• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 132
  • 58
  • 57
  • 42
  • 24
  • 12
  • 7
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 676
  • 87
  • 83
  • 80
  • 60
  • 59
  • 57
  • 55
  • 46
  • 45
  • 43
  • 42
  • 39
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Sportinę karjerą baigusių sportininkų socialinės adaptacijos ypatumai / Pecularities of social adaptation of former athletes

Račkauskas, Martynas 20 May 2005 (has links)
The master thesis examine the features of sport career transition in Lithuania. The aim of work was to define main components influencing social adaptation of former athletes. Data was compared with data from “Social Adaptation of Lithuanian Former Athletes” survey made in 1985. Results show that the main factor influencing social adaptation of former athletes is work satisfaction. Data showed that this feature on the other hand is influenced by success of athlete during his career. Comparison of two surveys showed that athletes in Lithuania tend to finish their career being older (31 – 35). The main reasons for career transition stand injuries and age. The main obstacles that athletes are facing during career transition are related to finding new activity and self – realization in it.
262

Modelling of the heliosphere and cosmic ray transport / Jasper L. Snyman

Snyman, Jasper Lodewyk January 2007 (has links)
A two dimensional hydrodynamic model describing the solar wind interaction with the local interstellar medium, which surrounds the solar system, is used to study the heliosphere both as a steady-state- and dynamic structure. The finite volume method used to solve the associated system of hydrodynamic equations numerically is discussed in detail. Subsequently the steady state heliosphere is studied for both the case where the solar wind and the interstellar medium are assumed to consist of protons only, as well as the case where the neutral hydrogen population in the interstellar medium is taken into account. It is shown that the heliosphere forms as three waves, propagating away from the initial point of contact between the solar wind and interstellar matter, become stationary. Two of these waves become stationary at sonic points, forming the termination shock and bow shock respectively. The third wave becomes stationary as a contact discontinuity, called the heliopause. It is shown that the position and geometry of the termination shock, heliopause and bow shock as well as the plasma flow characteristics of the heliosphere largely depend on the dynamic pressure of either the solar wind or interstellar matter. The heliosphere is modelled as a dynamic structure, including both the effects of the solar cycle and short term variations in the solar wind observed by a range of spacecraft over the past ~ 30 years. The dynamic model allows the calculation of an accurate record of the heliosphere state over the past ~ 30 years. This record is used to predict the time at which the Voyager 2 spacecraft will cross the termination shock. Voyager 1 observations of 10 MeV cosmic ray electrons are then used in conjunction with a cosmic ray modulation model to constrain the record of the heliosphere further. It is shown that the dynamic hydrodynamic model describes the heliosphere accurately within a margin of error of ±0.7 years and ±3 AU. The model predicts that Voyager 2 crossed the termination shock in 2007, corresponding to preliminary results from observations indicating that the crossing occurred in August 2007. / Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2008.
263

POST-TRANSCRIPTIONAL REGULATION OF AFP AND IgM GENES

Turcios, Lilia M. 01 January 2011 (has links)
Gene expression can be regulated at multiple steps once transcription is initiated. I have studied two different gene models, the α-Fetoprotein (AFP) and the immunoglobulin heavy chain (IgM) genes, to better understand post-transcriptional gene regulation mechanisms. The AFP gene is highly expressed during fetal liver development and dramatically repressed after birth. There is a mouse strain-specific difference between adult levels of AFP, with BALB/cJ mice expressing 10 to 20-fold higher levels compared to other mouse strains. BALB/cJ mice express low levels of Zhx2 and thus incompletely repress AFP. Despite differences in steady state AFP mRNA levels in the adult liver between Balb/cJ and wild-type mice, transcription rates across this gene were similar, indicating a post-transcriptional regulatory mechanism. I found accumulated unspliced RNA across multiple AFP introns in wild-type mice where mature AFP mRNA levels are low, suggesting overall AFP splicing is inefficient in the presence of Zhx2. The IgM gene is alternative processed to produce two mRNA isoforms through a competition between cleavage/polyadenylation (μspA) and splicing reactions and the pA/splice RNA expression ratio increases during B cell maturation. Cotranscriptional cleavage (CoTC) events, driven by specific cis-acting elements, are required downstream of some poly(A) signals to terminate transcription. In some cases, a pause site can produce similar effect. I explored whether there is a CoTC-like element within the IgM gene that may contribute to developmental changes in the mRNA ratio. In both a B cell and plasma cell line there was a gradual decrease in transcripts downstream from the μspA signal, suggesting that there is not evidence for a CoTC element within the IgM gene. To examine the effect a CoTC element would have on the competition between the splice and μspA reactions, we inserted the CoTC sequence of the β-globin gene into different locations downstream of the μspA signal. While the β-globin CoTC element caused cotranscriptional cleavage in all locations, it only affected the μspA/splice ratio when located close to the μspA site. This suggests there is a position effect of the inserted CoTC element on the competing polyadenylation and splicing reactions within the IgM transcripts.
264

Organizational Involvement in Carbon Mitigation: The New Zealand Public Sector

Birchall, Stephen Jeffrey January 2013 (has links)
Introduction: New Zealand (NZ) ratified the Kyoto Protocol in 2002, committing to prudent greenhouse gas (GHG) emission reductions. In an effort to promote public sector carbon management, in 2004, Clark’s Labour-led Government funded local government membership in ICLEI’s Communities for Climate Protection - NZ (CCP-NZ) programme. In 2007, the same Government, in tandem with efforts to price carbon and develop an Emissions Trading Scheme, through the Carbon Neutral Public Service (CNPS) programme, sought to move the core public sector towards carbon neutrality (Clark, 2007c). In 2008, the NZ government changed from a Labour-led to a National-led Government, and this resulted in a shift in its carbon emission mitigation strategy, including the termination of the CNPS and the CCP-NZ programmes. Purpose: The research has two central objectives: First, to determine why NZ’s newly elected National -led Government cancelled the CNPS and the CCP-NZ programmes; and, second, to determine whether despite the discontinuation of these two programmes and in the absence of Government support, will NZ government organizations continue to strive for carbon emission reductions and neutrality. Approach: This empirical research is investigative and probing, and comprises a series of semi-structured interviews with senior managers responsible for the delivery of the CNPS and the CCP-NZ programmes within their respective organization. The architects of each programme (e.g. the NZ Prime Minister and CEO of ICLEI/ Director of ICLEI Oceania) are also investigated in order to glean insight into the rationale for the ultimate termination of these two programmes. Fieldwork is informed by publicly available information that provides insight into Government’s rationale for creating and discontinuing the CNPS and the CCP-NZ programmes. Narrative analysis and termination theory serve as the primary methodological tools for this study, providing insight into meaning, interpretation and individual experience as it relates to the dismantling of the CNPS and the CCP-NZ programmes. Findings: This study finds that though economic constraints and programmatic inefficiencies may have played a contributing role, political ideology is the primary rationale for the termination of the CNPS and the CCP-NZ programmes. With the ideological shift towards strong neoliberal market environmentalism, Government support for initiatives like the CNPS and the CCP-NZ programmes has declined markedly, with the desire to demonstrate leadership in this area in complete retreat. Ultimately, notwithstanding the desire of some government organizations to continue with programme objectives, albeit with less priority, NZ public sector organizational resolve towards these goals has weakened.
265

Instrumentation Analysis: An Automated Method for Producing Numeric Abstractions of Heap-Manipulating Programs

Magill, Stephen 29 November 2010 (has links)
A number of questions regarding programs involving heap-based data structures can be phrased as questions about numeric properties of those structures. A data structure traversal might terminate if the length of some path is eventually zero or a function to remove n elements from a collection may only be safe if the collection has size at least n. In this thesis, we develop proof methods for reasoning about the connection between heap-manipulating programs and numeric programs. In addition, we develop an automatic method for producing numeric abstractions of heap-manipulating programs. These numeric abstractions are expressed as simple imperative programs over integer variables and have the feature that if a property holds of the numeric program, then it also holds of the original, heap-manipulating program. This is true for both safety and liveness. The abstraction procedure makes use of a shape analysis based on separation logic and has support for user-defined inductive data structures. We also discuss a number of applications of this technique. Numeric abstractions, once obtained, can be analyzed with a variety of existing verification tools. Termination provers can be used to reason about termination of the numeric abstraction, and thus termination of the original program. Safety checkers can be used to reason about assertion safety. And bound inference tools can be used to obtain bounds on the values of program variables. With small changes to the program source, bounds analysis also allows the computation of symbolic bounds on memory use and computational complexity.
266

Effects of termination shock acceleration on cosmic rays in the heliosphere / U.W. Langner

Langner, Ulrich Wilhelm January 2004 (has links)
The interest in the role of the solar wind termination shock (TS) and heliosheath in cosmic ray (CR) modulation studies has increased sigm6cantly as the Voyager 1 and 2 spacecraft approach the estimated position of the TS. For this work the modulation of galactic CR protons, anti-protons, electrons with a Jovian source, positrons, Helium, and anomalous protons and Helium, and the consequent charge-sign dependence, are studied with an improved and extended two-dimensional numerical CR modulation model including a TS with diffusive shock acceleration, a heliosheath and drifts. The modulation is computed using improved local interstellar spectra (LIS) for almost all the species of interest to this study and new fundamentally derived diffusion coefficients, applicable to a number of CR species during both magnetic polarity cycles of the Sun. The model also allows comparisons of modulation with and without a TS and between solar minimum and moderate maximum conditions. The modulation of protons and Helium with their respective anomalous components are also studied to establish the consequent charge-sign dependence at low energies and the influence on the computed p/p, e-/p, and e-/He. The level of modulation in the simulated heliosheath, and the importance of this modulation 'barrier' and the TS for the different species are illustrated. From the computations it is possible to estimate the ratio of modulation occurring in the heliosheath to the total modulation between the heliopause and Earth for the mentioned species. It has been found that the modulation in the heliosheath depends on the particle species, is strongly dependent on the energy of the CRs, on the polarity cycle and is enhanced by the inclusion of the TS. The computed modulation for the considered species is surprisingly different and the heliosheath is important for CR modulation, although 'barrier' modulation is more prominent for protons, anti-protons and Helium, while the heliosheath cannot really be considered a modulation 'barrier' for electrons and positrons above energies of ~150 MeV. The effects of the TS on modulation are more pronounced for polarity cycles when particles are drifting primarily in the equatorial regions of the heliosphere along the heliospheric current sheet to the Sun, e.g. the A < 0 polarity cycle for protons, positrons, and Helium, and the A > 0 polarity cycle for electrons and anti-protons. This study also shows that the proton and Helium LIS may not be known at energies <~ 200 MeV until a spacecraft actually approaches the heliopause because of the strong modulation that occurs in the heliosheath, the effect of the TS, and the presence of anomalous protons and Helium. For anti-protons, in contrast, these effects are less pronounced. For positrons, with a completely different shape LIS, the modulated spectra have very mild energy dependencies <~ 300 MeV, even at Earth, in contrast to the other species. These characteristic spectral features may be helpful to distinguish between electron and positron spectra when they are measured near and at Earth. These simulations can be of use for future missions to the outer heliosphere and beyond. / Thesis (Ph.D. (Physics))--North-West University, Potchefstroom Campus, 2004.
267

Premature Translational Termination and the Rapidly Degraded Polypeptide Pathway

Lacsina, Joshua Rene January 2012 (has links)
<p>Nearly thirty percent of all newly synthesized polypeptides are targeted for rapid proteasome-mediated degradation. These rapidly degraded polypeptides (RDPs) are the primary source of antigenic substrates for the major histocompatibility complex (MHC) class I presentation pathway, allowing for the immunosurveillance of newly synthesized proteins by cytotoxic T lymphocytes. Despite the recognized role of RDPs in MHC class I presentation, it remains unclear what molecular characteristics distinguish RDPs from their more stable counterparts. It has been proposed that premature translational termination products may constitute a form of RDP; indeed, in prokaryotes translational drop-off products are normal by-products of protein synthesis and are subsequently rapidly degraded. </p><p>To study the cellular fate of premature termination products, the antibiotic puromycin was used to modulate prematurely terminated polypeptide production in human cells. At low concentrations, puromycin doubled the fraction of rapidly degraded polypeptides, with enhanced degradation predominantly affecting small polypeptides, consistent with rapid degradation of truncated translation products. Immunoprecipitation experiments using anti-puromycin antisera demonstrated that the majority of peptidyl-puromycins are rapidly degraded in a proteasome-dependent manner. Low concentrations of puromycin increased the recovery of cell surface MHC class I-peptide complexes, indicating that prematurely terminated polypeptides can be processed for presentation via the MHC I pathway. In the continued presence of puromycin, MHC I export to the cell surface was inhibited, coincident with the accumulation of polyubiquitinated proteins. The time- and dose-dependent effects of puromycin suggest that the pool of peptidyl-puromycin adducts differ in their targeting to various proteolytic pathways which, in turn, differ in the efficiency with which they access the MHC class I presentation machinery. These studies highlight the diversity of cellular proteolytic pathways necessary for the metabolism and immunosurveillance of prematurely terminated polypeptides which are, by their nature, highly heterogeneous.</p> / Dissertation
268

Modeled changes to the earth’s climate under a simple geoengineering scheme and following geoengineering failure

Shumlich, Michael John 21 September 2012 (has links)
Geoengineering is the intentional alteration of the Earth’s climate system. The international Geoengineering Model Intercomparison Project (GeoMIP) seeks to identify the potential benefits and side effects of geoengineering on the Earth's climate. This thesis examines the first two experiments from the contribution of the Canadian Centre for Climate Modelling and Analysis to GeoMIP. In the first experiment (G1), atmospheric carbon dioxide concentrations are quadrupled and the solar constant is reduced to offset the increased greenhouse gas forcing. In the second experiment (G2), atmospheric carbon dioxide concentrations are increased at the rate of 1% per year and the solar constant is incrementally reduced to offset the greenhouse gas forcing. In concert with these experiments, results from two other experiments were analyzed, one in which the atmospheric greenhouse gas concentrations are quadrupled one in which they are increased at the rate of 1% per. The results obtained are in broad agreement with earlier work, showing that solar radiation management geoengineering schemes can prevent an increase in mean global surface temperature as atmospheric carbon dioxide concentrations increase. Though the mean global temperature remains constant while geoengineering is employed, there are regional and zonal differences from the control climate, with high latitude warming and cooling in the tropical and subtropical regions. In particular, the meridional temperature gradient is reduced compared to that of the control climate. The G2 experiment was very similar to the G1 experiment in terms of the spatial surface temperature changes, though the changes seen in the G2 experiment were less pronounced and the regions of statistical significance were smaller. During the geoengineering period, seasonal changes and a statistically significant decrease in global precipitation, particularly over the ocean were apparent in the G1 run. As with temperature, the spatial pattern of precipitation changes during the geoengineering period for G2 are similar to the same period in G1, but reduced in magnitude. However, most of the spatial changes to precipitation in the G2 experiment during geoengineering deployment fail to be statistically significant. Following geoengineering termination, the G1 experiment responds rapidly, with surface and ocean temperatures, NH and SH summer sea ice volume, AMOC transport volume and global precipitation following the same time evolution and reaching those same values found in the 4 × CO2 experiment’s first 10 years. Following geoengineering failure, the G2 run also experiences rapid climate change in all of the variables studied, but does not approach the first 10 years of the 1%CO2yr-1 experiment, because the forcings are quite different in the two runs. Taken together, these results suggest that, while geoengineering to reduce incoming solar radiation could offset the global temperature increase due to increased atmospheric greenhouse gas concentrations, there would be regional warming and cooling, as well as both global and regional impacts on the hydrological cycle. These results also suggest that, should geoengineering suddenly stop, the Earth’s climate would react immediately, with rapid changes in nearly all of the climate variables examined. / Graduate
269

Modelling of the heliosphere and cosmic ray transport / Jasper L. Snyman

Snyman, Jasper Lodewyk January 2007 (has links)
A two dimensional hydrodynamic model describing the solar wind interaction with the local interstellar medium, which surrounds the solar system, is used to study the heliosphere both as a steady-state- and dynamic structure. The finite volume method used to solve the associated system of hydrodynamic equations numerically is discussed in detail. Subsequently the steady state heliosphere is studied for both the case where the solar wind and the interstellar medium are assumed to consist of protons only, as well as the case where the neutral hydrogen population in the interstellar medium is taken into account. It is shown that the heliosphere forms as three waves, propagating away from the initial point of contact between the solar wind and interstellar matter, become stationary. Two of these waves become stationary at sonic points, forming the termination shock and bow shock respectively. The third wave becomes stationary as a contact discontinuity, called the heliopause. It is shown that the position and geometry of the termination shock, heliopause and bow shock as well as the plasma flow characteristics of the heliosphere largely depend on the dynamic pressure of either the solar wind or interstellar matter. The heliosphere is modelled as a dynamic structure, including both the effects of the solar cycle and short term variations in the solar wind observed by a range of spacecraft over the past ~ 30 years. The dynamic model allows the calculation of an accurate record of the heliosphere state over the past ~ 30 years. This record is used to predict the time at which the Voyager 2 spacecraft will cross the termination shock. Voyager 1 observations of 10 MeV cosmic ray electrons are then used in conjunction with a cosmic ray modulation model to constrain the record of the heliosphere further. It is shown that the dynamic hydrodynamic model describes the heliosphere accurately within a margin of error of ±0.7 years and ±3 AU. The model predicts that Voyager 2 crossed the termination shock in 2007, corresponding to preliminary results from observations indicating that the crossing occurred in August 2007. / Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2008.
270

New Insights into Diffusion-Controlled Bimolecular Termination using ‘Controlled/Living’ Radical Polymerisation

Geoffrey Johnston-hall Unknown Date (has links)
Free-radical polymerisation (FRP) has been one of the most important techniques for producing materials used in a very wide variety of applications and has enhanced the lives of millions of people around the world. However, for many years a number of fundamental questions regarding the key kinetic processes involved in FRP have remained unresolved. In particular, an accurate description of the mechanism for diffusion-controlled bimolecular termination has proven elusive. As a result, conventional modelling tools for FRP have often proven unreliable. The aim of this thesis, therefore, was to accurately study the evolution of the bimolecular termination rate coefficient during free radical polymerisation using a new and more accurate methodology based on ‘controlled/living’ reversible addition-fragmentation chain transfer (RAFT) polymerisation. This was undertaken in order to develop a more precise understanding of bimolecular termination and thereby develop a more reliable modeling approach capable of predicting the rates of reaction and evolution of molecular weight distributions for a wide range of experimental conditions and a wide range of functional monomers. The RAFT-CLD-T (RAFT Chain-Length-Dependent Termination) Method was used to determine accurate values for the conversion and chain-length-dependent termination rate coefficient, kti,i(x), as a function of various parameters. These parameters included the chain size, i, polymer concentration (or conversion, x), chain length size distribution and chain architecture/structure. The accuracy of the RAFT-CLD-T Method was crucial to this work, therefore, an important part of this thesis was devoted to evaluating the reliability of this technique. Below 5 % conversion and above 80 % conversion the method was found to be unreliable due to the effects of chain-length-dependent propagation, high PDI’s and short-long termination. However, between 5 % and 80 % conversion it was found that the method is extremely robust and a series of easy-to-use experimental guidelines were determined for accurately applying the RAFT-CLD-T Method. The effects of chain size, chain size distribution, solution polymer concentration, and matrix architecture were examined for the RAFT-mediated polymerisations of methyl methacrylate (MMA), styrene (STY) and methyl acrylate (MA). It was found that four distinct scaling regimes of termination are observed: (1) a ‘short’ chain dilute solution regime, (2) a ‘long’ chain dilute solution regime, (3) a semi-dilute solution regime and (4) a concentrated solution regime. In dilute polymer solutions, chain-length-dependent power law exponents, ’s, determined during the polymerisation of MMA, STY and MA (where kti,i(x)  i-) indicated that termination follows two major scaling regimes with exponents of approximately ~0.5 to 0.6 for ‘short’ chains and and ~0.12 to 0.16 for ‘long’ chains. Importantly, these exponents are in excellent agreement with theoretical predictions for translational and segmental diffusion-controlled termination, respectively. At increasing polymer concentrations, kti,i(x) falls rapidly coinciding with the onset of the gel effect. By comparing results from the RAFT-mediated polymerisations of MMA, STY, MA, and vinyl acetate (VAc) with theoretical models, we found that the onset of the gel effect coincided closely with the theoretical onset of chain overlap. Considerable uncertainty has plagued the evaluation of this phenomenon, but using a difunctional RAFT agent we showed this uncertainty arises from the influence of broad MWD’s on chain overlap and short-long termination. Finally, critical tests of this theory involving the bimolecular termination of linear radicals in solutions of star polymer confirmed that the gel effect coincided with chain overlap. Beyond the gel effect termination slows enormously, passing through the ‘semi-dilute solution’ regime and into the ‘concentrated solution’. In semi-dilute solution, theoretical predictions based on scaling theory (i.e. the ‘blob’ model) were in excellent agreement with results for the polymerisation of PSTY in linear and star polymer solutions, indicating that the solvent quality diminished both with increasing chain length and through the addition of a star polymer matrix. In concentrated solutions, the chain-length-dependent power law exponent increased linearly with conversion. For example, for MMA the chain length dependence of kt in the gel regime scaled as gel = 1.8x + 0.056, suggesting that reptation alone does not describe termination in the concentrated solution. Values of gel for PSTY, MA, and VAc were in similar agreement, indicating that a mechanism intermediate between unentangled and entangled semi-dilute scaling laws applies in the concentrated solution regime. Interestingly, gel values for these monomers were found to decrease with increasing chain flexibility in the order gel(MMA)> gel(STY)> gel(VAc)> gel(MA), suggesting matrix mobility is rate determining in concentrated solutions. Similarly, gel values were also larger in star polymer solutions, coinciding with decreasing matrix mobility. Thus, although it has been commonly believed that polymer chains diffuse via reptation above the gel effect, these results show that this only occurs for solutions containing rigid and/or highly immobile macromolecules and in very high concentrations. To describe these behaviours, a semi-empirical ‘composite kt model’ was also developed to describe kti,i(x) as a function of i and x up to high conversions. We showed that the model is very simple to implement and accurate for modelling a wide range of functional monomers and experimental conditions. In particular, we showed the method was accurate for modelling RAFT-mediated polymerisations of a very wide range of monomers (MA, MMA, and PSTY) and was even accurate for modelling conventional FRP’s. Thus, the model provides a simple, flexible and accurate method for predicting the rate of reaction and evolution of molecular weight distributions across a range of experimental conditions based on accurate kti,i(x) values.

Page generated in 0.081 seconds