• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 10
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 41
  • 13
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Fabrication and Characterization of Nano-FET Biosensors for Studying Osteocyte Mechanotransduction

Li, Jason 25 August 2011 (has links)
Nano-FET biosensors are an emerging nanoelectronic technology capable of real-time and label-free quantification of soluble biological molecules. This technology promises to enable novel in vitro experimental approaches for investigating complex biological systems. In this study, we first explored osteocyte mechanosensitivity under different mechanical stimuli and found that osteocytes are exquisitely sensitive to different oscillatory fluid flow conditions. We therefore aimed to characterize protein-mediated intercellular communication between mechanically-stimulated osteocytes and other bone cell populations in vitro to elucidate the underlying mechanisms of load-induced bone remodeling. To this end, we devised a novel nano-manipulation based fabrication method for manufacturing nano-FET biosensors with precisely controlled device parameters, and further investigated the effect of these parameters on sensor performance.
22

Micro/Nanomanipulation basée sur un Microscope à Force Atomique

Acosta Mejía, Juan Camilo 16 December 2011 (has links) (PDF)
A l'échelle nanoscopique, un problème scientifique fondamental réside dans la difficulté de manipuler de façon interactive et répétable un nano-objet. Cette difficulté est un frein majeur pour des applications comme les nanotransistors, les nanosystèmes ou les futurs NEMS (Nano Electro Mechanical System). Ces dispositifs émergents sont ainsi ralentis dans leur cadre expérimental. Cette thèse s'inscrit dans la continuité des recherches développées au sein de l'équipe de microrobotique de l'ISIR. Elle se focalise sur l'exploitation de capteurs d'effort pour la manipulation contrôlée à plusieurs doigts actifs. Le microscope à force atomique est utilisé pour ses propriétés de capteur d'effort. Dans un premier temps, un préhenseur composé de deux doigts indépendants avec mesures des forces d'intercation a été conçue. Avec ce système original, des micromanipulations en trois dimensions de microsphères ont été réalisée avec succès dans l'air, en mesurant de façon continue les efforts d'interaction. Ce système a aussi été utilisé pour saisir et déposer des nanofils afin de former des nanocroix, ces dernières étant des nanostructures émergentes pour la fabrication, par jonctions, de nanotransistors. Par la suite, des oscillateurs en quartz ont été utilisés pour la caractérisation de nanostructures, avec retour d'effort dy- namique. Le comportement non-linéaire en raideur de nanohélices lors de l'élongation a été caractérisé pour la première fois sur la totalité de la plage. Enfin, des sondes en quartz de haute fréquence ont été exploitées pour augmenter la vitesse d'acquisition d'images de l'AFM. De cette manière, la tâche de manipulation et d'imagerie en parallèle sous AFM a été optimisée et de nombreuses applications sont maintenant envisagées.
23

Manipulation dans le micro/nanomonde : dispositif haptique préhensile

Nigues, Antoine 06 September 2012 (has links) (PDF)
Le rayonnement synchrotron et la microscopie à sondes locales (SPM) sont deux des techniques les plus utilisées pour étudier les propriétés physiques et chimiques de nanostructures. Le couplage de ces deux techniques est prometteur pour les nanosciences en leur ouvrant de nouveaux horizons. D'un point de vue expérimental ce couplage est un défi exaltant et a déjà prouvé ses capacités par la combinaison de la Microscopie à Force Atomique (AFM) et de la diffraction de Rayons-X pendant le projet X-tip, qui, grâce au développement d'un microcope à force atomique embarqué sur une lugne de lumière synchrotron a permis l'étude du module de Young de microplots de germanium en procédant simulatanément à son indentation et à son analyse par diffraction. Cependant, cette configuration ne permet pas de manipuler en trois dimensions (3D). Le but ultime, pour notre nano-manipulateur est de manipuler en 3D avec un contrôle permanent des nano-forces exercées sur l'objet sous un faisceau d'analyse (rayon X, LASER). Le premier chapitre s'attarde donc sur les senseurs qui devront rendre compte des interactions à l'échelle nanométrique et permettre la saisie d'un objet individuel. Après un tour d'horizon de différentes techniques de micro/nanomanipulation disponibles à ce jour (micro-préhenseurs mécaniques basés sur la technologie MEMS, pinces optiques, préhenseurs basés sur la microscopie à force atomique conventionnelle) et devant les contraintes qu'implique le couplage d'un tel système avec les expériences synchrotron, le choix des oscillateurs à quartz (Diapason et LER) en tant que senseurs est expliqué. La microscopie à force atomique en générale et le fonctionnement particulier de ces oscillateurs sont décrits. Dans le second chapitre le développement instrumental de notre station de nanomanipulation est détaillé et notamment : Comment mettre en place ce type de résonateurs et la pointe associée pour réaliser à la fois l'imagerie AFM de l'échantillon et la préhension de l'objet? Comment contrôler le positionnement grossier et fin des trois éléments d'une nanomanipulation? Enfin le système haptique ERGOS et son couplage avec notre montage est décrit. Dans le dernier chapitre, deux types d'expériences sont présentés : le premier ne fait intervenir que notre montage piloté classiquement par ordinateur et montre ses capacités à réaliser la préhension d'objets micrométriques de manière contrôlée. Le second fait intervenir le couplage entre notre montage et le système haptique pour réaliser l'exploration rapide d'un échantillon ainsi que la localisation et la reconnaissance de forme d'objet sub-micronique. Ces expériences rendent compte des capacités de ce couplage à transmettre directement à un utilisateur les interactions à l'échelle nanométrique ainsi que la possibilité par l'intermédiaire de cette interface de réaliser des tâches complexes : manipulation sur une surface, reconnaissance de forme, et suivi de contour.
24

Nanomanipulação e caracterização de nano-objetos individuais por experimentos in situ de microscopia eletrônica / Nanomanipulation and characterization of individual nano-objects for in situ experiments of electron microscopy

Nakabayashi, Denise Basso 23 March 2007 (has links)
Orientador: Daniel Mario Ugarte / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-08T03:21:06Z (GMT). No. of bitstreams: 1 Nakabayashi_DeniseBasso_D.pdf: 11254474 bytes, checksum: 322d16fa27f12c3eba14b8083c744b09 (MD5) Previous issue date: 2007 / Resumo: Há grandes expectativas de que, no futuro, componentes de alta tecnologia sejam baseados em novas e inesperadas propriedades físicas e químicas de objetos nanométricos. Muitas aplicações exigem que nano-objetos sejam posicionados precisamente em áreas bem definidas de um componente. Entretanto, os métodos estabelecidos de manipulação física usados na escala macroscópica não são aplicáveis na escala nanométrica. Muitas questões continuam em aberto e os avan»cos no estudo de nanossistemas são lentos. Muitos experimentos tem explorado a manipulação física usando microscopias de força atômica (AFM) e de tunelamento (STM), mas, nestes métodos, manipulação e observação não podem ser realizadas simultaneamente. Os microscópios eletrônicos de varredura (SEM) e de transmissão (TEM) são equipamentos essenciais no estudo de nano-objetos devido µa sua alta resolução e µa possibilidade de observar os movimentos realizados in situ em tempo real. Unindo esta técnica ao uso de nanomanipuladores, obtemos uma ferramenta poderosa para manipular e caracterizar nano-objetos. Existem diversos nanomanipuladores comerciais que operam em SEMs. Entretanto, o custo destes instrumentos é elevado, e os mesmos ficam restritos a grandes centros de pesquisa. Nesta tese, descrevemos o desenho, construção e aplicação de nanomanipuladores com uma ou duas pontas de prova, cujos sistemas são baseados em mecânica simples e materiais de baixo custo. Estes sistemas operam dentro de um SEM equipado com um canhão por emissão de campo (FEG-SEM, JSM-6330F, resolução nominal 1.5 nm a 25 kV). Os movimentos grosseiros são baseados em um sistema elásticos (um eixo de movimento) e em uma modificação inovadora deste sistema. Em tal modificação, dois sistemas elásticos são acoplados, o que gera movimentos em dois eixos. Quanto aos movimentos finos, um conjunto de elementos piezoelétricos é responsável pelo deslocamento preciso em três eixos independentes de cada ponta de prova. O porta-amostra possui um grande deslocamento (15 mm), o que nos permite trabalhar com várias amostras em um mesmo experimento. Os instrumentos desenvolvidos permitem uma grande variedade de experimentos de nanomanipulação e nanocaracterização, incluindo a medicão de correntes e a aplicação de voltagens. Os sistemas foram usados em diversos experimentos, tais como: a) fabricação de pontas de AFM de alta razão de aspecto baseadas em nanotubos de carbono multi-camadas; b) coletar, mover e posicionar nanofios semicondutores (100 - 300 nm de diâmetro, microns de comprimento) em contatos elétricos pré-definidos ou em áreas específicas de uma amostra; c) fabricação e caracterização elétrica de dispositivo eletrônico baseado em nanofios semi-condutores; d) caracterização das propriedades mecânicas de nano-objetos unidimensionais, como nanotubos de carbono e nanofios; etc. Finalmente, nossos resultados de manipulação demonstram que existem muitas oportunidades para a aplicação de manipulação física no método "bottom-up"em nanotecnologia / Abstract: It is expected that, in the future, high-technology devices should be based on new and unexpected physical and chemical properties of nanometric objects. Many applications require nano-objects to be selectively positioned at well-defined positions of a device. However, the well-established methods of physical manipulation used in the macroscopic scale are not applicable in nanoscale. Here, there are lots of open questions and the progress is still rather slow. Several experiments have exploited physical manipulation using atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), but, in these techniques, manipulation and observation can not be performed simultaneously. The scanning (SEM) and transmission (TEM) electron microscopes are essential equipments for studying nano-objects due to their high resolution and to the possibility of observing performed movements in real time. Those techniques, together with the use of nanomanipulators, are powerful tools to manipulate and characterize nano-objects. There are several commercial nanomanipulators for SEMs. However, the price of these instruments is reasonably high, and they become restricted to a few research groups. In this work, we report the development and applications of home-made nanomanipulators (with one or two probe tips) whose systems are based on simple mechanics and on low-cost materials. They operate inside a FEG-SEM (JSM-6330F, 1.5 nm nominal resolution at 25 kV). The coarse movements rely on parallel guiding spring based mechanics (one axis of movement) and on two overlapped parallel guiding spring based mechanics (two axes of movement). The precise movements are due to an ensemble of piezoelectric elements that has three independent axes of movement for each probe tip. The sample support has a large range (15 mm) on one axis, which allows working with several samples during the same experiment. The instruments are suitable for a wide spectrum of nanomanipulation and nanocharacterization experiments, including measuring currents and applying voltages. The systems have been used for a variety of applications, such as: a) fabricating high aspect-ratio AFM tips based on multi-walled carbon nanotubes; b) collecting, moving, and positioning semiconductor nanowires (100 - 300 nm in diameter, microns in length) on predefined electrical contacts or special sample sites; c) fabrication and electrical characterization of an electronic device based on semiconductor nanowires; d) characterization of mechanical properties of one-dimensional nano-objects, as carbon nanotubes and nanowires; etc. Brie°y, our manipulation results demonstrate that there are plenty of opportunities for applications of physical manipulation in the bottom-up approach to nanotechnology / Doutorado / Física da Matéria Condensada / Doutor em Ciências
25

Analysis of Trace Amounts of Adulterants Found in Powders/Supplements Utilizing Direct Inject, Nanomanipulation, and Mass Spectrometry

Nnaji, Chinyere 08 1900 (has links)
The regulations of many food products in the United States have been made and followed very well but unfortunately some products are not put under such rigorous standards as others. This leads to products being sold, that are thought to be healthy, but in reality contain unknown ingredients that may be hazardous to the consumers. With the use of several instrumentations and techniques the detection, characterization and identification of these unknown contaminates can be determined. Both the AZ-100 and the TE2000 inverted microscope were used for visual characterizations, image collection and to help guide the extraction. Direct analyte-probed nanoextraction (DAPNe) technique and nanospray ionization mass spectrometry (NSI-MS) was the technique used for examination and identification of all adulterants. A Raman imaging technique was than introduced and has proven to be a rapid, non-destructive and distinctive way to localize a specific adulterant. By compiling these techniques then applying them to the FDA supplied test samples three major adulterants were detected and identified.
26

Lipidomic Analysis of Single Cells and Organelles Using Nanomanipulation Coupled to Mass Spectrometry

Bowman, Amanda 05 1900 (has links)
The capability to characterize disease states by way of determining novel biomarkers has led to a high demand of single cell and organelle analytical methodologies due to the unexpected heterogeneity present in cells of the same type. Lipids are of particular interest in the search for biomarkers due to their active roles in cellular metabolism and energy storage. Analyzing localized lipid chemistry from individual cells and organelles is challenging however, due to low analyte volume, limited discriminate instrumentation, and common requirements of separation procedures and expenditure of cell sample. Using nanomanipulation in combination with mass spectrometry, individual cells and organelles can be extracted from tissues and cultures in vitro to determine if heterogeneity at the cellular level is present. The discriminate extraction of a single cell or organelle allows the remainder of cell culture or tissue to remain intact, while the high sensitivity and chemical specificity of mass spectrometry provides structural information for limited volumes without the need for chromatographic separation. Mass analysis of lipids extracted from individual cells can be carried out in multiple mass spectrometry platforms through direct-inject mass spectrometry using nanoelectrospray-ionization and through matrix-assisted laser/desorption ionization.
27

Manipulation Of Nanoscale Objects in the Transmission Electron Microscope

Vaughn, Joel M. January 2007 (has links)
No description available.
28

Hybrid nanophotonic elements and sensing devices based on photonic crystal structures

Barth, Michael 12 July 2010 (has links)
Die vorliegende Forschungsarbeit widmet sich der Entwicklung und Untersuchung neuartiger photonischer Kristallstrukuren für Anwendungen in den Gebieten der Nanophotonik und Optofluidik. Dabei konzentriert sich eine erste Serie von Experimenten auf die Charakterisierung und Optimierung photonischer Kristallresonatoren im sichtbaren Spektralbereich, wobei bisher unerreichte Resonatorgüten von bis zu 3400 gezeigt werden können. Diese Strukturen werden anschließend als Plattformen zur Herstellung von hybriden nanophotonischen Bauelementen verwendet, indem externe Partikel (wie z.B. Diamant-Nanokristalle und Metall-Nanopartikel) in kontrollierter Art und Weise an die Resonatoren gekoppelt werden. Zu diesem Zweck wird eine Nanomanipulationsmethode entwickelt, welche Rastersonden zur gezielten Positionierung und Anordnung von Partikeln auf den photonischen Kristallstrukturen benutzt. Verschiedene Arten solcher Hybridelemente werden realisiert und untersucht, einschließlich diamant-gekoppelter Resonatoren, plasmon-gekoppelter Resonatoren und Metall-Diamant Hybridstrukturen. Außer für Anwendungen auf dem Gebiet der Nanophotonik werden verschiedene photonische Kristallstrukturen auch hinsichtlich ihres Leistungsvermögens als biochemische Sensorelemente erforscht. Zum ersten Mal wird eine umfassende numerische Analyse der optischen Kräfte auf Objekte im Nahfeld photonischer Kristallresonatoren durchgeführt, welche neue Möglichkeiten zum Einfang sowie zur Detektion und Untersuchung biologischer Partikel in integrierten optofluidischen Bauteilen bieten. Weiterhin werden unterschiedliche photonische Kristallfasern bezüglich ihrer Detektionssensitivität in Absorptions- und Fluoreszenzmessungen untersucht, wobei sich eine klare Überlegenheit von selektiv befüllten Hohlkern-Designs im Vergleich zu Festkern-Fasern offenbart. / This thesis deals with the development and investigation of novel photonic crystal structures for applications in nanophotonics and optofluidics. Thereby, a first series of experiments focuses on the characterization and optimization of photonic crystal cavities in the visible wavelength range, demonstrating unprecedented cavity quality factors of up to 3400. These structures are subsequently employed as platforms for the creation of advanced hybrid nanophotonic elements by coupling external particles (such as diamond nanocrystals and metal nanoparticles) to the cavities in a well-controlled manner. For this purpose, a nanomanipulation method is developed, utilizing scanning probes for the deterministic positioning and assembly of particles on the photonic crystal structures. Various types of such hybrid elements are realized and investigated, including diamond-coupled cavities, plasmon-coupled cavities, and metal-diamond hybrid structures. Apart from applications in nanophotonics, different types of photonic crystal structures are also studied with regard to their performance as biochemical sensing elements. For the first time a thorough numerical analysis of the optical forces exerted on objects in the near-field of photonic crystal cavities is conducted, providing novel means to trap, detect, and investigate biological particles in integrated optofluidic devices. Furthermore, various types of photonic crystal fibers are studied with regard to their detection sensitivity in absorption and fluorescence measurements, revealing a clear superiority of selectively infiltrated hollow-core designs in comparison to solid-core fibers.
29

Photonic applications and hybrid integration of single nitrogen vacancy centres in nanodiamond

Schell, Andreas Wolfgang 30 January 2015 (has links)
In dieser Arbeit wird das Stickstoff-Fehlstellenzentrum (NV Zentrum) in Diamant als ein solcher Einzelphotonenemitter untersucht. Durch Benutzung eines hybriden Ansatzes werden hier NV Zentren in Diamantnanopartikeln in photonische Strukturen integriert. Zuerst wird eine aufnehmen-und-ablegen-Nanomanipulationstechnik mittels eines Rasterkraftmikroskops verwendet um einzelne NV Zentren an eine photonische Kristallkavität und eine optische Faser zu koppeln. Durch Kopplung an die photonische Kristallkavität wird die Emission der Nullphononenlinie des NV Zentrums um den Faktor 12.1 erhöht und durch Kopplung an die optische Faser entsteht eine direkt gekoppelte Einzelphotonenquelle hoher effektiver numerischer Apertur. Durch Kopplung an plamonische Wellenleiter können einzelne Oberflächenplasmon-Polaritonen nachgewiesen werden. Zweitens wird ein anderer Ansatz, die Entwicklung eines hybriden Materials, verfolgt. Hier sind die Nanodiamanten, anstatt sie auf die Strukturen von Interesse zu legen, von Anfang in dem Material enthalten, aus dem die Strukturen hergestellt werden. Mittels direktem Zweiphotonen-Laserschreiben ist es dann möglich, Kombinationen aus chipintegrierten Wellenleitern, Resonatoren und Einzelphotonenemittern zu zeigen. Um mehr über die Dynamik von NV Zentren in Nanodiamant zu erfahren und Wege zu ihrer Verbesserung zu finden, wird die Dynamik der Nullphononenlinie des NV Zentrums mittels eines Photonenkorrelationsinterferometers untersucht. Zusätzlich zu Techniken zur Herstellung photonischer und plasmonischer Strukturen werden auch Methoden zu ihrer Charakterisierung benötigt. Hier für kann es ausgenutzt werden, dass das NV Zentrum weiter nicht nur ein Einzelphotonenemitters ist, sondern es ebenso als Sensor verwendet werden kann. Das NV Zentrum wird hier verwendet, um die lokale optische Zustandsdichte in einem Rastersondenverfahren zu messen, was die Technik der dreidimensionalen Quantenemitter Fluoreszenzlebensdauermikroskopie einführt. / In this thesis, one of such single photon emitters, the nitrogen vacancy centre (NV centre) in diamond, will be examined. By using different hybrid approaches, NV centres in diamond nanoparticles are integrated into photonic structures. Firstly, using a pick-and-place nanomanipulation technique with an atomic force microscope, a single NV centre is coupled to a photonic crystal cavity and an optical fibre. Coupling to the photonic crystal cavity results in an enhancement of the NV centre''s zero phonon line by a factor of 12.1 and coupling to the fibre yields a directly coupled single photon source with an effective numerical aperture of 0.82. By coupling to plasmonic waveguides, the signature of single surface plasmon polaritons is found. Secondly, instead of placing the nanodiamonds on the structures of interest, a hybrid material where the emitters are incorporated is used. With two-photon direct laser writing, on-chip integration and combination of waveguides, resonators, and single photon emitters is demonstrated. In order to learn more on the dynamics of NV centre in nanodiamonds and find ways for improvements, the dynamics of the ultra-fast spectral diffusion of the NV centre''s zero phonon line are investigated using a photon correlation interferometer. In addition to techniques for the fabrication of photonic and plasmonic structures, also methods for their characterisation are needed.For this, it can be exploited that the NV centre also is not only a single photon emitter, but can also be employed as a sensor. Here, the NV centre is used to measure the local density of optical states in a scanning probe experiment, establishing the technique of three-dimensional quantum emitter fluorescence lifetime imaging.
30

Synthèse in-situ et caractérisation de nanotubes de carbone individuels sous émission de champ / In-situ growth and characterization of individual carbon nanotubes by field emission

Marchand, Mickaël 16 November 2009 (has links)
L'étape clé pour intégrer des nanotubes de carbone à une échelle industrielle demeure un meilleur contrôle de leur croissance et notamment le contrôle sélectif de leurs chiralités en lien avec leurs propriétés électroniques. Ce travail a pour but de s'intéresser à la synthèse in-situ et à la caractérisation de nanotubes de carbone individuels par émission de champ pour mieux comprendre les mécanismes de nucléation et de croissance qui conditionnent sa chiralité. Nous avons développé un microscope à émission de champ couplé à un réacteur CVD (Chemical Vapor Deposition) pour observer directement la croissance catalytique de nanotubes de carbone individuels sur des pointes émettrices. Nous avons ainsi découvert que les nanotubes tournent souvent axialement pendant leur croissance, soutenant ainsi un modèle de « dislocation de vis ». L’analyse détaillée des résultats obtenus montre que nous observons directement la croissance atome par atome d'un nanotube monofeuillet individuel avec ajout d’un dimère de carbone à la fois à sa base. Parallèlement, des échantillons ont été caractérisés en détail sous émission de champ. Nous avons établi un protocole de collage de nanotubes individuels à l’apex d’une pointe métallique sous microscopies optique et électronique à balayage à l’aide d’un nanomanipulateur. Leur dépendance en température à très bas courant a été mise en évidence avec un compteur d’électrons afin d'identifier les différents domaines d'émission électronique. L'analyse des distributions énergétiques a fait apparaître un phénomène de chauffage induit qui peut mener à des températures de l’ordre de 2000 K à l’extrémité du nanotube lorsqu’il est soumis à un fort champ. / The key issue for realizing the potential of carbon nanotubes has always been, and still remains, a better control of their growth and in particular the selective control of their chirality related to their electronic properties. This work aims to address the in-situ synthesis and characterization of individual carbon nanotubes by field emission to better understand the mechanisms of nucleation and growth that determine their chirality. We have developed a field emission microscope coupled to a CVD reactor (Chemical Vapor Deposition) to observe directly the catalytic growth of individual carbon nanotubes on metallic tips. We found that nanotubes often turn axially during growth, thereby supporting a model of "screw dislocation". Detailed analysis of results shows that we directly observe the atom by atom growth of one individual single wall nanotube with addition of a carbon dimer to the base. In parallel, certain samples were characterized by in-depth field emission studies. For this we established a protocol of bonding individual nanotubes at the apexes of metal tips under optical and scanning electron microscopies using a nanomanipulator. Their temperature dependence at very low current has been demonstrated with an electron counter to identify the various fields of electron emission. Analysis of energy distributions revealed an induced heating phenomenon that can lead to temperatures of about 2000 K at the end of the nanotube subjected to strong fields that create high current emission.

Page generated in 0.1215 seconds