• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 11
  • 11
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence de l'inhibition synaptique sur le codage de l'information par les cellules mitrales du bulbe olfactif / Influence of the synaptic inhibition on the information processing of olfactory bulb mitral cells

Ambard, Maxime 08 June 2009 (has links)
Le bulbe olfactif est principalement constitué de neurones excitateurs, dits cellules mitrales, interconnectés via des inter-neurones inhibiteurs, dits cellules granulaires. L'analyse de données expérimentales recueillies en condition in vitro dans des tranches de bulbe olfactif de rats révèle que le caractère phasé des potentiels d'action des cellules mitrales relativement aux oscillations du potentiel de champ local est largement atténué lorsque l'on bloque pharmacologiquement l'inhibition provenant des granules, mettant ainsi en évidence le rôle primordial de l'inhibition synaptique. Les fluctuations de la conductance synaptique inhibitrice sont corrélées à celles mesurées sur le potentiel de champ local. Une relation entre l'inhibition reçue et la phase des potentiels d'action est dévoilée. Un neurone aura plus de chance d'émettre en phase s'il reçoit un nombre important d'événements synaptiques inhibiteurs et si ces événements sont eux-même phasés. Ces résultats sont rassemblés au sein d'un modèle informatique de bulbe olfactif afin d'explorer les capacités de codage de l'interaction mitrale-granule. Après avoir montré que le transfert d'information des cellules mitrales semble plus résider dans leurs instants précis d'émission de potentiels d'action au cours des oscillations que dans leurs fréquences de décharges, une étude analytique conclut que la robustesse du code produit par les cellules mitrales lors des oscillations du réseau est conditionnée par une forte interaction synaptique. Nous appliquons notre modèle de bulbe olfactif pour reconnaître des odeurs à l'aide d'une matrice de capteurs de gaz artificiels. / The olfactory bulb is mainly composed of excitatory cells, called mitral cells, interconnected via local inhibitory neurons, called granule cells. The analysis of electrophysiological data, recorded in vitro from rat olfactory bulb slices, shows that mitral cell firing is phase-locked to the fast local field potential oscillation. This phase-locking is largely reduced when the inhibitory synaptic conductance is pharmacologically blocked, hence highlighting the important role of synaptic inhibition. We find that the inhibitory conductance fluctuations are correlated to the local field potential oscillations. A relationship between the received inhibition and the phase of mitral action potentials is also revealed. The probability to fire a phase-locked action potential increases if the neuron receives a large number of inhibitory synaptic events, and if these events are themselves phase-locked. Results from the previous analysis are used to design a computational model of the olfactory bulb in order to explore the encoding capacity of the mitral-granule interplay. It appears likely that mitral cells encode information in precise spike timings rather than in firing rates. We therefore study analytically the influence of the number and the temporal dispersion of the received inhibitory synaptic events on the spike timing precision of mitral cells. Our study concludes that spike timing precision requires a strong synaptic coupling between mitral and granule cells. Lastly, our olfactory bulb model is applied to the recognition of odours by using an array of artificial gas sensors.
2

Méthode de calcul et implémentation d’un processeur neuromorphique appliqué à des capteurs évènementiels / Computational method and neuromorphic processor design applied to event-based sensors

Mesquida, Thomas 20 December 2018 (has links)
L’étude du fonctionnement de notre système nerveux et des mécanismes sensoriels a mené à la création de capteurs événementiels. Ces capteurs ont un fonctionnement qui retranscrit les atouts de nos yeux et oreilles par exemple. Cette thèse se base sur la recherche de méthodes bio-inspirés et peu coûteuses en énergie permettant de traiter les données envoyées par ces nouveaux types de capteurs. Contrairement aux capteurs conventionnels, nos rétines et cochlées ne réagissent qu’à l’activité perçue dans l’environnement sensoriel. Les implémentations de type « rétine » ou « cochlée » artificielle, que nous appellerons capteurs dynamiques, fournissent des trains d’évènements comparables à des impulsions neuronales. La quantité d’information transmise est alors étroitement liée à l’activité présentée, ce qui a aussi pour effet de diminuer la redondance des informations de sortie. De plus, n’étant plus contraint à suivre une cadence d’échantillonnage, les événements créés fournissent une résolution temporelle supérieure. Ce mode bio-inspiré de retrait d’information de l’environnement a entraîné la création d’algorithmes permettant de suivre le déplacement d’entité au niveau visuel ou encore reconnaître la personne parlant ou sa localisation au niveau sonore, ainsi que des implémentations d’environnements de calcul neuromorphiques. Les travaux que nous présentons s’appuient sur ces nouvelles idées pour créer de nouvelles solutions de traitement. Plus précisément, les applications et le matériel développés s’appuient sur un codage temporel de l’information dans la suite d'événements fournis par le capteur. / Studying how our nervous system and sensory mechanisms work lead to the creation of event-driven sensors. These sensors follow the same principles as our eyes or ears for example. This Ph.D. focuses on the search for bio-inspired low power methods enabling processing data from this new kind of sensor. Contrary to legacy sensors, our retina and cochlea only react to the perceived activity in the sensory environment. The artificial “retina” and “cochlea” implementations we call dynamic sensors provide streams of events comparable to neural spikes. The quantity of data transmitted is closely linked to the presented activity, which decreases the redundancy in the output data. Moreover, not being forced to follow a frame-rate, the created events provide increased timing resolution. This bio-inspired support to convey data lead to the development of algorithms enabling visual tracking or speaker recognition or localization at the auditory level, and neuromorphic computing environment implementation. The work we present rely on these new ideas to create new processing solutions. More precisely, the applications and hardware developed rely on temporal coding of the data in the spike stream provided by the sensors.
3

Une première vague de potentiels d'action, une première vague idée de la scène visuelle - rôle de l'asynchronie dans le traitement rapide de l'information visuelle.

Vanrullen, Rufin 26 September 2000 (has links) (PDF)
La durée d'analyse d'une scène visuelle complexe constitue une contrainte biologique fondamentale pour les modèles théoriques du traitement neuronal de l'information visuelle. La mesure d'indices psychophysiques et électrophysiologiques lors d'une tâche de catégorisation visuelle rapide permet de démontrer que le système visuel humain transforme une scène visuelle complexe en une représentation de haut niveau, portant une valeur sémantique ou comportementale, en seulement 150 ms. Ce résultat est indépendant du caractère naturel ou artificiel de la catégorie cible utilisée. L'activité cérébrale enregistrée avant 150 ms reflète les propriétés physiques du stimulus, et n'est pas corrélée avec le comportement du sujet. D'un point de vue théorique, quels mécanismes neuronaux peuvent sous-tendre une telle capacité?<br />L'architecture hiérarchique du système visuel des primates et les délais de conduction électrique suggèrent que l'information visuelle circule majoritairement vers l'avant, et qu' un seul potentiel d'action par neurone pourra coder l'information entre 2 étapes successives. Ceci exclut le codage par fréquence d'émission de potentiels d'action, classiquement utilisé par les modèles de la vision. J'illustre cependant le fait que l'information visuelle peut être encodée par les dates relatives d'émission des potentiels d'action sur une population neuronale, l'information la plus saillante étant toujours représentée par les premières décharges. La structure temporelle de la première vague de potentiels d'action générée par la rétine en réponse à une stimulation visuelle peut porter explicitement l'information. Cette vague se propageant à travers le système est régénérée à chaque étape de traitement, et sa structure temporelle peut être modifiée par (i) la sélectivité des neurones corticaux, (ii) des interactions latérales et (iii) des influences attentionnelles provenant d'aires cérébrales centrales.
4

Mécanismes d'apprentissage pour expliquer la rapidité, la sélectivité et l'invariance des réponses dans le cortex visuel

Masquelier, Timothée 15 February 2008 (has links) (PDF)
Dans cette thèse je propose plusieurs mécanismes de plasticité synaptique qui pourraient expliquer la rapidité, la sélectivité et l'invariance des réponses neuronales dans le cortex visuel. Leur plausibilité biologique est discutée. J'expose également les résultats d'une expérience de psychophysique pertinente, qui montrent que la familiarité peut accélérer les traitements visuels. Au delà de ces résultats propres au système visuel, les travaux présentés ici créditent l'hypothèse de l'utilisation des dates de spikes pour encoder, décoder, et traiter l'information dans le cerveau – c'est la théorie dite du ‘codage temporel'. Dans un tel cadre, la Spike Timing Dependent Plasticity pourrait jouer un rôle clef, en détectant des patterns de spikes répétitifs et en permettant d'y répondre de plus en plus rapidement.
5

Influence de l'inhibition synaptique sur le codage de l'information par les cellules mitrales du bulbe olfactif

Ambard, Maxime 08 June 2009 (has links) (PDF)
Cette thèse étudie l'encodage de l'information sensorielle par les cellules relais du bulbe olfactif avec une approche associant analyse de données expérimentales et modélisation informatique. Le bulbe olfactif est principalement constitué de neurones excitateurs, dits cellules mitrales, interconnectés via des inter-neurones inhibiteurs, dits cellules granulaires.<br /><br />Dans un premier temps, l'analyse de données expérimentales recueillies en condition in vitro dans des tranches de bulbe olfactif de rats révèle le caractère phasé des potentiels d'action des cellules mitrales relativement aux oscillations du potentiel de champ local. Ce phasage est largement atténué lorsque l'on bloque pharmacologiquement l'inhibition provenant des granules, mettant ainsi en évidence le rôle primordial de l'inhibition synaptique. Afin d'extraire le décours temporel de la conductance synaptique inhibitrice, nous proposons une nouvelle méthode basée sur l'ajustement d'un modèle de neurone associé à l'injection de bloqueurs synaptiques. Grâce à celle-ci, nous observons que les fluctuations de la conductance synaptique inhibitrice sont corrélées à celles mesurées sur le potentiel de champ local. Une relation entre l'inhibition reçue et la phase des potentiels d'action est également dévoilée. Un neurone aura plus de chance d'émettre en phase s'il reçoit un nombre important d'événements synaptiques inhibiteurs et si ces événements sont eux-même phasés.<br /><br />Dans un deuxième temps, les résultats de cette analyse sont rassemblés au sein d'un modèle informatique de bulbe olfactif afin d'explorer les capacités de codage de l'interaction mitrale-granule. Après avoir montré que le transfert d'information des cellules mitrales semble plus résider dans leurs instants précis d'émission de potentiels d'action au cours des oscillations que dans leurs fréquences de décharges, nous étudions analytiquement l'influence du nombre d'événements synaptiques inhibiteurs reçus et de leur dispersion temporelle sur la précision de l'activité des cellules mitrales. Notre étude conclut que la robustesse du code produit par les cellules mitrales lors des oscillations du réseau est conditionnée par une forte interaction synaptique entre les cellules mitrales et les cellules granulaires. En dernier lieu, nous appliquons notre modèle de bulbe olfactif pour reconnaître des odeurs à l'aide d'une matrice de capteurs de gaz artificiels.
6

Contribution à la conception d'architecture de calcul auto-adaptative intégrant des nanocomposants neuromorphiques et applications potentielles

Bichler, Olivier 14 November 2012 (has links) (PDF)
Dans cette thèse, nous étudions les applications potentielles des nano-dispositifs mémoires émergents dans les architectures de calcul. Nous montrons que des architectures neuro-inspirées pourraient apporter l'efficacité et l'adaptabilité nécessaires à des applications de traitement et de classification complexes pour la perception visuelle et sonore. Cela, à un cout moindre en termes de consommation énergétique et de surface silicium que les architectures de type Von Neumann, grâce à une utilisation synaptique de ces nano-dispositifs. Ces travaux se focalisent sur les dispositifs dit "memristifs", récemment (ré)-introduits avec la découverte du memristor en 2008 et leur utilisation comme synapse dans des réseaux de neurones impulsionnels. Cela concerne la plupart des technologies mémoire émergentes : mémoire à changement de phase - "Phase-Change Memory" (PCM), "Conductive-Bridging RAM" (CBRAM), mémoire résistive - "Resistive RAM" (RRAM)... Ces dispositifs sont bien adaptés pour l'implémentation d'algorithmes d'apprentissage non supervisés issus des neurosciences, comme "Spike-Timing-Dependent Plasticity" (STDP), ne nécessitant que peu de circuit de contrôle. L'intégration de dispositifs memristifs dans des matrices, ou "crossbar", pourrait en outre permettre d'atteindre l'énorme densité d'intégration nécessaire pour ce type d'implémentation (plusieurs milliers de synapses par neurone), qui reste hors de portée d'une technologie purement en "Complementary Metal Oxide Semiconductor" (CMOS). C'est l'une des raisons majeures pour lesquelles les réseaux de neurones basés sur la technologie CMOS n'ont pas eu le succès escompté dans les années 1990. A cela s'ajoute la relative complexité et inefficacité de l'algorithme d'apprentissage de rétro-propagation du gradient, et ce malgré tous les aspects prometteurs des architectures neuro-inspirées, tels que l'adaptabilité et la tolérance aux fautes. Dans ces travaux, nous proposons des modèles synaptiques de dispositifs memristifs et des méthodologies de simulation pour des architectures les exploitant. Des architectures neuro-inspirées de nouvelle génération sont introduites et simulées pour le traitement de données naturelles. Celles-ci tirent profit des caractéristiques synaptiques des nano-dispositifs memristifs, combinées avec les dernières avancées dans les neurosciences. Nous proposons enfin des implémentations matérielles adaptées pour plusieurs types de dispositifs. Nous évaluons leur potentiel en termes d'intégration, d'efficacité énergétique et également leur tolérance à la variabilité et aux défauts inhérents à l'échelle nano-métrique de ces dispositifs. Ce dernier point est d'une importance capitale, puisqu'il constitue aujourd'hui encore la principale difficulté pour l'intégration de ces technologies émergentes dans des mémoires numériques.
7

Hybridation des réseaux de neurones : de la conception du réseau à l’interopérabilité des systèmes neuromorphiques

Ambroise, Matthieu 07 December 2015 (has links)
L’hybridation est une technique qui consiste à interconnecter un réseau de neurones biologique et un réseau de neurones artificiel, utilisée dans la recherche en neuroscience et à des fins thérapeutiques. Durant ces trois années de doctorat, ce travail de thèse s’est focalisé sur l’hybridation dans un plan rapproché (communication directe bi-directionnelle entre l’artificiel et le vivant) et dans un plan plus élargies (interopérabilité des systèmes neuromorphiques). Au début des années 2000, cette technique a permis de connecter un système neuromorphique analogique avec le vivant. Ce travail est dans un premier temps, centré autour de la conception d’un réseau de neurones numérique, en vue d’hybridation, dans deux projets multi-disciplinaires en cours dans l’équipe AS2N de l’IMS, présentés dans ce document : HYRENE (ANR 2010-Blan-031601), ayant pour but le développement d’un système hybride de restauration de l’activité motrice dans le cas d’une lésion de la moelle épinière, BRAINBOW (European project FP7-ICT-2011-C), ayant pour objectif l’élaboration de neuro-prothèses innovantes capables de restaurer la communication autour de lésions cérébrales.Possédant une architecture configurable, un réseau de neurones numérique a été réalisé pour ces deux projets. Pour le premier projet, le réseau de neurones artificiel permet d’émuler l’activitéde CPGs (Central Pattern Generator), à l’origine de la locomotion dans le règne animale. Cette activité permet de déclencher une série de stimulations dans la moelle épinière lésée in vitro et de recréer ainsi la locomotion précédemment perdue. Dans le second projet, la topologie du réseau de neurones sera issue de l’analyse et le décryptage des signaux biologiques issues de groupes de neurones cultivés sur des électrodes, ainsi que de modélisations et simulations réalisées par nos partenaires. Le réseau de neurones sera alors capable de réparer le réseau de neurones lésé. Ces travaux de thèse présentent la démarche de conception des deux différents réseaux et des résultats préliminaires obtenus au sein des deux projets. Dans un second temps, ces travaux élargissent l’hybridation à l’interopérabilité des systèmes neuromorphiques. Au travers d’un protocole de communication utilisant Ethernet, il est possible d’interconnecter des réseaux de neurones électroniques, informatiques et biologiques. Dans un futur proche, il permettra d’augmenter la complexité et la taille des réseaux. / HYBRID experiments allow to connect a biological neural network with an artificial one,used in neuroscience research and therapeutic purposes. During these three yearsof PhD, this thesis focused on hybridization in a close-up view (bi-diretionnal direct communication between the artificial and the living) and in a broader view (interoperability ofneuromorphic systems). In the early 2000s, an analog neuromorphic system has been connected to a biological neural network. This work is firstly, about the design of a digital neural network, for hybrid experimentsin two multi-disciplinary projects underway in AS2N team of IMS presented in this document : HYRENE (ANR 2010-Blan-031601), aiming the development of a hybrid system for therestoration of motor activity in the case of a spinal cord lesion,BRAINBOW (European project FP7-ICT-2011-C), aiming the development of innovativeneuro-prostheses that can restore communication around cortical lesions. Having a configurable architecture, a digital neural network was designed for these twoprojects. For the first project, the artificial neural network emulates the activity of CPGs (Central Pattern Generator), causing the locomotion in the animal kingdom. This activity will trigger aseries of stimuli in the injured spinal cord textit in vitro and recreating locomotion previously lost. In the second project, the neural network topology will be determined by the analysis anddecryption of biological signals from groups of neurons grown on electrodes, as well as modeling and simulations performed by our partners. The neural network will be able to repair the injuredneural network. This work show the two different networks design approach and preliminary results obtained in the two projects.Secondly, this work hybridization to extend the interoperability of neuromorphic systems. Through a communication protocol using Ethernet, it is possible to interconnect electronic neuralnetworks, computer and biological. In the near future, it will increase the complexity and size of networks.
8

Contribution à la conception d'architecture de calcul auto-adaptative intégrant des nanocomposants neuromorphiques et applications potentielles / Adaptive Computing Architectures Based on Nano-fabricated Components

Bichler, Olivier 14 November 2012 (has links)
Dans cette thèse, nous étudions les applications potentielles des nano-dispositifs mémoires émergents dans les architectures de calcul. Nous montrons que des architectures neuro-inspirées pourraient apporter l'efficacité et l'adaptabilité nécessaires à des applications de traitement et de classification complexes pour la perception visuelle et sonore. Cela, à un cout moindre en termes de consommation énergétique et de surface silicium que les architectures de type Von Neumann, grâce à une utilisation synaptique de ces nano-dispositifs. Ces travaux se focalisent sur les dispositifs dit «memristifs», récemment (ré)-introduits avec la découverte du memristor en 2008 et leur utilisation comme synapse dans des réseaux de neurones impulsionnels. Cela concerne la plupart des technologies mémoire émergentes : mémoire à changement de phase – «Phase-Change Memory» (PCM), «Conductive-Bridging RAM» (CBRAM), mémoire résistive – «Resistive RAM» (RRAM)... Ces dispositifs sont bien adaptés pour l'implémentation d'algorithmes d'apprentissage non supervisés issus des neurosciences, comme «Spike-Timing-Dependent Plasticity» (STDP), ne nécessitant que peu de circuit de contrôle. L'intégration de dispositifs memristifs dans des matrices, ou «crossbar», pourrait en outre permettre d'atteindre l'énorme densité d'intégration nécessaire pour ce type d'implémentation (plusieurs milliers de synapses par neurone), qui reste hors de portée d'une technologie purement en «Complementary Metal Oxide Semiconductor» (CMOS). C'est l'une des raisons majeures pour lesquelles les réseaux de neurones basés sur la technologie CMOS n'ont pas eu le succès escompté dans les années 1990. A cela s'ajoute la relative complexité et inefficacité de l'algorithme d'apprentissage de rétro-propagation du gradient, et ce malgré tous les aspects prometteurs des architectures neuro-inspirées, tels que l'adaptabilité et la tolérance aux fautes. Dans ces travaux, nous proposons des modèles synaptiques de dispositifs memristifs et des méthodologies de simulation pour des architectures les exploitant. Des architectures neuro-inspirées de nouvelle génération sont introduites et simulées pour le traitement de données naturelles. Celles-ci tirent profit des caractéristiques synaptiques des nano-dispositifs memristifs, combinées avec les dernières avancées dans les neurosciences. Nous proposons enfin des implémentations matérielles adaptées pour plusieurs types de dispositifs. Nous évaluons leur potentiel en termes d'intégration, d'efficacité énergétique et également leur tolérance à la variabilité et aux défauts inhérents à l'échelle nano-métrique de ces dispositifs. Ce dernier point est d'une importance capitale, puisqu'il constitue aujourd'hui encore la principale difficulté pour l'intégration de ces technologies émergentes dans des mémoires numériques. / In this thesis, we study the potential applications of emerging memory nano-devices in computing architecture. More precisely, we show that neuro-inspired architectural paradigms could provide the efficiency and adaptability required in some complex image/audio processing and classification applications. This, at a much lower cost in terms of power consumption and silicon area than current Von Neumann-derived architectures, thanks to a synaptic-like usage of these memory nano-devices. This work is focusing on memristive nano-devices, recently (re-)introduced by the discovery of the memristor in 2008 and their use as synapses in spiking neural network. In fact, this includes most of the emerging memory technologies: Phase-Change Memory (PCM), Conductive-Bridging RAM (CBRAM), Resistive RAM (RRAM)... These devices are particularly suitable for the implementation of natural unsupervised learning algorithms like Spike-Timing-Dependent Plasticity (STDP), requiring very little control circuitry.The integration of memristive devices in crossbar array could provide the huge density required by this type of architecture (several thousand synapses per neuron), which is impossible to match with a CMOS-only implementation. This can be seen as one of the main factors that hindered the rise of CMOS-based neural network computing architectures in the nineties, among the relative complexity and inefficiency of the back-propagation learning algorithm, despite all the promising aspects of such neuro-inspired architectures, like adaptability and fault-tolerance. In this work, we propose synaptic models for memristive devices and simulation methodologies for architectural design exploiting them. Novel neuro-inspired architectures are introduced and simulated for natural data processing. They exploit the synaptic characteristics of memristives nano-devices, along with the latest progresses in neurosciences. Finally, we propose hardware implementations for several device types. We assess their scalability and power efficiency potential, and their robustness to variability and faults, which are unavoidable at the nanometric scale of these devices. This last point is of prime importance, as it constitutes today the main difficulty for the integration of these emerging technologies in digital memories.
9

Utilisation des nano-composants électroniques dans les architectures de traitement associées aux imageurs / Integration of memory nano-devices in image sensors processing architecture

Roclin, David 16 December 2014 (has links)
En utilisant les méthodes d’apprentissages tirées des récentes découvertes en neuroscience, les réseaux de neurones impulsionnels ont démontrés leurs capacités à analyser efficacement les grandes quantités d’informations provenant de notre environnement. L’implémentation de ces circuits à l’aide de processeurs classiques ne permet pas d’exploiter efficacement leur parallélisme. L’utilisation de mémoire numérique pour implémenter les poids synaptique ne permet pas la lecture ou la programmation parallèle des synapses et est limité par la bande passante reliant la mémoire à l’unité de calcul. Les technologies mémoire de type memristive pourrait permettre l’implémentation de ce parallélisme au coeur de la mémoire.Dans cette thèse, nous envisageons le développement d’un réseau de neurones impulsionnels dédié au monde de l’embarqué à base de dispositif mémoire émergents. Dans un premier temps, nous avons analysé un réseau impulsionnel afin d’optimiser ses différentes composantes : neurone, synapse et méthode d’apprentissage STDP en vue d’une implémentation numérique. Dans un second temps, nous envisageons l’implémentation de la mémoire synaptique par des dispositifs memristifs. Enfin, nous présentons le développement d’une puce co-intégrant des neurones implémentés en CMOS avec des synapses en technologie CBRAM. / By using learning mechanisms extracted from recent discoveries in neuroscience, spiking neural networks have demonstrated their ability to efficiently analyze the large amount of data from our environment. The implementation of such circuits on conventional processors does not allow the efficient exploitation of their parallelism. The use of digital memory to implement the synaptic weight does not allow the parallel reading or the parallel programming of the synapses and it is limited by the bandwidth of the connection between the memory and the processing unit. Emergent memristive memory technologies could allow implementing this parallelism directly in the heart of the memory.In this thesis, we consider the development of an embedded spiking neural network based on emerging memory devices. First, we analyze a spiking network to optimize its different components: the neuron, the synapse and the STDP learning mechanism for digital implementation. Then, we consider implementing the synaptic memory with emergent memristive devices. Finally, we present the development of a neuromorphic chip co-integrating CMOS neurons with CBRAM synapses.
10

Développement d'un réseau de neurones impulsionnels sur silicium à synapses memristives / Development of a silicon spiking neural network with memristives synapses

Lecerf, Gwendal 29 September 2014 (has links)
Durant ces trois années de doctorat, financées par le projet ANR MHANN (MemristiveHardware Analog Neural Network), nous nous sommes intéressés au développement d’une nouvelle architecture de calculateur à l’aide de réseaux de neurones. Les réseaux de neurones artificiels sont particulièrement bien adaptés à la reconnaissance d’images et peuvent être utilisés en complément des processeurs séquentiels. En 2008, une nouvelle technologie de composant a vu le jour : le memristor. Classé comme étant le quatrième élément passif, il est possible de modifier sa résistance en fonction de la densité de courant qui le traverse et de garder en mémoire ces changements. Grâce à leurs propriétés, les composants memristifs sont des candidats idéaux pour jouer le rôle des synapses au sein des réseaux de neurones artificiels. En effectuant des mesures sur la technologie des memristors ferroélectriques de l’UMjCNRS/Thalès de l’équipe de Julie Grollier, nous avons pu démontrer qu’il était possible d’obtenir un apprentissage de type STDP (Spike Timing Dependant Plasticity) classiquement utilisé avec les réseaux de neurones impulsionnels. Cette forme d’apprentissage, inspirée de la biologie, impose une variation des poids synaptiques en fonction des évènements neuronaux. En s’appuyant sur les mesures réalisées sur ces memristors et sur des simulations provenant d’un programme élaboré avec nos partenaires de l’INRIA Saclay, nous avons conçu successivement deux puces en silicium pour deux technologies de memristors ferroélectriques. La première technologie (BTO), moins performante, a été mise de côté au profit d’une seconde technologie (BFO). La seconde puce a été élaborée avec les retours d’expérience de la première puce. Elle contient deux couches d’un réseau de neurones impulsionnels dédié à l’apprentissage d’images de 81 pixels. En la connectant à un boitier contenant un crossbar de memristors, nous pourrons réaliser un démonstrateur d’un réseau de neurones hybride réalisé avec des synapses memristives ferroélectriques. / Supported financially by ANR MHANN project, this work proposes an architecture ofspiking neural network in order to recognize pictures, where traditional processing units are inefficient regarding this. In 2008, a new passive electrical component had been discovered : the memristor. Its resistance can be adjusted by applying a potential between its terminals. Behaving intrinsically as artificial synapses, memristives devices can be used inside artificial neural networks.We measure the variation in resistance of a ferroelectric memristor (obtained from UMjCNRS/Thalès) similar to the biological law STDP (Spike Timing Dependant Plasticity) used with spiking neurons. With our measurements on the memristor and our network simulation (aided by INRIASaclay) we designed successively two versions of the IC. The second IC design is driven by specifications of the first IC with additional functionalists. The second IC contains two layers of a spiking neural network dedicated to learn a picture of 81 pixels. A demonstrator of hybrid neural networks will be achieved by integrating a chip of memristive crossbar interfaced with thesecond IC.

Page generated in 0.0964 seconds