• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 9
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 84
  • 20
  • 17
  • 16
  • 16
  • 16
  • 15
  • 14
  • 13
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Combinaison de l'électroencéphalographie et de l'imagerie par résonance magnétique fonctionnelle pour le neurofeedback / Combining electroencephalography and functional magnetic resonance imaging for neurofeedback

Perronnet, Lorraine 07 September 2017 (has links)
Le neurofeedback (NF) est une technique consistant à renvoyer à un individu des informations sur son activité cérébrale en temps réel, lui permettant ainsi d'apprendre à mieux en contrôler certains aspects pour la réorganiser de manière durable. Des effets spécifiques sur les fonctions émotionnelles, cognitives ou comportementales du sujet sont supposés accompagner l'entraînement par NF, ce qui fait du NF une technique prometteuse pour la rééducation du cerveau de patients souffrant de troubles neurologiques ou psychiatriques et pour l'optimisation de la performance chez les sujets sains. Le NF a été étudié comme outil de rééducation cérébrale dans un grand nombre de troubles neurologiques et psychiatriques. Pourtant, son déploiement au sein de l'arsenal thérapeutique est restreint par le manque de preuves concluantes sur sa réelle efficacité. Les limitations inhérentes aux modalités de mesures de l'activité cérébrale pourraient être une des raisons à l'origine de cette efficacité débattue. En effet, la plupart des approches de NF reposent sur l'exploitation d'un seul type de modalité, l'EEG et l'IRMf étant les plus répandues. Alors que l'EEG est peu coûteux et bénéficie d'une haute résolution temporelle (milliseconde), sa résolution spatiale (quelques centimètres) est limitée par la conduction volumique de la tête et le nombre d'électrodes employées. De plus, la localisation de sources à partir de l'EEG est imprécise du fait qu'elle constitue un problème inverse mal posé. De manière complémentaire, l'IRMf rend possible l'auto-régulation de régions cérébrales spécifiques avec une haute résolution spatiale (millimètres) mais pâtit d'une faible résolution temporelle (seconde). La combinaison de l'EEG et de l'IRMf s'est révélée fructueuse dans l'étude des fonctions cérébrales chez l'homme, pourtant elle a rarement été exploitée pour des applications de NF. Dans le cadre du NF, elle permet d'évaluer et de valider différents paradigmes de manière transmodale. Mais surtout, elle ouvre un champ de possibilités pour le développement de nouvelles approches de NF qui mélangeraient les deux modalités, soit à l'étape de calibration soit pour produire un signal de NF bimodal. La combinaison de l'EEG et de l'IRMf pose de nombreux défis relatifs à la physiologie, au design expérimental, à la qualité des données, ainsi qu'à leur analyse/intégration et leur interprétation. Ces défis sont d'autant plus grands si l'EEG et l'IRMf sont destinés à être utilisés simultanément pour le calcul du signal de NF, du fait de la contrainte de temps-réel et de la difficulté de définir des tâches expérimentales compatibles avec les natures divergentes de l'EEG et de l'IRMf. La partie théorique de cette thèse vise à identifier les aspects méthodologiques qui diffèrent entre le NF-EEG et le NF-IRMf ainsi qu'à examiner les motivations et les stratégies pour combiner l'EEG et l'IRMf dans le cadre du NF. Parmi ces différentes stratégies de combinaison, nous avons choisi de nous focaliser sur le NF-EEG-IRMf bimodal car il apparaît comme une approche prometteuse et n'a quasiment pas été étudié. La faisabilité de cette approche a récemment été démontrée, faisant ainsi place à un tout nouveau champ d'investigation. Cette thèse vise à répondre aux questions suivantes : quelle est la valeur ajoutée du NF bimodal par rapport au NF unimodal ; existe-t-il des mécanismes spécifiques engagés lorsqu'un individu apprend à contrôler deux signaux de NF ; comment intégrer l'EEG et l'IRMf pour produire un seul feedback ? La partie expérimentale de cette thèse se focalise donc sur le développement et l'évaluation de méthodes de NF-EEG-IRMf. Afin de conduire des expériences de NF bimodal, nous commençons par mettre en place une plateforme EEG-IRMf temps-réel. Ensuite, dans une première étude, nous comparons les effets du NF-EEG-IRMF, du NF-EEG et du NF-IRMf. Enfin, dans une seconde étude nous proposons et évaluons deux types de feedbacks intégrés pour le NF-EEG-IRMf. / NF is the process of feeding back real-time information to an individual about his/her ongoing brain activity, so that he/she can train to self-regulate neural substrates of specific behavioral functions. NF has been extensively studied for brain rehabilitation of patients with psychiatric and neurological disorders. However its effective deployment in the clinical armamentarium is being held back by the lack of evidence about its efficacy. One of the possible reason for the debated efficacy of current approaches could be the inherent limitations of single imaging modalities. Indeed, most NF approaches rely on the use of a single modality, EEG and fMRI being the two most widely used. While EEG is inexpensive and benefits from a high temporal resolution (millisecond), its spatial resolution (centimeters) is limited by volume conduction of the head and the number of electrodes. Also source localization from EEG is inaccurate because of the ill-posed inverse problem. In a complementary way, fMRI gives access to the self-regulation of specific brain regions at high spatial resolution (millimeter) but has low temporal resolution (second). Combined EEG-fMRI has proven much valuable for the study of human brain function, however it has rarely been exploited for NF purpose. In the context of NF, combining EEG and fMRI enables cross-modal paradigm evaluation and validation. But more interestingly it opens up avenues for the development of new NF approaches that would mix both modalities, either at the calibration phase or to provide a bimodal NF signal. Combined EEG-fMRI poses numerous challenges with regard to basic physiology, study design, data quality, analysis/integration and interpretation. These challenges are even greater if EEG and fMRI are both to be used simultaneously for online NF computation, because of the real-time constraint and the difficulty to find a task design compatible with EEG and fMRI' diverging natures. The theoretical part of this PhD dissertation aims at identifying methodological aspects that differ between EEG-NF and fMRI-NF and at examining the motivations and strategies for combining EEG and fMRI for NF purpose. Among these combination strategies, we choose to focus on bimodal EEG-fMRI-NF as it seems to be one of the most promising approach and is mostly unexplored. The feasibility of this approach was recently demonstrated and opened an entire new field of investigation. First and foremost, we would like to address the following questions: what is the added value of bimodal NF over unimodal NF; are there any specific mechanisms involved when learning to control two NF signals simultaneously; how to integrate EEG and fMRI to derive a single feedback ? The experimental part of this PhD dissertation therefore focuses on the development and evaluation of methods for bimodal EEG-fMRI-NF. In order to conduct bimodal NF experiments, we start by building up a real-time EEG-fMRI platform. Then in a first study, we compare for the first time bimodal EEG-fMRI-NF with unimodal EEG-NF and fMRI-NF. Eventually, in a second study, we introduce and evaluate two integrated feedback strategies for EEG-fMRI-NF.
32

Towards cognitive brain-computer interfaces : real-time monitoring of visual processing and control using electroencephalography / Vers des interfaces cerveau-machine cognitives : mesure en temps réel de l'activité visuelle et de son contrôle par électroencéphalographie

Gaume, Antoine 10 June 2016 (has links)
Les interfaces cerveau-machine (ICM) ouvrent des voies de communication alternatives entre le cerveau et son environnement. Elles peuvent être utilisées pour supplanter une fonction biologique défaillante ou pour permettre de nouveaux modes d’interaction à l’utilisateur. Les ICM de sortie, dont le fonctionnement se base sur la lecture de données biologiques, nécessitent la mesure de signaux de contrôle stables dans le temps et dans la population. La recherche de tels signaux et leur calibration sont des étapes clefs dans la conception d’une ICM. Cette étude s’intéresse en premier lieu aux ICM utilisant les potentiels évoqués visuels comme signaux de contrôle. Un modèle est proposé pour la prédiction individuelle de ces potentiels en régime permanent, c’est-à-dire lorsqu'ils sont issus d’une stimulation périodique. Ce modèle utilise une sommation linéaire corrigée en amplitude de la réponse à des stimulations visuelles discrètes pour prédire quantitativement la nature et la localisation spatiale de la réponse à des stimulations répétées. Les signaux modélisés sont ensuite utilisés en temps réel comme base de comparaison pour décoder les signaux électroencéphalographiques d’une ICM. Dans une deuxième partie, un paradigme est proposé pour le développement d’ICM cognitives, c’est-à-dire permettant la mesure de fonctions cérébrales de haut niveau. L’originalité du paradigme réside dans la volonté de mesurer la cognition en continu plutôt que son influence sur des événements discrets. Une expérience visant à discriminer différents états d’attention visuelle soutenue est proposée, avec l’ambition d’une mesure en temps réel pour le développement de systèmes de neurofeedback. / Brain-computer interfaces (BCIs) offer alternative communication pathways between the brain and its environment. They can be used to replace a defective biological function or to provide the user with new ways of interaction. Output BCIs, which are based on the reading of biological data, require the measurement of control signals as stable as possible in time and in the population. Identification and calibration of such signals are crucial steps in the conception of a BCI.The first part of this study focuses on BCIs using visual evoked potentials (VEPs) as control signals. A model is proposed to predict steady-state VEPs individually, i.e. to predict the response of a given subject’s brain to periodic visual stimulations. This model uses a linear summation of transient VEPs and an amplitude correction for quantitative prediction of the shape and spatial organization of the brain response to repeated stimulations. The simulated signals are then used as a basis of comparison for real-time decoding of electroencephalographic signals in a BCI.In the second part of this study, a paradigm is proposed for the development of cognitive BCIs, i.e. for the real-time measuring of high-level brain functions. The originality of the paradigm lies in the fact that correlates of cognition are measured continuously, instead of being observed on discrete events. An experiment with the purpose of discriminating between several levels of sustained visual attention is proposed, with the ambition of real-time measurement for the development of neurofeedback systems.
33

Using EEG in neurofeedbacktraining to decrease visual motionsensitivity and motion-sickness / Träning med EEG neurofeedback i syfte att minska känsligheten för visuell rörelse och åksjuka

Rúnarsson, Ódinn K. January 2021 (has links)
Patients who suffer from motion-sickness, visual vertigo and other conditions relating to visual hypersensitivity will often feel dizzy when exposed to rapid visual motion or cluttered fields-of-view. Previous studies indicate that attentiveness to these stimuli influence the intensity of discomfort for these individuals, which suggests that mentally ignoring visual stimuli might help make them more tolerable. This thesis project had two goals. The primary goal was the development of a visual biofeedback system for use with a commercial electroencephalographic headset and a personal computer. The secondary goal was to evaluate its usefulness for treating motion-sickness and other related illnesses through regular training sessions. A neurofeedback program was constructed using MATLAB and a Muse 2 Brain Sensing Headband (Muse). The program projected a spinning maze like pattern on a monitor where increase in velocity was proportional to increase in theta wave activity (3.5-6.5 Hz) detected by the Muse. Five test subjects (three men and two women) were given a copy of the program and a Muse, and then instructed to practice reducing their EEG activity (e.g. by calming themselves), which would be reflected in the program as a slower spin velocity of the maze. These practice sessions took place daily for seven days. Neurofeedback proficiency and body sway data was collected before and after. Mean spectral power data from the training regimen shows a 23.7% drop in theta wave activity from first session to last (p = 0.005). Using Pearson’s correlation, no significant results were obtained while comparing training improvements and proficiency test improvements (r = -0.22, p = 0.72) or reduction in body sway (r = 0.78, p = 0.12).
34

Détection automatisée des hallucinations auditives en IRM fonctionnelle et perspectives thérapeutiques dans la schizophrénie / Automated detection of auditory-verbal hallucinations with functional MRI and therapeutic prospects for schizophrenia

Fovet, Thomas 15 December 2017 (has links)
L’hallucination est une expérience subjective vécue en pleine conscience consistant en une perception impossible à distinguer d’une perception réelle, mais survenant en l’absence de tout stimulus en provenance de l’environnement externe. Les symptômes hallucinatoires, qui peuvent concerner toutes les modalités sensorielles, sont retrouvés dans divers troubles neurologiques et psychiatriques mais également chez certains sujets indemnes de toute pathologie. Dans le champ de la psychiatrie, la pathologie la plus fréquemment associée aux hallucinations reste la schizophrénie et la modalité auditive est la plus représentée, puisque 60 à 80% des patients souffrant de ce trouble sont concernés. Le retentissement fonctionnel des hallucinations auditives peut être important, altérant significativement la qualité de vie des patients.Dans ce contexte, la prise en charge de ce type de symptômes s’avère un enjeu considérable pour les personnes souffrant de schizophrénie. Pourtant, les moyens thérapeutiques actuellement disponibles (traitements médicamenteux antipsychotiques notamment) ne permettent pas toujours une rémission complète de la symptomatologie hallucinatoire et l’on considère que 25 à 30% des hallucinations auditives sont « pharmaco-résistantes ». C’est à partir de ce constat que, ces dernières années, ont émergé, pour le traitement des hallucinations auditives, des techniques de neuromodulation comme la stimulation magnétique transcrânienne répétée ou la stimulation électrique transcrânienne par courant continu. Toutefois, les résultats de ces nouvelles thérapies sur les hallucinations auditives résistantes restent modérés et le développement de stratégies alternatives demeure un enjeu de recherche majeur.Actuellement, les travaux en imagerie fonctionnelle permettent d'affiner les modèles physiopathologiques des hallucinations auditives, mais leur intérêt pourrait aller au-delà de la recherche fondamentale, avec possiblement des applications cliniques telles que l'assistance thérapeutique. Ce travail de thèse s’inscrit précisément dans le développement de l’imagerie cérébrale de « capture » des hallucinations auditives, c’est-à-dire l’identification des patterns d’activation fonctionnels associés à la survenue des hallucinations auditives.La première partie de ce travail est consacrée à la détection automatisée des hallucinations auditives en IRM fonctionnelle. L’identification des périodes hallucinatoires survenues au cours d’une session d’IRM fonctionnelle est actuellement possible par une méthode de capture semi-automatisée validée. Celle-ci permet une labellisation des données acquises au cours d’une session de repos en périodes « hallucinatoires » et « non-hallucinatoires ». Toutefois, le caractère long et fastidieux de cette méthode limite largement son emploi. Nous avons donc souhaité montrer comment les stratégies d’apprentissage machine (support vector machine ou SVM, notamment) permettent l’automatisation de cette technique par le développement de classificateurs performants, généralisables et associés à un faible coût de calcul (indispensable en vue d’une utilisation en temps réel). Nous proposons également le développement d’algorithmes de reconnaissance de la période « pré-hallucinatoire », en mettant en évidence que ce type de classificateur présente aussi des performances largement significatives. Enfin, nous avons pu montrer que l’utilisation de stratégies d’apprentissage-machine alternatives au SVM (e.g, le TV-Elastic-net), obtient des performances significativement supérieures au SVM [...] / Hallucination is a transient subjective experience perceived as real, but occurring in the absence of an appropriate stimulation coming from the external environment. Hallucinatory events, which can occur across every sensory modality, are observed in various neurological and psychiatric disorders but also among “non-clinical” populations. The most frequent disorder associated with hallucinations in the field of psychiatry is schizophrenia. Auditory-verbal experiences are particularly frequent, with a lifetime-prevalence of 60 to 80% in patients suffering from schizophrenia. Hallucinations may cause long-term disability and poorer quality of life.In this context, the management of auditory-verbal hallucinations in patients with schizophrenia constitutes a major challenge. However, despite the increasing sophistication of biological and psychosocial research methods in the field, no significant therapeutic breakthrough has occurred in the last decade and a consensus exists that a significant proportion of patients with schizophrenia (i.e., around 25 %), exhibit drug-resistant auditory-verbal hallucinations. Non-pharmacological treatments, such as repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) have been proposed as an option for addressing the unmet medical needs described above. However, these neuromodulation techniques show a moderate effect in alleviating drug-resistant auditory-verbal hallucinations and the development of innovative therapeutic strategies remains a major challenge.In recent years, the number of brain imaging studies in the field of auditory-verbal hallucinations has grown substantially, leading to a better pathophysiological understanding of this subjective phenomenon. Recent progress in deciphering the neural underpinnings of AVHs has strengthened transdiagnostic neurocognitive models that characterize auditory-verbal hallucinations, but more specifically these findings built the bases for new therapeutic strategies. In this regards the development of auditory hallucinations “capture" brain-imaging studies (i.e. the identification of functional patterns associated with the occurrence of auditory hallucinations), was the main topic of this thesis.The first part of this work is devoted to the automatized detection of auditory-verbal hallucinations using functional MRI (fMRI). The identification of hallucinatory periods occurring during a fMRI session is now possible using a semi-automatized procedure based on an independent component analysis applied to resting fMRI data combined with a post-fMRI interview (i.e. the patient is asked to report auditory-verbal hallucinations immediately after acquisition). This “two-steps method” allows for the identification of hallucination periods (ON) and non-hallucination ones (OFF). However, the time-consuming nature of this a posteriori labelling procedure considerably limits its use. In these regards, we show how machine-learning, especially support vector machine (SVM), allows the automation of hallucinations capture. We present new results of accurate and generalizable classifiers which could be used in real-time because of their low computational-cost. We also highlight that algorithms able to identify the "pre-hallucinatory" period exhibit significant performances. Finally, we propose the use of an alternative learning-machine strategy, based on TV-Elastic-net, which achieves slightly better performances and more interpretable discriminative maps than SVM [...]
35

Network-based fMRI-neurofeedback training applied to sustained attention / Treinamento por fMRI-neurofeedback baseado em redes aplicado à atenção sustentada

Pamplona, Gustavo Santo Pedro 10 September 2018 (has links)
Attention is a key mental function in everyday life, but unfortunately we easily get distracted. The brain correlates underlying sustained attention, the so-called sustained attention network (SAN), have been well identified, as have the brain correlates underlying mind-wandering, the so-called default mode network (DMN). Nevertheless, even though we know about the underlying brain processes, this knowledge has not yet been translated in advanced brain-based attention training protocols. Here we proposed to use a novel brain imaging technique based on real-time functional magnetic resonance imaging (fMRI) to provide individuals with information about ongoing levels of activity in the attention and the default mode networks. To the best of our knowledge, this is the first study to show that, with the help of that fMRI-neurofeedback, individuals can learn how to improve controlling of, at the same time, SAN activation and DMN deactivation. This learning process was explained mainly in terms of DMN deactivation. Behavioral effects were observed when separating a group with the best learners in an overall measure of attention and specifically in the task-switching ability, controlled by a test-retest group performing the same behavioral tests battery. Neurofeedback-induced functional connectivity changes were also observed in multiple brain regions positively and negatively related to attention. Although the behavioral effects were no longer present two months after training, participants still held the learned ability of controlling self-regulation of the concerned networks. This approach potentially provides a non-invasive and non-pharmacological tool to deliver general enhancements in the attention ability for healthy subjects and it can be potentially beneficial to many neurological and psychiatric patients. We also show in this thesis compelling evidence that brain regions definition and other experimental parameters are crucial for inducing learning of self-regulation via fMRI-neurofeedback, in a similar study also considering differential signal of attention-related competitive networks. We finally present Personode, a useful, easy to use, and open access toolbox to neuroimaging researchers, for independent component analysis maps classification into canonical resting-state networks and regions-of--interest definition in individual and group levels. We also show that the toolbox leads to better results for task-induced activation and functional connectivity analyses. / A atenção é uma função mental crucial na vida cotidiana, mas infelizmente distrai-se facilmente. Os fundamentos cerebrais que sustentam a atenção, a chamada rede de atenção, foram satisfatoriamente identificados, assim como os fundamentos cerebrais que sustentam a divagação, a chamada rede de modo padrão. Entretanto, embora tais processos sejam conhecidos, este conhecimento ainda não foi transformado em protocolos avançados de treinamento de atenção baseado na atividade cerebral. Portanto, é proposto o uso de uma nova técnica baseada em imageamento por ressonância funcional (fMRI) em tempo real para proporcionar aos indivíduos informação sobre os níveis de atividade cerebral atuais nas redes de atenção e de modo padrão. Segundo nosso conhecimento atual, esse é o primeiro estudo a mostrar que, com o auxílio do neurofeedback baseado em fMRI, indivíduos podem aprender como melhorar o controle da ativação da rede de atenção e da desativação da rede de modo padrão ao mesmo tempo. Este processo de treinamento poderia ser explicado principalmente em termos da desativação da rede de modo padrão. Efeitos comportamentais foram observados, ao separar um grupo com os melhores aprendizes, em uma medida de atenção geral e, especificamente, na habilidade de alternação de tarefas, controlado por um grupo teste-reteste realizando a mesma bateria de testes comportamentais. Alterações em conectividade funcional induzidas por neurofeedback foram também reveladas em múltiplas regiões cerebrais positiva e negativamente relacionadas à atenção. Embora os efeitos comportamentais não puderam ser constatados depois de dois meses após o treinamento, os participantes ainda mantiveram a habilidade de controlar a autorregulação das redes em questão. Esse método provê uma ferramenta não-invasiva e não-farmacológica para proporcionar melhorias gerais na habilidade de atenção para sujeitos saudáveis, o que pode ser potencialmente benéfico para muitos pacientes de desordens neurológicas e psiquiátricas. Nesta tese, são mostradas evidências convincentes de que a definição de redes cerebrais e outros parâmetros experimentais de neurofeedback baseado em fMRI são decisivos para a indução do aprendizado de autorregulação, em um estudo similar, também considerando o sinal diferencial de redes competitivas relacionadas à atenção. Finalmente, é apresentado Personode, uma ferramenta útil, de fácil utilização e de livre acesso direcionado a pesquisadores em neuroimagem, para classificação de mapas produzidos por uma análise de componentes independentes em redes de repouso canônicas e definições de regiões de interesse em níveis individuais e de grupo. É também mostrado que a ferramenta conduz a melhores resultados para análises de ativação induzida à tarefa e conectividade funcional.
36

Softwareframework zur universellen Methodenentwicklung für ein fMRT- BCI: Adaptive Paradigmen und Echtzeitdatenanalyse

Hellrung, Lydia 04 May 2015 (has links) (PDF)
Die funktionelle Magnetresonanztomographie (fMRT) ist ein nicht-invasives Bildgebungsverfahren, mit dem Veränderungen der neuronalen Aktivität im Gehirn mit hoher räumlicher Auflösung erfasst werden können. Mit der fMRT-Bildgebung bei neurowissenschaftlichen Experimenten wurden in den letzten beiden Jahrzehnten bedeutende Erkenntnisse für die Hirnforschung und Medizin gewonnen. Mit Hilfe dieser Methode werden neuronale Aktivitätsunterschiede bei der Durchführung einer bestimmten Aufgabe, z. B. dem Betrachten von Bildern mit emotionalen Inhalten, erfasst und die Daten unabhängig von der Messung zu einem späteren Zeitpunkt statistisch ausgewertet. Mit Hilfe des technischen Fortschritts im letzten Jahrzehnt ist es darüber hinaus möglich geworden, fMRT-Daten direkt zur Aufnahmezeit zu verarbeiten und auszuwerten. Dies wird als Echtzeit-fMRT bezeichnet, wenn die Datenverarbeitung schneller erfolgt als die Aufnahme eines Hirnvolumens (aktuell ca. zwei Sekunden). Die Ergebnisse der Echtzeitdatenverarbeitung können dann wiederum als Steuerbefehle für verschiedene Anwendungen verwendet werden. Daher wird dies auch als Hirn-Computer-Schnittstelle (Brain Computer Interface, BCI) mittels fMRT bezeichnet. Die Echtzeitverarbeitung von fMRT-Daten ermöglicht mehrere neue Anwendungen. Dazu gehören unter anderem die Qualitätskontrolle zur Laufzeit von fMRT-Experimenten, die schnelle funktionelle Lokalisierung von Hirnarealen entweder für neurowissenschaftliche Experimente oder intraoperativ, die Kontrolle des Experimentes mittels des Probandenverhaltens und insbesondere die Möglichkeit, sogenannte fMRT-Neurofeedbackexperimente durchzuführen. Bei diesen Experimenten lernen Probanden, die Aktivität von definierten Hirnarealen willentlich zu beeinflussen. Das Ziel dabei ist, Veränderungen in ihrem Verhalten zu generieren. Die Umsetzung eines BCIs mittels Echtzeit-fMRT ist eine interdisziplinäre Aufgabenstellung von MR-Physik, Informatik und Neurowissenschaften um das Verständnis des menschlichen Gehirns zu verbessern und neue Therapieansätze zu gestalten. Für diese hard- und softwaretechnisch anspruchsvolle Aufgabe gibt es einen enormen Bedarf an neuen Algorithmen zur Datenverarbeitung und Ansätzen zur verbesserten Datenakquise. In diesem Zusammenhang präsentiert die vorliegende Arbeit ein neues Softwareframework, das einerseits eine integrierte Gesamtlösung für die Echtzeit-fMRT darstellt und in seinen Teilmodulen eine abstrakte Basis für eine universelle Methodenentwicklung anbietet. Diese Arbeit beschreibt die grundlegenden abstrakten Konzepte und die Implementierung in ein neues Softwarepaket namens ’Brain Analysis in Real-Time’ (BART). Der Fokus der Arbeit liegt auf zwei Kernmodulen, die für universelle Gestaltung von sogenannten adaptiven Paradigmen und die Einbindung von Echtzeit-fMRT-Datenverarbeitungsalgorithmen konzipiert sind. Bei adaptiven Paradigmen werden zur Laufzeit eines Experiments physiologische Parameter (z. B. Herzrate) oder Verhaltensdaten (z. B. Augenbewegungen) simultan zu den fMRT-Daten erfasst und analysiert, um die Stimulation eines Probanden entsprechend zu adaptieren. Damit kann die Zuverlässigkeit der Daten, die zur Auswertung zur Verfügung stehen, optimiert werden. Die vorliegende Arbeit präsentiert das dazu notwendige abstrakte Grundkonzept des neuen Softwareframeworks und die ersten konkreten Implementierungen für die Datenverarbeitung und adaptive Paradigmen. Das Framework kann zukünftig mit neuen methodischen Ideen erweitert werden. Dazu gehören die Einbindung neuer Datenverarbeitungsalgorithmen, wie z. B. Konnektivitätsanalysen und die Adaption von Paradigmen durch weitere physiologische Parameter. Dabei ist insbesondere die Kombination mit EEG-Signalen von großem Interesse. Außerdem bietet das System eine universelle Grundlage für die zukünftige Arbeit an Neurofeedbackexperimenten. Das in dieser Arbeit entwickelte Framework bietet im Vergleich zu bisher vorgestellten Lösungsansätzen ein Ein-Computer-Setup mit einem erweiterbaren Methodenspektrum. Damit wird die Komplexität des notwendigen technischen Setups reduziert und ist nicht auf einzelne Anwendungsfälle beschränkt. Es können flexibel neue Datenverarbeitungsalgorithmen für ein fMRT-BCI eingebunden und vielgestaltige Anwendungsfälle von adaptiven Paradigmen konzipiert werden. Eine Abstraktion der Stimulation und die Kombination mit der Echtzeitauswertung ist bisher einzigartig für neurowissenschaftliche Experimente. Zusätzlich zu den theoretischen und technischen Erläuterungen werden im empirischen Teil der vorliegenden Arbeit neurowissenschaftliche Experimente, die mit dem Softwarepaket BART durchgeführt wurden, vorgestellt und deren Ergebnisse erläutert. Dabei wird die Zuverlässigkeit und Funktionsweise der Implementierung in allen Teilschritten der Datenerfassung und -verarbeitung validiert. Die Ergebnisse verifizieren die Implementierung einer parallelisierten fMRT-Analyse.Weiterhin wird eine erste konkrete Umsetzung für ein adaptives Paradigma vorgestellt, bei dem zur Laufzeit die Blickrichtung der Probanden berücksichtigt wird. Die Ergebnisse zeigen die signifikanten Verbesserungen der Reliabilität der fMRT-Ergebnisse aufgrund der optimierten Datenqualität durch die Adaption des Paradigmas. Zusammengefasst umfasst die vorliegende Arbeit eine interdisziplinäre Aufgabe, die sich aus der Verarbeitung von MR-Daten in Echtzeit, einem neuen abstraktes Softwarekonzept für Entwicklung neuer methodischer Ansätze und der Durchführung von neurowissenschaftlichen Experimenten zusammensetzt.
37

Voluntary control of neural oscillations in the human brain / Contrôle volontaire des oscillations neuronales dans le cerveau humain

Corlier-Bagdasaryan, Juliana 08 December 2015 (has links)
Introduction. Les animaux et les humains sont capables de moduler leur propre activité cérébrale, pourvu que leur soit donné un retour sensoriel en temps-réel de celle-ci. La gamme des activités contrôlables s’étend des rythmes oscillatoires, à la réponse hémodynamique , au taux de décharge des neurones ou même au signal calcique associé aux potentiels d’action. Le contrôle volontaire des activités neuronales, facilité par le plan expérimental d’un paradigme en boucle fermée, est au cœur de l’interaction corps-esprit et peut être utilisé pour adresser des questions philosophiques. Mais comme de nombreuses études l’ont démontré, les interfaces homme-machine sont aussi un outil puissant dans la réhabilitation motrice, la gestion de la douleur, la régulation des émotions, ou encore l’amélioration de la mémoire. Étant donné que la plupart des études a été conduite sur les sujets humains avec des techniques non-invasives, les mécanismes neurophysiologiques de l’autorégulation neuronale sont restés mal connus. L’objectif principal de ce travail était donc d’élaborer une description des principes physiologiques sous-tendant cette technique.Objectifs. D’après la théorie des oscillations neuronales à des multiples niveaux, la présente enquête était principalement définie par les questions suivantes : 1) Quels sont les marqueurs physiologiques du contrôle volontaire des activités neuronales? 2) Existe t-il des échelles spatiotemporelle plus facilement modulables que d’autres? 3) Les effets de l’entrainement sont –ils spécifiques ou généralisables en espace et fréquence ? et 4) Quelles sont les stratégies cognitives efficace pour contrôler les activités oscillatoires parmi plusieurs sujets ? Pour adresser ces questions, dans mon travail j’ai utilisé les enregistrements intracérébraux avec des macro- et micro-électrodes chez les patients épileptiques dans le cadre d’un bilan pré-chirurgical. / Introduction. Animals and humans are capable to modulate their own brain activity if they are provided with real-time sensory feedback thereof. The range of controllable neural activities reaches from oscillatory brain rhythms, over hemodynamic response function to the firing of single neurons or even action-potential associated calcium signals. The voluntary control of neural activity facilitated by this ‘closed-loop’ experimental paradigm is at the very heart of the mind-body interaction and can be used to address philosophical questions. But as numerous successful applications of neurofeedback and brain-computer interfaces have demonstrated, it is also a powerful tool in motor rehabilitation, pain management, emotion regulation or memory improvement. Because most previous studies were conducted on humans using non-invasive recordings techniques, the neurophysiological mechanisms of neural self-regulation remained obscure. The main objective of the present work was thus to provide a better understanding of its underlying principles. Objectives. Following a multiscale theoretical framework of neural oscillations, the present investigation was largely guided by the following questions: 1) What are the physiological markers of successful control? 2) Are some regions or spatiotemporal scales more easily controllable than others? 3) Are training effects specific or generalized? and 4) What are subject-invariant successful cognitive strategies of neural self-control? To address these questions, we took advantage of intracerebral macro- and micro-electrode recordings in epileptic patients undergoing long-term monitoring in the presurgical context.
38

Amygdala Regulation Following fMRI-Neurofeedback without Instructed Strategies

Marxen, Michael, Jacob, Mark J., Müller, Dirk K., Posse, Stefan, Ackley, Elena, Hellrung, Lydia, Riedel, Philipp, Bender, Stephan, Epple, Robert, Smolka, Michael N. 10 January 2017 (has links) (PDF)
Within the field of functional magnetic resonance imaging (fMRI) neurofeedback, most studies provide subjects with instructions or suggest strategies to regulate a particular brain area, while other neuro-/biofeedback approaches often do not. This study is the first to investigate the hypothesis that subjects are able to utilize fMRI neurofeedback to learn to differentially modulate the fMRI signal from the bilateral amygdala congruent with the prescribed regulation direction without an instructed or suggested strategy and apply what they learned even when feedback is no longer available. Thirty-two subjects were included in the analysis. Data were collected at 3 Tesla using blood oxygenation level dependent (BOLD)-sensitivity optimized multi-echo EPI. Based on the mean contrast between up- and down-regulation in the amygdala in a post-training scan without feedback following three neurofeedback sessions, subjects were able to regulate their amygdala congruent with the prescribed directions with a moderate effect size of Cohen’s d = 0.43 (95% conf. int. 0.23–0.64). This effect size would be reduced, however, through stricter exclusion criteria for subjects that show alterations in respiration. Regulation capacity was positively correlated with subjective arousal ratings and negatively correlated with agreeableness and susceptibility to anger. A learning effect over the training sessions was only observed with end-of-block feedback (EoBF) but not with continuous feedback (trend). The results confirm the above hypothesis. Further studies are needed to compare effect sizes of regulation capacity for approaches with and without instructed strategies.
39

Brain Computer Interface (BCI) : - Översiktsartikel utifrån ett neuropsykologiskt perspektiv med tillämpningar och enkätundersökning / Brain Computer Interface (BCI) : - a review article within a neuropsychological perspective with applications and survey

Lind, Carl Jonas January 2020 (has links)
Syftet med uppsatsen är att ge en uppdaterad översikt av området BCI (Brain Computer Interface) och undersöka vad som hänt sedan begreppet introducerades i forskningssammanhang; vilka praktiska resultat forskningen lett till och vilka tillämpningar som tillkommit. Metoden som företrädesvis används är litteraturstudie som tecknar bakgrund och enkät. Därefter följer en diskussion där utmaningar för framtiden, potential och tillämpningar i BCI-tekniken behandlas utifrån ett neuropsykologiskt perspektiv. Kommer BCI-tekniken att implementeras på samma sätt som radio, TV och telekommunikationer i samhället och vilka etiska och tekniska problem finns idag. För att skildra allmänhetens uppfattning om BCI genomfördes en webbaserad enkätundersökning (survey) i form av pilotstudie (n=32) som syftar till att ge en indikation på attityder och hur allmänhetens opinion med avseende på tillämpningar i samtiden och jämförelser med avseende på teknisk bakgrund.
40

Amygdala Regulation Following fMRI-Neurofeedback without Instructed Strategies

Marxen, Michael, Jacob, Mark J., Müller, Dirk K., Posse, Stefan, Ackley, Elena, Hellrung, Lydia, Riedel, Philipp, Bender, Stephan, Epple, Robert, Smolka, Michael N. 10 January 2017 (has links)
Within the field of functional magnetic resonance imaging (fMRI) neurofeedback, most studies provide subjects with instructions or suggest strategies to regulate a particular brain area, while other neuro-/biofeedback approaches often do not. This study is the first to investigate the hypothesis that subjects are able to utilize fMRI neurofeedback to learn to differentially modulate the fMRI signal from the bilateral amygdala congruent with the prescribed regulation direction without an instructed or suggested strategy and apply what they learned even when feedback is no longer available. Thirty-two subjects were included in the analysis. Data were collected at 3 Tesla using blood oxygenation level dependent (BOLD)-sensitivity optimized multi-echo EPI. Based on the mean contrast between up- and down-regulation in the amygdala in a post-training scan without feedback following three neurofeedback sessions, subjects were able to regulate their amygdala congruent with the prescribed directions with a moderate effect size of Cohen’s d = 0.43 (95% conf. int. 0.23–0.64). This effect size would be reduced, however, through stricter exclusion criteria for subjects that show alterations in respiration. Regulation capacity was positively correlated with subjective arousal ratings and negatively correlated with agreeableness and susceptibility to anger. A learning effect over the training sessions was only observed with end-of-block feedback (EoBF) but not with continuous feedback (trend). The results confirm the above hypothesis. Further studies are needed to compare effect sizes of regulation capacity for approaches with and without instructed strategies.

Page generated in 0.0333 seconds