes diodenartiges Verhalten wird genauer beleuchtet.
Im Zusammenhang mit der elektrischen Charakterisierung einzelner ZnO-Nano-drähte werden experimentelle Methoden zur Vereinzelung und zur Kontaktierung der vereinzelten ZnO-Nanodrähte diskutiert. Dabei werden sowohl etablierte Methoden wie Elektronenstrahllithographie (EBL) als auch neue Techniken wie elektronen- und ionenstrahlinduzierte Deposition (EBID/IBID) und Strom–Spannungs-Rastersondenmikroskopie (I-AFM) behandelt und ihre Eignung für eingehende elektrische Untersuchungen und reproduzierbare Messungen analysiert.
Die geeignetsten Methoden werden schließlich eingesetzt, um spezifischen Widerstand sowie Ladungsträgermobilität und -dichte sowohl in nominell undotierten als auch in Aluminium-dotierten ZnO-Nanodrähten zu untersuchen und zu vergleichen. In der Ableitung der physikalischen Materialparameter aus den Messdaten wird dabei besonderes Augenmerk auf die Einbeziehung der geometrischen Besonderheiten der Nanodrähte gegenüber Volumenmaterial- und Dünnschichtproben gelegt. Im Zuge dessen wird unter anderem ein Modell für den elektrischen Widerstand in Nanodrähten mit ihrer Länge nach veränderlichem Querschnitt abgeleitet.
|
Page generated in 0.0469 seconds