• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 12
  • 6
  • 2
  • 1
  • Tagged with
  • 60
  • 60
  • 18
  • 17
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Finite-Amplitude Waves in Deformed Elastic Materials / Ondes d'amplitude finie dans des matériaux élastiques déformés

Rodrigues Ferreira, Elizabete 10 October 2008 (has links)
Le contexte de cette thèse est la théorie de l'élasticité non linéaire, appelée également "élasticité finie". On y présente des résultats concernant la propagation d'ondes d'amplitude finie dans des matériaux élastiques non linéaires soumis à une grande déformation statique homogène. Bien que les matériaux considérés soient isotropes, lors de la propagation d'ondes un comportement anisotrope dû à la déformation statique se manifeste. Après un rappel des équations de base de l'élasticité non linéaire (Chapitre 1), on considère tout d'abord la classe générale des matériaux incompressibles. Pour ces matériaux, on montre que la propagation d'ondes transversales polarisées linéairement est possible pour des choix appropriés des directions de polarisation et de propagation. De plus, on propose des généralisations des modèles classiques de "Mooney-Rivlin" et "néo-Hookéen" qui conduisent à de nouvelles solutions. Bien que le contexte soit tri-dimensionnel, il s'avère que toutes ces ondes sont régies par des équations d'ondes scalaires non linéaires uni-dimensionelles. Dans le cas de solutions du type ondes simples, on met en évidence une propriété remarquable du flux et de la densité d'énergie. Dans les Chapitres 3 et 4, on se limite à un modèle particulier de matériaux compressibles appelé "modèle restreint de Blatz-Ko", qui est une version compressible du modèle néo-Hookéen. En milieu infini (Chapitre 3), on montre que des ondes transversales polarisées linéairement, faisant intervenir deux variables spatiales, peuvent se propager. Bien que la théorie soit non linéaire, le champ de déplacement de ces ondes est régi par une version anisotrope de l'équation d'onde bi-dimensionnelle classique. En particulier, on présente des solutions à symétrie "cylindrique elliptique" analogues aux ondes cylindriques. Comme cas particulier, on obtient aussi des ondes planes inhomogènes atténuées à la fois dans l'espace et dans le temps. De plus, on montre que diverses superpositions appropriées de solutions sont possibles. Dans chaque cas, on étudie les propriétés du flux et de la densité d'énergie. En particulier, dans le cas de superpositions il s'avère que des termes d'interactions interviennent dans les expressions de la densité et du flux d'énergie. Finalement (Chapitre 4), on présente une solution exacte qui constitue une généralisation non linéaire de l'onde de Love classique. On considère ici un espace semi-infini, appelé "substrat" recouvert par une couche. Le substrat et la couche sont constitués de deux matériaux restreints de Blatz-Ko pré-déformés. L'onde non linéaire de Love est constituée d'un mouvement non atténué dans la couche et d'une onde plane inhomogène dans le substrat, choisies de manière à satisfaire aux conditions aux limites. La relation de dispersion qui en résulte est analysée en détail. On présente de plus des propriétés générales du flux et de la densité d'énergie dans le substrat et dans la couche. The context of this thesis is the non linear elasticity theory, also called "finite elasticity". Results are obtained for finite-amplitude waves in non linear elastic materials which are first subjected to a large homogeneous static deformation. Although the materials are assumed to be isotropic, anisotropic behaviour for wave propagation is induced by the static deformation. After recalling the basic equations of the non linear elasticity theory (Chapter 1), we first consider general incompressible materials. For such materials, linearly polarized transverse plane waves solutions are obtained for adequate choices of the polarization and propagation directions (Chapter 2). Also, extensions of the classical Mooney-Rivlin and neo-Hookean models are introduced, for which more solutions are obtained. Although we use the full three dimensional elasticity theory, it turns out that all these waves are governed by scalar one-dimensional non linear wave equations. In the case of simple wave solutions of these equations, a remarkable property of the energy flux and energy density is exhibited. In Chapter 3 and 4, a special model of compressible material is considered: the special Blatz-Ko model, which is a compressible counterpart of the incompressible neo-Hookean model. In unbounded media (Chapter 3), linearly polarized two-dimensional transverse waves are obtained. Although the theory is non linear, the displacement field of these waves is governed by a linear equation which may be seen as an anisotropic version of the classical two-dimensional wave equation. In particular, solutions analogous to cylindrical waves, but with an "elliptic cylindrical symmetry" are presented. Special solutions representing "damped inhomogeneous plane waves" are also derived: such waves are attenuated both in space and time. Moreover, various appropriate superpositions of solutions are shown to be possible. In each case, the properties of the energy density and the energy flux are investigated. In particular, in the case of superpositions, it is seen that interaction terms enter the expressions for the energy density and the energy flux. Finally (Chapter 4), an exact finite-amplitude Love wave solution is presented. Here, an half-space, called "substrate", is assumed to be covered by a layer, both made of different prestrained special Blatz-Ko materials. The Love surface wave solution consists of an unattenuated wave motion in the layer and an inhomogeneous plane wave in the substrate, which are combined to satisfy the exact boundary conditions. A dispersion relation is obtained and analysed. General properties of the energy flux and the energy density in the substrate and the layer are exhibited.
42

Analytical solution of a linear, elliptic, inhomogeneous partial differential equation with inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions for a special rotationally symmetric problem of linear elasticity

Eschke, Andy 30 July 2014 (has links) (PDF)
The analytical solution of a given inhomogeneous boundary value problem of a linear, elliptic, inhomogeneous partial differential equation and a set of inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions is derived in the present paper. In the context of elasticity theory, the problem arises for a non-conservative symmetric ansatz and an extended constitutive law shown earlier. For convenient user application, the scalar function expressed in cylindrical coordinates is primarily obtained for the general case before being expatiated on a special case of linear boundary conditions.
43

Analytical solution of a linear, elliptic, inhomogeneous partial differential equation in the context of a special rotationally symmetric problem of linear elasticity

Eschke, Andy 31 July 2014 (has links) (PDF)
In addition to previous publications, the paper presents the analytical solution of a special boundary value problem which arises in the context of elasticity theory for an extended constitutive law and a non-conservative symmetric ansatz. Besides deriving the general analytical solution, a specific form for linear boundary conditions is given for user convenience.
44

[en] APPLICATION OF TOPOLOGICAL DERIVATIVE IN STRUCTURAL OPTIMIZATION / [pt] APLICAÇÃO DA DERIVADA TOPOLÓGICA NA OTIMIZAÇÃO ESTRUTURAL

ANDRE PIMENTEL DE OLIVEIRA 14 January 2019 (has links)
[pt] A otimização topológica tem por objetivo buscar uma distribuição ótima de uma quantidade limitada de material em um dado domínio, de tal maneira a minimizar uma medida de desempenho, como, por exemplo, a flexibilidade da estrutura. Tradicionalmente, são utilizados algoritmos clássicos, baseados em gradiente, para se encontrar a solução deste problema de otimização. Este trabalho propõe a aplicação de uma técnica alternativa, baseada no conceito de derivada topológica, para a solução do problema de otimização topológica em domínios bidimensionais arbitrários, utilizando malhas de elementos finitos poligonais. Inicialmente, são apresentados os conceitos básicos da expansão assintótica topológica na solução de problemas de elasticidade linear em um domínio com pequenas perturbações. Usamos esse conceito para definir a derivada topológica a partir da solução desse problema e de um equivalente em um domínio sem perturbações. Em seguida, discutimos a obtenção da derivada topológica em problemas unidimensionais simples para depois estender este conceito para problemas de elasticidade linear bidimensional. Apresentamos uma implementação computacional da derivada topológica, em MATLAB, e aplicamos o código desenvolvido na solução de problemas de otimização topológica, conhecidos na literatura. Finalmente, apresentamos as conclusões sobre a qualidade dos resultados obtidos e a eficiência computacional da implementação proposta e sugerimos alguns tópicos para futuros desenvolvimentos. / [en] The purpose of topology optimization is to find the optimum material distribution of a limited amount of material in a given domain, in such a way that it minimizes a performance measure, such as the structure s compliance. Traditionally, classical algorithms based on gradients are used to obtain the solution of optimization problems. This work proposes the application of an alternative technique, based on the topological derivative concept, for the solution of topology optimization problems in arbitrary two-dimensional domains, using polygonal finite element meshes. Initially, the basic concepts of topological asymptotic expansion of linear elasticity problems in a domain with small perturbations are presented. We use this concept to define the topological derivative from the solution of this problem and an equivalent one on a domain without perturbations. Then, we discuss how to calculate the topological derivative for one-dimensional problems before extending this concept to two-dimensional linear stability problems. We present a computational implementation of the topological derivative in MATLAB, and apply the developed code to solve topology optimization problems known in the literature. Finally, we present some conclusions about the quality of the results obtained and the computational efficiency of the proposed implementation and suggest some topics for future developments.
45

Estudo numérico sobre a determinação de parâmetros em um sólido elástico-linear e incompressível / A numerical study about the determination of parameters in an incompressible and linearly elastic solid

Edmar Borges Theóphilo Prado 09 June 2008 (has links)
A teoria de elasticidade linear clássica é utilizada no modelamento de problemas da física médica relacionados com a determinação de parâmetros elásticos de tecidos biológicos a partir da medição in vivo, ou, in vitro dos deslocamentos, ou, das deformações. Baseados em observações experimentais, as quais revelam que os tecidos biológicos anômalos têm comportamento mecânico diferente dos tecidos biológicos sadios, os pesquisadores têm modelado estes tecidos como sólidos elástico-lineares, isotrópicos, heterogêneos e incompressíveis. Neste trabalho, analisa-se uma classe de problemas planos relacionados à determinação do módulo de elasticidade ao cisalhamento µ de tecidos biológicos e propõe-se um procedimento numérico não-iterativo para obter soluções aproximadas para estes problemas a partir de campos de deslocamentos conhecidos de ensaios possíveis de serem realizados em laboratório. Os ensaios são estáticos e são simulados numericamente via método dos elementos finitos. Apresentam-se resultados obtidos das distribuições de µ em cilindros retos, longos e de seção retangular contendo inclusões cilíndricas circulares centradas, ou, excêntricas. Consideram-se inclusões mais, ou, menos rígidas do que o meio elástico circundante. Adicionalmente, os resultados obtidos no presente trabalho são comparados com resultados de outros pesquisadores que utilizam ensaios dinâmicos. Neste sentido, dois casos de inclusão circular centrada são resolvidos com as condições de contorno adaptadas do caso dinâmico para o caso estático. Resolve-se finalmente o caso de uma inclusão de forma geométrica complexa e seis vezes mais rígida do que o entorno. O cilindro contendo esta inclusão está submetido às condições de contorno propostas neste trabalho e também às condições de contorno adaptadas do caso dinâmico. Em todos os casos analisados os resultados são satisfatórios, apesar do emprego de uma quantidade reduzida de elementos finitos na reconstrução de µ. Deve-se ressaltar que nenhum método de regularização foi utilizado para tratar os deslocamentos obtidos dos ensaios simulados. Este trabalho é de grande interesse na detecção de tumores cancerígenos, tais como tumores nos seios e na próstata, e no diagnóstico diferenciado de tecidos biológicos. / The theory of classical linear elasticity is used to model of problems in medical physics that are related to the determination of elastic parameters of biological tissues from the measurement in vivo, or, in vitro of either displacements or strains. Based on experimental observations, which indicate that the abnormal biological tissues have different mechanical behavior from normal biological tissues, researchers have modeled these tissues as an incompressible, heterogeneous, and isotropic linear elastic solid. In this work a class of plane problems related to the determination of the shear elastic modulus µ of biological tissues is examined. A non-iterative numerical procedure to obtain an approximate solution to these problems from known displacement fields is proposed. The displacement fields are obtained from experiments that are possible to reproduce in laboratory. The experiments are quasi-static and are simulated numerically using the finite element method. Results for the distribution of µ in long, straight cylinders of rectangular cross-sections, containing either centered or eccentric circular inclusions that are more, or, less stiff than the surrounding elastic medium, are presented. Additionally, the results obtained in this study are compared with results of other researchers who use dynamical experiments. In this sense, two cases of centered circular inclusions are solved by using an adaptation of the dynamical case to the static case. Finally, the case of an inclusion with a complex geometry that is six times more rigid than the surrounding medium is solved. In all cases analyzed, the results are satisfactory, despite the fact that they were obtained with a reduced number of finite elements. It should be noted that no method of regularization has been used to treat the displacement data obtained from the simulated experiments. This work is of great interest in the detection of cancerous tumours, such as those in the breasts and in the prostate, and in the differential diagnosis of biological tissues.
46

On the behavior of a linear elastic peridynamic material / Sobre o comportamento de um material peridinâmico elástico linear

Alan Bourscheidt Seitenfuss 19 April 2017 (has links)
The peridynamic theory is a generalization of classical continuum mechanics and takes into account the interaction between material points separated by a finite distance within a peridynamic horizon δ. The parameter δ corresponds to a length scale and is treated as a material property related to the microstructure of the body. Since the balance of linear momentum is written in terms of an integral equation that remains valid in the presence of discontinuities, the peridynamic theory is suitable for studying the material behavior in regions with singularities. The first part of this work concerns the evaluation of the properties of a linear elastic peridynamic material in the context of a three-dimensional state-based peridynamic theory, which uses the difference displacement quotient field in the neighborhood of a material point and considers both length and relative angle changes. This material model is based upon a free energy function that contains four material constants, being, therefore, different from other peridynamic models found in the literature, which contain only two material constants. Using convergence results of the peridynamic theory to the classical linear elasticity theory in the limit of small horizons and a correspondence argument between the free energy function and the strain energy density function from the classical theory, expressions were obtained previously relating three peridynamic constants to the classical elastic constants of an isotropic linear elastic material. To calculate the fourth peridynamic material constant, which couples both bond length and relative angle changes, the correspondence argument is used once again together with the strain field of a linearly elastic beam subjected to pure bending. The expression for the fourth constant is obtained in terms of the Poisson\'s ratio and the shear elastic modulus of the classical theory. The validity of this expression is confirmed through the consideration of other experiments in mechanics, such as bending of a beam by terminal loads and anti-plane shear of a circular cylinder. In particular, numerical results indicate that the expressions for the constants are independent of the experiment chosen. The second part of this work concerns an investigation of the behavior of a one-dimensional linearly elastic bar of length L in the context of the peridynamic theory; especially, near the ends of the bar, where it is expected that the behavior of the peridynamic bar may be very different from the behavior of a classical linear elastic bar. The bar is in equilibrium without body force, is fixed at one end, and is subjected to an imposed displacement at the other end. The bar has micromodulus C, which is related to the Young\'s modulus E in the classical theory through different expressions found in the literature. Depending on the expression for C, the displacement field may be singular near the ends, which is in contrast to the linear behavior of the displacement field observed in classical linear elasticity. In spite of the above, it is also shown that the peridynamic displacement field converges to its classical counterpart as the peridynamic horizon tends to zero. / A teoria peridinâmica é uma generalização da teoria clássica da mecânica do contínuo e considera a interação de pontos materiais devido a forças que agem a uma distância finita entre si, além da qual considera-se nula a força de interação. Por ter o balanço de momento linear formulado como uma equação integral que permanece válida na presença de descontinuidades, a teoria peridinâmica é adequada para o estudo do comportamento de materiais em regiões com singularidades. A primeira parte deste trabalho consiste no cálculo das propriedades de um material peridinâmico elástico linear no contexto de uma teoria peridinâmica de estado, linearmente elástica e tridimensional, que utiliza o campo quociente de deslocamento relativo na vizinhança de um ponto material e leva em conta mudanças relativas angulares e de comprimento. Esse modelo utiliza uma função energia livre que apresenta quatro constantes materiais, sendo, portanto, diferente de outros modelos peridinâmicos investigados na literatura, os quais contêm somente duas constantes materiais. Utilizando resultados de convergência da teoria peridinâmica para a teoria de elasticidade linear clássica no limite de pequenos horizontes e um argumento de correspondência entre as funções energia livre proposta e densidade de energia de deformação da teoria clássica, expressões para três constantes peridinâmicas foram obtidas em função das constantes de um material elástico e isotrópico da teoria clássica. O argumento de correspondêmcia, em conjunto com o campo de deformações de uma viga submetida à flexão pura, é utilizado para calcular a quarta constante peridinâmica do material, que relaciona mudanças angulares relativas e de comprimentos das ligações entre as partículas. Obtem-se uma expressão para a quarta constante em termos do coeficiente de Poisson e do módulo de elasticidade ao cisalhamento da teoria clássica. A validade dessa expressão é confirmada por meio da consideração de outros experimentos da mecânica, tais como flexão de um viga por cargas terminais e cisalhamento anti-plano de um eixo cilíndrico. Em particular, os resultados numéricos indicam que as expressões para as constantes são independentes do experimento escolhido. A segunda parte deste trabalho consiste em uma investigação do comportamento de uma barra unidimensional linearmente elástica de comprimento L no contexto da teoria peridinâmica; especialmente, próximo às extremidades da barra, onde espera-se que o comportamento da barra peridinâmica possa ser muito diferente do comportamento de uma barra elástica linear clássica. A barra está em equilíbrio e sem força de corpo, fixa em uma extremidade, e sujeita a deslocamento imposto na outra extremidade. A barra possui micromódulo C, o qual está relacionado ao módulo de Young E da teoria clássica por meio de diferentes expressões encontradas na literatura. Dependendo da expressão para C, o campo de deslocamento pode ser singular próximo às extremidades, o que contrasta com o comportamento linear do campo de deslocamento observado na elasticidade linear clássica. Apesar disso, é mostrado também que o campo de deslocamento peridinâmico converge para o campo de deslocamento da teoria clássica quando o horizonte peridinâmico tende a zero.
47

Mesh deformation strategies in shape optimization. Application to forensic facial reconstruction / Méthodes de déformation de maillage en optimisation de forme. Application à la reconstruction faciale pour la médecine légale

Nardoni, Chiara 13 October 2017 (has links)
Cette thèse est consacrée à la conception, au développement et à l'analyse de méthodes de déformation de maillage pour la modélisation, le traitement et la comparaison de forme -telles que l'appariement et la reconstruction de surface- ainsi qu’à la conception d'une méthode numérique robuste pour la reconstruction faciale. La reconstruction faciale tridimensionnelle consiste à estimer un visage numérique à partir de la seule donnée de son crâne sec. Il s'agit d'un défi en médecine légale et en anthropologie. La contribution majeure de cette thèse est la conception d'une nouvelle méthode pour l'appariement de forme, en s'appuyant sur des techniques d'optimisation de forme. Sous la seule hypothèse que les deux formes ont la même topologie, la transformation cherchée s'obtient comme une suite de déplacements élastiques, solutions d'un problème de minimisation d’énergie basée sur une fonction distance signée.Nous proposons également une méthode de drapage permettant la génération d'un modèle de surface fermée à partir d'un maillage source. La méthode repose sur une technique d’évolution de maillage utilisant les équations de l'élasticité linéaire. Un maillage modèle est itérativement déformé pour générer une séquence de formes qui s’approche de plus en plus de la triangulation source. Dans la deuxième partie de ce manuscrit, nous nous intéressons au développement d’une méthode automatique de reconstruction faciale numérique. En s’appuyant sur des techniques de déformation continue telles que le ‘morphing' et le ’warping’, l'approche proposée est intégrée par des connaissances anthropologiques et mécaniques. / This thesis is devoted to the conception, the development and the analysis of mesh deformation strategies for shape modeling, processing and comparison -as shape matching and surface reconstruction- and, in a rather independent concern, for devising a robust computational method for facial reconstruction. Facial reconstruction is about the estimation of a facial shape from the sole datum of the underlying skull and is a challenging problem in anthropology and forensic science. The main contribution of the thesis is the design of a novel method for shape matching, borrowing techniques from the shape optimization context. Under the sole assumption that the two shapes share the same topology, the desired mapping is achieved as a sequence of elastic displacements by minimizing an energy functional based on a signed distance function. Several numerical examples are presented to show the efficiency of the method.Also, a novel method for generating a closed surface mesh model of an initially non-closed source mesh model is developed. The method relies on an original PDE-based mesh evolution technique. A template shape is iteratively deformed, producing a sequence of shapes that get 'closer and closer' to the source triangulation.The second part of the manuscript deals with the development of a landmark-free, fully automated method for digital facial reconstruction. Based on techniques of continuous deformation as 'morphing' and 'warping', the proposed approach is integrated with anthropological assumptions and mechanical models.
48

Analytical solution of a linear, elliptic, inhomogeneous partial differential equation with inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions for a special rotationally symmetric problem of linear elasticity

Eschke, Andy January 2014 (has links)
The analytical solution of a given inhomogeneous boundary value problem of a linear, elliptic, inhomogeneous partial differential equation and a set of inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions is derived in the present paper. In the context of elasticity theory, the problem arises for a non-conservative symmetric ansatz and an extended constitutive law shown earlier. For convenient user application, the scalar function expressed in cylindrical coordinates is primarily obtained for the general case before being expatiated on a special case of linear boundary conditions.
49

Analyse des liens entre un modèle d'endommagement et un modèle de fracture / Analysis of the links between a damage and a fracture model

Azem, Leila 06 January 2017 (has links)
Cette thèse est consacrée à la dérivation des modèles de fracture comme limite de modèles d'endommagement.L'étude est justifiée essentiellement à travers des simulations numériques.On s'intéresse à étudier un modèle d'endommagement initié par Allaire, Jouve et Vangoethem.Nous apportons des améliorations significatives à ce modèle justifiant la cohérence physique de cette approche.D'abord, on ajoute une contrainte sur l'épaisseur minimale de la zone endommagée, puis on ajoute la condition d'irréversibilité forte.Nous considérons en outre un modèle de fracture avec pénalisation de saut obtenu comme limite asymptotique d'un modèle d'endommagement.Nous justifions ce modèle par une étude numérique et asymptotique formelle unidimensionnelle.Ensuite, la généralisation dans le cas 2D est illustrée par des exemples numériques. / This thesis is devoted to the derivation of fracture models as limit damage models.The study is justified mainly through numerical simulations.We are interested in studying a damage model initiated by Allaire, Jouve and Vangoethem.We are making significant improvements to this model justifying the physical consistency of the approach.First, we add a constraint on the minimum thickness of the damaged area and then we add a condition of strong irreversibility.We see also a fracture model with jump penalization obtained as an asymptotic limit of a damage model.We justify this model by a one-dimensional formal asymptotic numerical study.Then, the generalization in the case 2D is illustrated by numerical examples.
50

Analytical solution of a linear, elliptic, inhomogeneous partial differential equation in the context of a special rotationally symmetric problem of linear elasticity

Eschke, Andy January 2014 (has links)
In addition to previous publications, the paper presents the analytical solution of a special boundary value problem which arises in the context of elasticity theory for an extended constitutive law and a non-conservative symmetric ansatz. Besides deriving the general analytical solution, a specific form for linear boundary conditions is given for user convenience.

Page generated in 0.1439 seconds