• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 8
  • 4
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 51
  • 17
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Regulation of Adult Neurogenesis by Rb Family Proteins

Fong, Bensun Cambell 02 May 2022 (has links)
A complex regulatory framework underlies the generation of newborn neurons in the adult mammalian brain, including the lifelong maintenance of neural stem cell (NSC) quiescence and instructing NSC entry to and exit from quiescence. Future therapies targeting endogenous repair of the aging or afflicted brain, including neurodegenerative pathologies, rely on present efforts to define and characterize the mechanisms underlying the regulation of adult NSC fate. In this dissertation, we demonstrate a requirement for the Rb/E2F axis in the regulation of the molecular program instructing adult NSC quiescence and activation, with a potential role in the impaired hippocampal function observed in Alzheimer's disease pathology. While Rb plays a role in the production and survival of hippocampal newborn neurons, we identify a collective requirement for Rb family proteins — pRb, p107 and p130 — as well as their targets, E2F family transcriptional activators E2F1 and E2F3, in the regulation of NSC quiescence and activation. We further demonstrate that this is mediated through pivotal factors REST and ASCL1, identified as direct molecular targets of the Rb/E2F axis, and that REST inactivation can partially rescue NSC depletion following Rb family loss. We finally demonstrate impaired NSC activation and a return to quiescence in the 3xTG-AD model of Alzheimer's disease, with altered expression of Rb/E2F genes observed within cell population-specific defects. Ultimately, this work addresses the key issue of how transcriptional signatures of quiescence and activation among adult NSCs are co- ordinated with cell cycle control, and demonstrates that Rb family proteins serve as master regulators of the molecular program instructing adult NSC exit from and re-entry into quiescence.
42

Remodelage neuronal de la cicatrice cardiaque suite à un infarctus du myocarde

El-Helou, Viviane 09 1900 (has links)
Suite à un infarctus du myocarde, la formation d’une cicatrice, nommée fibrose de réparation, représente un processus adaptatif et essentiel empêchant la rupture du myocarde. La cicatrice est constituée de myofibroblastes, de cellules vasculaires, de fibres sympathiques ainsi que de cellules souches neuronales cardiaques exprimant la nestine. Une perturbation au niveau de ces constituants cellulaires résulte en une formation maladaptative de la cicatrice et éventuellement, une diminution de la fonction cardiaque. La compréhension des événements cellulaires ainsi que les mécanismes sous-jacents participant à cette fibrose est alors d’une importance primordiale. Cette thèse est axée sur l’identification du rôle du système sympathique et des cellules souches neuronales cardiaques exprimant la nestine dans la formation de la cicatrice ainsi que leur interaction potentielle. Nos travaux examinent l’hypothèse que les cellules souches neuronales exprimant la nestine sont endogènes au cœur et que suite à un dommage ischémique, elles contribuent à la réponse angiogénique et à la réinnervation sympathique du tissu lésé. Les cellules souches neuronales exprimant la nestine sont retrouvées dans les cœurs de différentes espèces incluant le cœur infarci humain. Elles sont résidentes dans le cœur, proviennent de la crête neurale lors du développement et sont intercalées entre les cardiomyocytes n’exprimant pas la nestine. Suite à leur isolation de cœurs infarcis de rats, les cellules souches neuronales cardiaques prolifèrent sous forme de neurosphères et, dans des conditions appropriées in vitro, se différencient en neurones exprimant le neurofilament-M. Suite à un infarctus du myocarde, les niveaux de l’ARNm de nestine sont significativement augmentés au niveau de la région infarcie et non-infarcie. Nos résultats suggèrent que cette augmentation de l’expression de nestine dans la cicatrice reflète en partie la migration des cellules souches neuronales cardiaques exprimant la nestine de la région non-infarcie vers la région infarcie. Lors de la fibrose de réparation, ces cellules représentent un substrat cellulaire pour la formation de nouveaux vaisseaux et contribuent aussi à la croissance des fibres sympathiques dans la région infarcie. Finalement, nous démontrons que la formation de la cicatrice est associée à une innervation sympathique de la région infarcie et péri-infarcie. De plus, les fibres sympathiques présentes dans la région infarcie sont observées à proximité de vaisseaux de petits calibres. Ces données suggèrent indirectement que l’innervation de la cicatrice par les fibres sympathiques peut jouer un rôle dans la réponse angiogénique suite à un infarctus du myocarde. Suite à l’administration du corticostéroïde dexaméthasone, nous détectons un amincissement de la cicatrice, associé à une réduction significative des fibres sympathiques exprimant le neurofilament-M dans la région infarcie et péri-infarcie. La diminution de la densité de ces fibres par le dexaméthasone peut être reliée à une diminution de la prolifération des myofibroblastes et de la production de l’ARNm du facteur neurotrophique nerve growth factor. / GENERAL ABSTRACT Following myocardial infarction, scar formation represents an adaptive response required to heal the damaged myocardium and prevent cardiac rupture. Infarct healing requires the coordinated action of scar myofibroblasts, angiogenic cells, sympathetic fibres and nestin positive cardiac neural stem cells. A perturbation of one or more of the aforementioned events could lead to inadequate scar healing and further worsening of ventricular function. A better understanding of the cellular events and the underlying mechanisms involved in scar formation is of a primordial importance. The focus of the following studies consists of elucidating the role of the sympathetic system and cardiac neural stem cells during scar healing and their potential interaction. We tested the hypothesis that nestin positive neural stem cells are endogenous to the heart, contribute to angiogenesis and sympathetic innervation of the infarcted myocardium following ischemic injury. Nestin positive cardiac neural stem cells are found in a number of species including the infarcted human heart. Nestin positive cardiac neural stem cells represent a resident population in the heart, are derived from the neural crest and detected intercalated between nestin negative cardiac myocytes. Following their isolation from the infarcted rat heart, neural stem cells proliferate as a neurosphere and under appropriate in vitro conditions differentiate to a neurofilament-M immunoreactive neuron. Following myocardial infarction, nestin mRNA levels are significantly elevated in the viable left ventricle and infarct region. Our data further suggests that the increased expression of nestin in the infarct region reflects in part the migration of these neural stem cells from the viable myocardium. During cardiac wound healing, neural stem cells may represent a novel substrate for de novo blood vessel formation and further contribute to sympathetic fibre growth and innervation of the infarct region. Lastly, we demonstrate that scar formation and healing is associated with sympathetic fibre sprouting of the peri-infarct/infarct region. In addition, sympathetic fibres in the infarct region were detected in close proximity to small calibre blood vessels. These latter data indirectly suggest that innervating sympathetic fibres may play a role in angiogenesis during cardiac wound healing. Following the administration of the corticosteroid dexamethasone inadequate scar healing was observed and associated with a significant reduction of neurofilament-M immunoreactive fibres in the peri-infarct/infarct region. The loss of sympathetic fibre sprouting in the scar may be related to a dexamethasone-mediated suppression of myofibroblast growth and the concomitant reduction of nerve growth factor mRNA expression.
43

Régulation moléculaire de la barrière hémo-encéphalique

Cayrol, Romain 07 1900 (has links)
La Sclérose en plaques (SEP) est une maladie auto-immune inflammatoire démyélinisante du système nerveux central (SNC), lors de laquelle des cellules inflammatoires du sang périphérique infiltrent le SNC pour y causer des dommages cellulaires. Dans ces réactions neuroinflammatoires, les cellules immunitaires traversent le système vasculaire du SNC, la barrière hémo-encéphalique (BHE), pour avoir accès au SNC et s’y accumuler. La BHE est donc la première entité que rencontrent les cellules inflammatoires du sang lors de leur migration au cerveau. Ceci lui confère un potentiel thérapeutique important pour influencer l’infiltration de cellules du sang vers le cerveau, et ainsi limiter les réactions neuroinflammatoires. En effet, les interactions entre les cellules immunitaires et les parois vasculaires sont encore mal comprises, car elles sont nombreuses et complexes. Différents mécanismes pouvant influencer la perméabilité de la BHE aux cellules immunitaires ont été décrits, et représentent aujourd’hui des cibles potentielles pour le contrôle des réactions neuro-immunes. Cette thèse a pour objectif de décrire de nouveaux mécanismes moléculaires opérant au niveau de la BHE qui interviennent dans les réactions neuroinflammatoires et qui ont un potentiel thérapeutique pour influencer les interactions neuro-immunologiques. Ce travail de doctorat est séparé en trois sections. La première section décrit la caractérisation du rôle de l’angiotensine II dans la régulation de la perméabilité de la BHE. La seconde section identifie et caractérise la fonction d’une nouvelle molécule d’adhérence de la BHE, ALCAM, dans la transmigration de cellules inflammatoires du sang vers le SNC. La troisième section traite des propriétés sécrétoires de la BHE et du rôle de la chimiokine MCP-1 dans les interactions entre la BHE et les cellules souches. Dans un premier temps, nous démontrons l’importance de l’angiotensinogène (AGT) dans la régulation de la perméabilité de la BHE. L’AGT est sécrété par les astrocytes et métabolisé en angiotensine II pour pouvoir agir au niveau des CE de la BHE à travers le récepteur à l’angiotensine II, AT1 et AT2. Au niveau de la BHE, l’angiotensine II entraîne la phosphorylation et l’enrichissement de l’occludine au sein de radeaux lipidiques, un phénomène associé à l’augmentation de l’étanchéité de la BHE. De plus, dans les lésions de SEP, on retrouve une diminution de l’expression de l’AGT et de l’occludine. Ceci est relié à nos observations in vitro, qui démontrent que des cytokines pro-inflammatoires limitent la sécrétion de l’AGT. Cette étude élucide un nouveau mécanisme par lequel les astrocytes influencent et augmentent l’étanchéité de la BHE, et implique une dysfonction de ce mécanisme dans les lésions de la SEP où s’accumulent les cellules inflammatoires. Dans un deuxième temps, les techniques établies dans la première section ont été utilisées afin d’identifier les protéines de la BHE qui s’accumulent dans les radeaux lipidiques. En utilisant une technique de protéomique nous avons identifié ALCAM (Activated Leukocyte Cell Adhesion Molecule) comme une protéine membranaire exprimée par les CE de la BHE. ALCAM se comporte comme une molécule d’adhérence typique. En effet, ALCAM permet la liaison entre les cellules du sang et la paroi vasculaire, via des interactions homotypiques (ALCAM-ALCAM pour les monocytes) ou hétérotypiques (ALCAM-CD6 pour les lymphocytes). Les cytokines inflammatoires augmentent le niveau d’expression d’ALCAM par la BHE, ce qui permet un recrutement local de cellules inflammatoires. Enfin, l’inhibition des interactions ALCAM-ALCAM et ALCAM-CD6 limite la transmigration des cellules inflammatoires (monocytes et cellules T CD4+) à travers la BHE in vitro et in vivo dans un modèle murin de la SEP. Cette deuxième partie identifie ALCAM comme une cible potentielle pour influencer la transmigration de cellules inflammatoires vers le cerveau. Dans un troisième temps, nous avons pu démontrer l’importance des propriétés sécrétoires spécifiques à la BHE dans les interactions avec les cellules souches neurales (CSN). Les CSN représentent un potentiel thérapeutique unique pour les maladies du SNC dans lesquelles la régénération cellulaire est limitée, comme dans la SEP. Des facteurs qui limitent l’utilisation thérapeutique des CSN sont le mode d’administration et leur maturation en cellules neurales ou gliales. Bien que la route d’administration préférée pour les CSN soit la voie intrathécale, l’injection intraveineuse représente la voie d’administration la plus facile et la moins invasive. Dans ce contexte, il est important de comprendre les interactions possibles entre les cellules souches et la paroi vasculaire du SNC qui sera responsable de leur recrutement dans le parenchyme cérébral. En collaborant avec des chercheurs de la Belgique spécialisés en CSN, nos travaux nous ont permis de confirmer, in vitro, que les cellules souches neurales humaines migrent à travers les CE humaines de la BHE avant d’entamer leur différenciation en cellules du SNC. Suite à la migration à travers les cellules de la BHE les CSN se différencient spontanément en neurones, en astrocytes et en oligodendrocytes. Ces effets sont notés préférentiellement avec les cellules de la BHE par rapport aux CE non cérébrales. Ces propriétés spécifiques aux cellules de la BHE dépendent de la chimiokine MCP-1/CCL2 sécrétée par ces dernières. Ainsi, cette dernière partie suggère que la BHE n’est pas un obstacle à la migration de CSN vers le SNC. De plus, la chimiokine MCP-1 est identifiée comme un facteur sécrété par la BHE qui permet l’accumulation et la différentiation préférentielle de cellules souches neurales dans l’espace sous-endothélial. Ces trois études démontrent l’importance de la BHE dans la migration des cellules inflammatoires et des CSN vers le SNC et indiquent que de multiples mécanismes moléculaires contribuent au dérèglement de l’homéostasie du SNC dans les réactions neuro-immunes. En utilisant des modèles in vitro, in situ et in vivo, nous avons identifié trois nouveaux mécanismes qui permettent d’influencer les interactions entre les cellules du sang et la BHE. L’identification de ces mécanismes permet non seulement une meilleure compréhension de la pathophysiologie des réactions neuroinflammatoires du SNC et des maladies qui y sont associées, mais suggère également des cibles thérapeutiques potentielles pour influencer l’infiltration des cellules du sang vers le cerveau / Multiple Sclerosis is an inflammatory demyelinating disease in which immune cells from the peripheral blood infiltrate the central nervous system (CNS) to cause a pathologic neuroinflammatory reaction. Blood borne leucocytes cross the restrictive cerebral endothelium, the blood brain barrier (BBB), to gain access to the CNS parenchyma and cause cellular damage leading to the characteristic demyelinating lesions. The BBB is the interface between the blood and the CNS and as such is a critical mediator of neuro-immune reactions and an important therapeutic target to modulate neuroinflammation. It is essential to have a better understanding of the molecular mechanisms that regulate the BBB properties to elaborate new therapeutic strategies to modulate the BBB and thus the local neuroinflammation reaction. This Ph.D. thesis describes three distinct molecular mechanisms which regulate key BBB properties. The first section describes a novel role for the renin-angiotensin system (RAS) in the neuro-vascular unit (NVU) as a regulator of paracellular permeability. The second part of this thesis characterises the role of a novel adhesion molecule of the BBB, ALCAM. The third part of this work studies the interactions between neural stem cells (NSC) and the BBB and identifies MCP-1 as a critical factor involved in NSC recruitment to the CNS. In the first experimental section we provide evidence that angiotensinogen (AGT) produced and secreted by astrocytes, is cleaved into angiotensin II (AngII) and acts on type 1 angiotensin receptors (AT1) expressed by BBB endothelial cells (ECs). Activation of AT1 restricts the passage of molecular tracers across human BBB-derived ECs through threonine-phosphorylation of the tight junction protein occludin and its mobilization to lipid raft membrane microdomains. We also show that AGT knockout animals have disorganized occludin strands at the level of the BBB and a diffuse accumulation of the endogenous serum protein plasminogen in the CNS, as compared to wild type animals. Finally, we demonstrate a reduction in the number of AGT-immunopositive perivascular astrocytes in multiple sclerosis (MS) lesions, which correlates with a reduced expression of occludin similarly seen in the CNS of AGT knockout animals. Such a reduction in astrocyte-expressed AGT and AngII is dependent, in vitro, on the pro-inflammatory cytokines tumor necrosis factor-α and interferon-γ. Our study defines a novel physiological role for AngII in the CNS and suggests that inflammation-induced downregulation of AngII production by astrocytes is involved in BBB dysfunction in MS lesions. In the second experimental part we focus on adhesion molecules of the BBB. Using a lipid raft-based proteomic approach, we identified ALCAM (Activated leukocyte cell adhesion molecule) as an adhesion molecule involved in leukocyte migration across the BBB. ALCAM expressed on BBB endothelium co-localized with CD6 expressed on leukocytes and with BBB endothelium transmigratory cups. ALCAM expression on BBB cells was up-regulated in active multiple sclerosis and experimental auto-immune encephalomyelitis (EAE) lesions. Moreover, ALCAM blockade restricted transmigration of CD4+ lymphocytes and monocytes across BBB endothelium in vitro and in vivo, and reduced the severity and time of onset of EAE. Our findings point to an important role for ALCAM in leukocyte recruitment into the brain and identify ALCAM as a potential therapeutic target to dampen neuroinflammation. The third experimental part of this thesis studies the interactions between NCS and BBB. NCS represent an attractive source for cell transplantation and neural tissue repair. After systemic injection, NCS are confronted with the specialized BBB endothelial cells before they can enter the brain parenchyma. We investigated the interactions of human fetal neural precursor cells with human brain endothelial cells in an in vitro model using primary cultures. We demonstrated that human fetal neural precursor cells efficiently and specifically migrate to sub-endothelial space of human BBB-endothelium, but not pulmonary artery endothelial cells. When migrated across BBB-endothelial cells, fetal neural precursor cells spontaneously differentiate to neurons, astrocytes and oligodendrocytes. Effective migration and subsequent differentiation was found to be dependant on the chemokine CCL2/MCP-1, but not CXCL8/IL-8. Our findings suggest that an intact blood-brain barrier is not an intrinsic obstacle to neural stem cell migration into the brain and that differentiation of neural precursor cells occur in a sub-endothelial niche, under the influence of the chemokine CCL2/MCP-1. These three experimental sections demonstrate the crucial roles that the BBB plays in regulating the CNS homeostasis. Under pathological conditions, such as during neuro-immune reactions, the BBB is altered and becomes an important local player. The three different molecular mechanisms described in this thesis, contribute to our understanding of the BBB and may allow for the development of novel therapeutic strategies to limit neuroinflammation.
44

Régulation moléculaire de la barrière hémo-encéphalique

Cayrol, Romain 07 1900 (has links)
La Sclérose en plaques (SEP) est une maladie auto-immune inflammatoire démyélinisante du système nerveux central (SNC), lors de laquelle des cellules inflammatoires du sang périphérique infiltrent le SNC pour y causer des dommages cellulaires. Dans ces réactions neuroinflammatoires, les cellules immunitaires traversent le système vasculaire du SNC, la barrière hémo-encéphalique (BHE), pour avoir accès au SNC et s’y accumuler. La BHE est donc la première entité que rencontrent les cellules inflammatoires du sang lors de leur migration au cerveau. Ceci lui confère un potentiel thérapeutique important pour influencer l’infiltration de cellules du sang vers le cerveau, et ainsi limiter les réactions neuroinflammatoires. En effet, les interactions entre les cellules immunitaires et les parois vasculaires sont encore mal comprises, car elles sont nombreuses et complexes. Différents mécanismes pouvant influencer la perméabilité de la BHE aux cellules immunitaires ont été décrits, et représentent aujourd’hui des cibles potentielles pour le contrôle des réactions neuro-immunes. Cette thèse a pour objectif de décrire de nouveaux mécanismes moléculaires opérant au niveau de la BHE qui interviennent dans les réactions neuroinflammatoires et qui ont un potentiel thérapeutique pour influencer les interactions neuro-immunologiques. Ce travail de doctorat est séparé en trois sections. La première section décrit la caractérisation du rôle de l’angiotensine II dans la régulation de la perméabilité de la BHE. La seconde section identifie et caractérise la fonction d’une nouvelle molécule d’adhérence de la BHE, ALCAM, dans la transmigration de cellules inflammatoires du sang vers le SNC. La troisième section traite des propriétés sécrétoires de la BHE et du rôle de la chimiokine MCP-1 dans les interactions entre la BHE et les cellules souches. Dans un premier temps, nous démontrons l’importance de l’angiotensinogène (AGT) dans la régulation de la perméabilité de la BHE. L’AGT est sécrété par les astrocytes et métabolisé en angiotensine II pour pouvoir agir au niveau des CE de la BHE à travers le récepteur à l’angiotensine II, AT1 et AT2. Au niveau de la BHE, l’angiotensine II entraîne la phosphorylation et l’enrichissement de l’occludine au sein de radeaux lipidiques, un phénomène associé à l’augmentation de l’étanchéité de la BHE. De plus, dans les lésions de SEP, on retrouve une diminution de l’expression de l’AGT et de l’occludine. Ceci est relié à nos observations in vitro, qui démontrent que des cytokines pro-inflammatoires limitent la sécrétion de l’AGT. Cette étude élucide un nouveau mécanisme par lequel les astrocytes influencent et augmentent l’étanchéité de la BHE, et implique une dysfonction de ce mécanisme dans les lésions de la SEP où s’accumulent les cellules inflammatoires. Dans un deuxième temps, les techniques établies dans la première section ont été utilisées afin d’identifier les protéines de la BHE qui s’accumulent dans les radeaux lipidiques. En utilisant une technique de protéomique nous avons identifié ALCAM (Activated Leukocyte Cell Adhesion Molecule) comme une protéine membranaire exprimée par les CE de la BHE. ALCAM se comporte comme une molécule d’adhérence typique. En effet, ALCAM permet la liaison entre les cellules du sang et la paroi vasculaire, via des interactions homotypiques (ALCAM-ALCAM pour les monocytes) ou hétérotypiques (ALCAM-CD6 pour les lymphocytes). Les cytokines inflammatoires augmentent le niveau d’expression d’ALCAM par la BHE, ce qui permet un recrutement local de cellules inflammatoires. Enfin, l’inhibition des interactions ALCAM-ALCAM et ALCAM-CD6 limite la transmigration des cellules inflammatoires (monocytes et cellules T CD4+) à travers la BHE in vitro et in vivo dans un modèle murin de la SEP. Cette deuxième partie identifie ALCAM comme une cible potentielle pour influencer la transmigration de cellules inflammatoires vers le cerveau. Dans un troisième temps, nous avons pu démontrer l’importance des propriétés sécrétoires spécifiques à la BHE dans les interactions avec les cellules souches neurales (CSN). Les CSN représentent un potentiel thérapeutique unique pour les maladies du SNC dans lesquelles la régénération cellulaire est limitée, comme dans la SEP. Des facteurs qui limitent l’utilisation thérapeutique des CSN sont le mode d’administration et leur maturation en cellules neurales ou gliales. Bien que la route d’administration préférée pour les CSN soit la voie intrathécale, l’injection intraveineuse représente la voie d’administration la plus facile et la moins invasive. Dans ce contexte, il est important de comprendre les interactions possibles entre les cellules souches et la paroi vasculaire du SNC qui sera responsable de leur recrutement dans le parenchyme cérébral. En collaborant avec des chercheurs de la Belgique spécialisés en CSN, nos travaux nous ont permis de confirmer, in vitro, que les cellules souches neurales humaines migrent à travers les CE humaines de la BHE avant d’entamer leur différenciation en cellules du SNC. Suite à la migration à travers les cellules de la BHE les CSN se différencient spontanément en neurones, en astrocytes et en oligodendrocytes. Ces effets sont notés préférentiellement avec les cellules de la BHE par rapport aux CE non cérébrales. Ces propriétés spécifiques aux cellules de la BHE dépendent de la chimiokine MCP-1/CCL2 sécrétée par ces dernières. Ainsi, cette dernière partie suggère que la BHE n’est pas un obstacle à la migration de CSN vers le SNC. De plus, la chimiokine MCP-1 est identifiée comme un facteur sécrété par la BHE qui permet l’accumulation et la différentiation préférentielle de cellules souches neurales dans l’espace sous-endothélial. Ces trois études démontrent l’importance de la BHE dans la migration des cellules inflammatoires et des CSN vers le SNC et indiquent que de multiples mécanismes moléculaires contribuent au dérèglement de l’homéostasie du SNC dans les réactions neuro-immunes. En utilisant des modèles in vitro, in situ et in vivo, nous avons identifié trois nouveaux mécanismes qui permettent d’influencer les interactions entre les cellules du sang et la BHE. L’identification de ces mécanismes permet non seulement une meilleure compréhension de la pathophysiologie des réactions neuroinflammatoires du SNC et des maladies qui y sont associées, mais suggère également des cibles thérapeutiques potentielles pour influencer l’infiltration des cellules du sang vers le cerveau / Multiple Sclerosis is an inflammatory demyelinating disease in which immune cells from the peripheral blood infiltrate the central nervous system (CNS) to cause a pathologic neuroinflammatory reaction. Blood borne leucocytes cross the restrictive cerebral endothelium, the blood brain barrier (BBB), to gain access to the CNS parenchyma and cause cellular damage leading to the characteristic demyelinating lesions. The BBB is the interface between the blood and the CNS and as such is a critical mediator of neuro-immune reactions and an important therapeutic target to modulate neuroinflammation. It is essential to have a better understanding of the molecular mechanisms that regulate the BBB properties to elaborate new therapeutic strategies to modulate the BBB and thus the local neuroinflammation reaction. This Ph.D. thesis describes three distinct molecular mechanisms which regulate key BBB properties. The first section describes a novel role for the renin-angiotensin system (RAS) in the neuro-vascular unit (NVU) as a regulator of paracellular permeability. The second part of this thesis characterises the role of a novel adhesion molecule of the BBB, ALCAM. The third part of this work studies the interactions between neural stem cells (NSC) and the BBB and identifies MCP-1 as a critical factor involved in NSC recruitment to the CNS. In the first experimental section we provide evidence that angiotensinogen (AGT) produced and secreted by astrocytes, is cleaved into angiotensin II (AngII) and acts on type 1 angiotensin receptors (AT1) expressed by BBB endothelial cells (ECs). Activation of AT1 restricts the passage of molecular tracers across human BBB-derived ECs through threonine-phosphorylation of the tight junction protein occludin and its mobilization to lipid raft membrane microdomains. We also show that AGT knockout animals have disorganized occludin strands at the level of the BBB and a diffuse accumulation of the endogenous serum protein plasminogen in the CNS, as compared to wild type animals. Finally, we demonstrate a reduction in the number of AGT-immunopositive perivascular astrocytes in multiple sclerosis (MS) lesions, which correlates with a reduced expression of occludin similarly seen in the CNS of AGT knockout animals. Such a reduction in astrocyte-expressed AGT and AngII is dependent, in vitro, on the pro-inflammatory cytokines tumor necrosis factor-α and interferon-γ. Our study defines a novel physiological role for AngII in the CNS and suggests that inflammation-induced downregulation of AngII production by astrocytes is involved in BBB dysfunction in MS lesions. In the second experimental part we focus on adhesion molecules of the BBB. Using a lipid raft-based proteomic approach, we identified ALCAM (Activated leukocyte cell adhesion molecule) as an adhesion molecule involved in leukocyte migration across the BBB. ALCAM expressed on BBB endothelium co-localized with CD6 expressed on leukocytes and with BBB endothelium transmigratory cups. ALCAM expression on BBB cells was up-regulated in active multiple sclerosis and experimental auto-immune encephalomyelitis (EAE) lesions. Moreover, ALCAM blockade restricted transmigration of CD4+ lymphocytes and monocytes across BBB endothelium in vitro and in vivo, and reduced the severity and time of onset of EAE. Our findings point to an important role for ALCAM in leukocyte recruitment into the brain and identify ALCAM as a potential therapeutic target to dampen neuroinflammation. The third experimental part of this thesis studies the interactions between NCS and BBB. NCS represent an attractive source for cell transplantation and neural tissue repair. After systemic injection, NCS are confronted with the specialized BBB endothelial cells before they can enter the brain parenchyma. We investigated the interactions of human fetal neural precursor cells with human brain endothelial cells in an in vitro model using primary cultures. We demonstrated that human fetal neural precursor cells efficiently and specifically migrate to sub-endothelial space of human BBB-endothelium, but not pulmonary artery endothelial cells. When migrated across BBB-endothelial cells, fetal neural precursor cells spontaneously differentiate to neurons, astrocytes and oligodendrocytes. Effective migration and subsequent differentiation was found to be dependant on the chemokine CCL2/MCP-1, but not CXCL8/IL-8. Our findings suggest that an intact blood-brain barrier is not an intrinsic obstacle to neural stem cell migration into the brain and that differentiation of neural precursor cells occur in a sub-endothelial niche, under the influence of the chemokine CCL2/MCP-1. These three experimental sections demonstrate the crucial roles that the BBB plays in regulating the CNS homeostasis. Under pathological conditions, such as during neuro-immune reactions, the BBB is altered and becomes an important local player. The three different molecular mechanisms described in this thesis, contribute to our understanding of the BBB and may allow for the development of novel therapeutic strategies to limit neuroinflammation.
45

Remodelage neuronal de la cicatrice cardiaque suite à un infarctus du myocarde

El-Helou, Viviane 09 1900 (has links)
RÉSUMÉ GÉNÉRAL Suite à un infarctus du myocarde, la formation d’une cicatrice, nommée fibrose de réparation, représente un processus adaptatif et essentiel empêchant la rupture du myocarde. La cicatrice est constituée de myofibroblastes, de cellules vasculaires, de fibres sympathiques ainsi que de cellules souches neuronales cardiaques exprimant la nestine. Une perturbation au niveau de ces constituants cellulaires résulte en une formation maladaptative de la cicatrice et éventuellement, une diminution de la fonction cardiaque. La compréhension des événements cellulaires ainsi que les mécanismes sous-jacents participant à cette fibrose est alors d’une importance primordiale. Cette thèse est axée sur l’identification du rôle du système sympathique et des cellules souches neuronales cardiaques exprimant la nestine dans la formation de la cicatrice ainsi que leur interaction potentielle. Nos travaux examinent l’hypothèse que les cellules souches neuronales exprimant la nestine sont endogènes au cœur et que suite à un dommage ischémique, elles contribuent à la réponse angiogénique et à la réinnervation sympathique du tissu lésé. Les cellules souches neuronales exprimant la nestine sont retrouvées dans les cœurs de différentes espèces incluant le cœur infarci humain. Elles sont résidentes dans le cœur, proviennent de la crête neurale lors du développement et sont intercalées entre les cardiomyocytes n’exprimant pas la nestine. Suite à leur isolation de cœurs infarcis de rats, les cellules souches neuronales cardiaques prolifèrent sous forme de neurosphères et, dans des conditions appropriées in vitro, se différencient en neurones exprimant le neurofilament-M. Suite à un infarctus du myocarde, les niveaux de l’ARNm de nestine sont significativement augmentés au niveau de la région infarcie et non-infarcie. Nos résultats suggèrent que cette augmentation de l’expression de nestine dans la cicatrice reflète en partie la migration des cellules souches neuronales cardiaques exprimant la nestine de la région non-infarcie vers la région infarcie. Lors de la fibrose de réparation, ces cellules représentent un substrat cellulaire pour la formation de nouveaux vaisseaux et contribuent aussi à la croissance des fibres sympathiques dans la région infarcie. Finalement, nous démontrons que la formation de la cicatrice est associée à une innervation sympathique de la région infarcie et péri-infarcie. De plus, les fibres sympathiques présentes dans la région infarcie sont observées à proximité de vaisseaux de petits calibres. Ces données suggèrent indirectement que l’innervation de la cicatrice par les fibres sympathiques peut jouer un rôle dans la réponse angiogénique suite à un infarctus du myocarde. Suite à l’administration du corticostéroïde dexaméthasone, nous détectons un amincissement de la cicatrice, associé à une réduction significative des fibres sympathiques exprimant le neurofilament-M dans la région infarcie et péri-infarcie. La diminution de la densité de ces fibres par le dexaméthasone peut être reliée à une diminution de la prolifération des myofibroblastes et de la production de l’ARNm du facteur neurotrophique nerve growth factor. / GENERAL ABSTRACT Following myocardial infarction, scar formation represents an adaptive response required to heal the damaged myocardium and prevent cardiac rupture. Infarct healing requires the coordinated action of scar myofibroblasts, angiogenic cells, sympathetic fibres and nestin positive cardiac neural stem cells. A perturbation of one or more of the aforementioned events could lead to inadequate scar healing and further worsening of ventricular function. A better understanding of the cellular events and the underlying mechanisms involved in scar formation is of a primordial importance. The focus of the following studies consists of elucidating the role of the sympathetic system and cardiac neural stem cells during scar healing and their potential interaction. We tested the hypothesis that nestin positive neural stem cells are endogenous to the heart, contribute to angiogenesis and sympathetic innervation of the infarcted myocardium following ischemic injury. Nestin positive cardiac neural stem cells are found in a number of species including the infarcted human heart. Nestin positive cardiac neural stem cells represent a resident population in the heart, are derived from the neural crest and detected intercalated between nestin negative cardiac myocytes. Following their isolation from the infarcted rat heart, neural stem cells proliferate as a neurosphere and under appropriate in vitro conditions differentiate to a neurofilament-M immunoreactive neuron. Following myocardial infarction, nestin mRNA levels are significantly elevated in the viable left ventricle and infarct region. Our data further suggests that the increased expression of nestin in the infarct region reflects in part the migration of these neural stem cells from the viable myocardium. During cardiac wound healing, neural stem cells may represent a novel substrate for de novo blood vessel formation and further contribute to sympathetic fibre growth and innervation of the infarct region. Lastly, we demonstrate that scar formation and healing is associated with sympathetic fibre sprouting of the peri-infarct/infarct region. In addition, sympathetic fibres in the infarct region were detected in close proximity to small calibre blood vessels. These latter data indirectly suggest that innervating sympathetic fibres may play a role in angiogenesis during cardiac wound healing. Following the administration of the corticosteroid dexamethasone inadequate scar healing was observed and associated with a significant reduction of neurofilament-M immunoreactive fibres in the peri-infarct/infarct region. The loss of sympathetic fibre sprouting in the scar may be related to a dexamethasone-mediated suppression of myofibroblast growth and the concomitant reduction of nerve growth factor mRNA expression.
46

Neuron-glial Interaction in the Developing Peripheral Nervous System

Corell, Mikael January 2011 (has links)
The nervous system, including the brain, is the most sophisticated organ in the mammalian body. In such a complex network, neuron-glial interaction is essential and controls most developmental processes, such as stem cell fate determination, migration, differentiation, synapse formation, ensheathment and myelination. Many of these events are critical for the developmental process and small errors can lead to growth retardation, malformation or disease. The understanding of the normal progress of nervous system development is fundamental and will help the discovery of new treatments for disease. This thesis discusses three types of neuron-glia interactions at different developmental stages; neural stem/progenitor cell (NSPC) differentiation, building and maintaining the structure of the sciatic nerve, and myelin formation. In Paper I we show that NSPCs, based upon their morphology and expression of specific protein markers, have the capacity to differentiate into cells of either the peripheral nervous system (PNS) or enteric nervous system (ENS) when grown with PNS or ENS primary cell cultures, or fed with conditioned medium from these. This indicates that soluble factors secreted from the PNS or ENS cultures are important for stem cell differentiation and fate determination. The adhesion protein neuronal cadherin (N-cadherin) is implicated in migration, differentiation and nerve outgrowth in the developing PNS. In Paper II N-cadherin was exclusively found in ensheathing glia (nonmyelinating Schwann cells, satellite cells and enteric glia) in contact with each other or with axons. Functional blocking of N-cadherin in dissociated fetal dorsal root ganglia (DRG) cultures led to a decrease in attachment between Schwann cells. N-cadherin-mediated adhesion of nonmyelinating Schwann cells may be important in encapsulating thin calibre axons and provide support to myelinating Schwann cells. In Paper III the inhibitory gamma aminobutyric acid (GABA) and GABAB receptors were studied in the Schwann cell of the adult sciatic nerve and DRG cultures. GABAB receptors were primarily expressed in nonmyelinating Schwann cells and protein levels decreased during development and myelination. Blocking the GABAB receptor in long-term DRG cultures led to decreased levels of mRNA markers for myelin. These results indicate that the GABA and GABAB receptors may be involved in Schwann cell myelination.
47

Les cytokines inflammatoires modulent la prolifération et la différenciation in vitro des cellules souches/progénitrices de la moelle épinière

Vaugeois, Alexandre 04 1900 (has links)
No description available.
48

Mécanismes de régulation de l’activité de la lignée neurale adulte

Joppé, Sandra Evelyne 03 1900 (has links)
No description available.
49

Identification et activation des cellules souches neurales quiescentes dans le cerveau adulte et durant le vieillissement

Cochard, Loïc 12 1900 (has links)
La neurogenèse est maintenue dans le cerveau adulte dans des régions restreintes du cerveau appelées niches neurogéniques. L’une des niches principales est la zone ventriculaire/sous-ventriculaire (V-SVZ) dans laquelle résident des cellules souches neurales (NSCs). Les NSCs sont à l’origine de la formation des nouveaux neurones en donnant naissance aux progéniteurs puis aux neuroblastes. Les études récentes sur la neurogenèse ont mis en évidence l’existence des NSCs quiescentes (qNSCs, aussi appelées cellules B1) et des NSCs actives (aNSCs). Le modèle actuel de la neurogenèse adulte place les qNSCs B1 en amont des aNSCs. L’hypothèse étant que cette population dormante constitue une « réserve », afin de maintenir les aNSCs tout au long de la vie. Les techniques actuelles ne permettent pas de cibler les qNSCs spécifiquement in vivo et donc, d’analyser leurs propriétés biologiques, leurs mécanismes d’activation ainsi que leur relation avec les aNSCs. Cette compréhension est nécessaire pour la mise au point de stratégies thérapeutiques pouvant utiliser le potentiel des cellules souches pour restaurer la neurogenèse dans les contextes de vieillissement et de maladies neurodégénératives. Afin de caractériser les qNSCs de la V-SVZ, nous avons utilisé l’électroporation de plasmides dans un modèle de souris rapportrice Rosa26-stop-EYFP. Dans celle-ci, la séquence codant pour la protéine EYFP précédée par un codon STOP floxé, est inséré au locus Rosa26. L’excision du codon STOP par une recombinase permet l’expression du rapporteur dans les cellules électroporées ainsi que leur descendance. Cette technique nous a permis de cibler spécifiquement une population d’astrocytes en contact avec le ventricule et d’étudier leur contribution à la neurogenèse adulte. À la différence des approches virales et transgéniques, l’électroporation peut cibler les cellules quiescentes et l’expression du plasmide est limité aux cellules en contact avec le ventricule. Grâce à cette technique nous avons mis en évidence des éléments surprenants : i) cette population est majoritairement quiescente et ne contribuent à la neurogenèse que de manière minimale, ii) cette population ne participe pas à la régénération de la niche in vivo, iii) elles ne génèrent pas les aNSCs à l’origine des neurosphères in vitro et iv) son activité neurogénique peut être augmentée en exprimant le gène pro-neural Mash1. Ensuite, nous nous sommes intéressés au rôle de la signalisation EGFR dans la régulation de l’activité des cellules souches/progéniteurs neuraux (NSPCs). Dans cette seconde étude, nous montrons que i) la signalisation EGFR est réduite avec l’âge, ii) PI3K/AKT, MEK/ERK et mTOR régulent différemment la prolifération, la différenciation et la survie des NSPCs et iii) l’activation d’EGFR dans les qNSCs permet d’augmenter la neurogenèse sous ventriculaire à 3 mois, mais pas à 6 mois ou dans un modèle de la maladie d’Alzheimer. Nos données suggèrent donc que les qNSCs représentent une population hétérogène et/ou présentant 2 voies neurogéniques distinctes. De plus, nous avons montré que les voies de signalisation associées à EGFR exercent un contrôle différentiel sur l’activité des NSPCs. Enfin, nos résultats indiquent que les facteurs présents dans la niche sous-ventriculaire lors du vieillissement inhibent de manière dominante l’activation des NSCs. / Neurogenesis is maintained in restricted regions of the adult brain called neurogenic niches. One of the main neurogenic niches is the ventricular-subventricular zone (V-SVZ) in which neural stem cells (NSCs) reside. NSCs produce neurons through the generation of transit amplifying progenitors and neuroblasts. Recent studies on adult neurogenesis revealed the existence of quiescent NSCs (qNSCs, also called B1) and activated NSCs (aNSCs). The current model of adult neurogenesis places qNSCs (B1) upstream of aNSCs in the lineage. The hypothesis is that the qNSC population constitutes a “reserve” pool to maintain aNSC pool throughout life. So far, the techniques used do not allow specific targeting of the qNSCs in vivo. Therefore, it is not possible to analyze their biological properties, activation mechanisms and relationship with aNSCs. This understanding is also necessary to establish therapeutic strategies that could utilize the potential of stem cells to restore neurogenesis in contexts of aging and neurodegenerative diseases. In order to characterize qNSCs in the ventricular zone, we took advantage of plasmid electroporation in a reporter mouse model, Rosa26-stop-EYFP. In this model, the sequence coding for EYFP preceded by a floxed STOP codon is inserted at the Rosa26 locus. Excision of the STOP codon by a recombinase enables expression of the reporter in electroporated cells and their progeny. This technique enabled the specific targeting of a ventricle-contacting astrocytes population and to study their contribution to adult neurogenesis. Unlike transgenic or viral approaches, electroporation can target quiescent cells and the expression of the plasmid is restricted to the ventricle-contacted cells. Using this approach, we made surprising observations: i) this population is mostly quiescent and only minimally contributes to adult neurogenesis, ii) this population does not participate in niche regeneration in vivo and iv) their neurogenic output can be increased by expressing the pro-neural gene Mash1. Next, we investigated the role of EGFR signaling in the regulation neural stem and progenitor cells (NSPCs) activity. In this second study, we show that i) EGFR signaling decreases during aging, ii) PI3K/AKT, MEK/ERK and mTOR exert different regulation proliferation, differentiation and survival of NSPCs and iii) activation of EGFR in the qNSCs increases V-SVZ neurogenesis in 3-months-old animals but not in 6-months-old or Alzheimer’s disease model animals. Our data suggests that the NSC population is heterogeneous, with variable neurogenic output from the different sub-populations, as well as different activation modalities. We also showed that EGFR-associated signalling pathways differentially regulate NSPCs activity. Finally, our results indicate that the factors present in the V-SVZ niche during aging dominantly inhibit activation of NSCs.
50

L’effet du vieillissement sur les cellules souches neurales adultes

Bouab, Meriem 05 1900 (has links)
La neurogenèse persiste à l’âge adulte dans deux régions du système nerveux central (SNC) des mammifères : la zone sous-ventriculaire (SVZ) du cerveau antérieur et la zone sous-granulaire (SGZ) de l’hippocampe. Cette neurogenèse est possible grâce à la capacité de prolifération des cellules souches présentes dans les niches de la SVZ et la SGZ, mais en vieillissant, le cerveau subit une diminution dramatique du nombre de cellules souches neurales adultes (CSNa), une diminution de la prolifération cellulaire et une altération des niches de neurogenèse. Cependant, une importante question reste sans réponse : comment la perte tardive des CSNa est temporellement reliée aux changements de l’activité de prolifération et de la structure de la principale niche de neurogenèse (la SVZ)? Afin d’avoir un aperçu sur les événements initiaux, nous avons examiné les changements des CSNa et de leur niche dans la SVZ entre le jeune âge et l’âge moyen. La niche de la SVZ des souris d’âge moyen (12 mois) subit une réduction de l’expression des marqueurs de plusieurs sous-populations de précurseurs neuraux en comparaison avec les souris jeunes adultes (2 mois). Anatomiquement, cela est associé avec des anomalies cytologiques, incluant une atrophie générale de la SVZ, une perte de la couche de cellules sousépendymaires par endroit et l’accumulation de gouttelettes lipidiques de grande taille dans l’épendyme. Fonctionnellement, ces changements sont corrélés avec une diminution de l’activité de la SVZ et une réduction du nombre de nouveaux neurones arrivant aux bulbes olfactifs. Pour déterminer si les CSNa de la SVZ ont subi des changements visibles, nous avons évalué les paramètres clés des CSNa in vivo et in vitro. La culture cellulaire montre qu’un nombre équivalent de CSNa ayant la capacité de former des neurosphères peut être isolé du cerveau du jeune adulte et d’âge moyen. Cependant, à l’âge moyen, les précurseurs neuraux semblent moins sensibles aux facteurs de croissance durant leur différenciation in vitro. Les CSNa donnent des signes de latence in vivo puisque leur capacité d’incorporation et de rétention du BrdU diminue. Ensemble, ces données démontrent que, tôt dans le processus du vieillissement, les CSNa et leur niche dans la SVZ subissent des changements significatifs, et suggèrent que la perte de CSNa liée au vieillissement est secondaire à ces événements. / Neurogenesis persists throughout the adulthood in two regions of the mammalian central nervous system (SNC): the sub-ventricular zone (SVZ) of the forebrain and the sub-granular zone (SGZ) of the hippocampus. Neurogenesis is possible due to the proliferation capacity of stem cells present within both the SVZ and SGZ niches, but with aging, the forebrain undergoes a drastic reduction in its number of adult neural stem cells (aNSCs), a decrease of cell proliferation and an alteration of the neurogenic niches. However, a key unresolved question remains: how the onset of aNSC loss is temporally related to changes of proliferating activity and to structural alterations within the principal stem cell niche (the SVZ)? To gain insights into the initial events leading to aging-associated aNSC loss, we investigated the changes occurring to aNSCs and the SVZ niche between young adulthood and middle-age. The SVZ niche of middle-aged mice (12-months-old) was found to display reduced expression of markers for multiple neural precursor sub-populations when compared to young adult mice (2-months-old). Anatomically, this was associated with significant cytological aberrations, including an overall atrophy of the SVZ, loss of sub-ependymal cells, and accumulation of large lipid droplets within the ependyma. Functionally, these changes correlated with diminished SVZ activity and reduced number of newly born neurons reaching the principal target tissue: the olfactory bulbs. To determine whether changes were evident at the level of the SVZ stem cells, we evaluated key in vitro and in vivo parameters of aNSCs. Tissue culture experiments showed that equal numbers of neurosphere-forming aNSCs could be isolated from young adult and middle-aged forebrains. However, at middle-age, neural precursors seemed to be less sensitive to growth factors during their in vitro differentiation and displayed signs of increased quiescence in vivo. Collectively, these findings demonstrate that, with early aging, aNCS and their SVZ niche go through significant changes, and suggest that aging-associated aNSC loss is secondary to these events.

Page generated in 0.0733 seconds