• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 15
  • 14
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 127
  • 54
  • 38
  • 20
  • 19
  • 19
  • 18
  • 16
  • 14
  • 14
  • 12
  • 12
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Nitric Oxide in Primary Ciliary Dyskinesia : Missing in action?

Inganni, Johan January 2008 (has links)
No description available.
92

Nitric Oxide in Primary Ciliary Dyskinesia : Missing in action?

Inganni, Johan January 2008 (has links)
No description available.
93

Cell signaling guides morphogenesis: roles for Eph-Ephrin signaling in sea urchin morphogenesis.

Krupke, Oliver A. 13 August 2015 (has links)
The role that signaling molecules play during morphogenesis and their interactions is a field of intense study and the sea urchin represents a facile system to study these aspects of development in the early embryo. In many instances, the S. purpuratus genome contains relatively simple receptor-ligand signaling systems compared to vertebrate counterparts and this provides interesting opportunities to study their diversity of function during the morphogenetic events that shape the embryo. The Eph-Ephrin signaling components are an excellent example of this and they are represented by dozens of members in the vertebrate system with developmental functions that include axon guidance, cell migration and tissue segregation. In contrast, the sea urchin genome contains a single Eph receptor and a single Ephrin ligand and by interacting with different effectors of signal transduction, this simple, bipartite system can fulfill a variety of functional roles during morphogenesis. Studying the function of Eph-Ephrin signaling in the sea urchin embryo, I have revealed two distinct morphogenetic movements in which Eph-Ephrin signaling is necessary; apical constriction of ciliary band cells and pigment cell migration. In both examples, a functionally relevant Ephrin gradient establishes spatial information in the developing tissues, producing a reaction from cells expressing the Eph receptor. In the case of pigment cells, the distribution of migrating cells is affected and in the case of ciliary band cells, apical constriction occurs. The different outcomes of Eph-Ephrin signaling in these two tissues exemplifies signaling components communicating spatial information and initiating morphogenetic programs with outcomes dependent on cellular context. Furthermore, I have identified downstream components of Eph-Ephrin signaling that have necessary functions in both models, illustrating how different cellular programs can be induced by the same signaling iii iv components. My research contributes to understanding fundamental aspects of how complex 3 dimensional tissues arise from the genes and regulatory elements encoded in metazoan genomes. / Graduate
94

Investigação da ação neuroprotetora do fator neurotrofico ciliar (CNTF) conjugado com peptideo contendo dominio de translocação de proteina (PTD) / Investigation of neuroprotective action of ciliary neurotrophic factor (CNTF) fused to a protein transduction domain (PTD)

Rezende, Alexandre Cesar Santos de 14 August 2018 (has links)
Orientador: Francesco Langone / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-14T01:41:43Z (GMT). No. of bitstreams: 1 Rezende_AlexandreCesarSantosde_D.pdf: 5210413 bytes, checksum: 60e511530e7c408001bf455f9968219f (MD5) Previous issue date: 2009 / Resumo: O fator neurotrófico ciliar (CNTF) despertou grande interesse com a descoberta do seu efeito neuroprotetor sobre motoneurônios após secção de nervos periféricos em ratos neonatos e camundongos adultos. Contudo, seus efeitos colaterais de perda de peso e caquexia impedem seu uso clínico. Uma via alternativa muito promissora, no sentido de eliminar estes efeitos colaterais, parece ser a administração do CNTF conjugado com peptídeos que possuem domínio de translocação de proteínas (PTD-protein transduction domain). Previamente, mostramos que o CNTF conjugado a um PTD derivado da proteína tat do vírus HIV-1 (TAT-CNTF) também tem efeito protetor sobre motoneurônios e não produziu efeitos colaterais no tratamento, por 5 dias, de ratos neonatos (P2-P7) que sofreram secção do nervo isquiático. O presente trabalho teve como objetivo investigar se a administração da TAT-CNTF por tempos mais prolongados seria capaz de manter a sobrevivência de motoneurônios e neurônios sensoriais, bem como de estimular a regeneração axonal, sem a ocorrência dos efeitos colaterais do CNTF. Desta forma, ratos Wistar neonatos (P2) receberam tratamento subcutâneo com CNTF (1,2mg/g/dia) durante 5 dias, TATCNTF (1,2mg/g/dia) ou PBS durante 5 ou 15 dias. Ao final do período de tratamento os animais foram sacrificados por decapitação, sendo coletado para posterior análise o sangue e gorduras marrom interescapular, branca retroperitonial e branca epididimal. Um outro grupo de animais tive o nervo isquiático esquerdo esmagado em P2 e recebeu o mesmo tratamento. No período entre 20 e 60 dias de vida foi realizada a avaliação da recuperação funcional motora por meio de Walking Track Test, e da recuperação funcional sensitiva através da medida do limiar da resposta de retirada da pata a um estímulo elétrico. No 30º ou 60º dia de vida foi realizada marcação retrógrada de neurônios cujos axônios compõem o nervo isquiático utilizando-se Amina Dextrano Biotinilado (BDA). Após 7 dias, os animais foram sacrificados, sendo coletada a intumescência lombar, os gânglios sensoriais L4 e L5 e o nervo isquiático para análise histológica. As análises dos níveis plasmáticos de glicose, triglicérides e ácidos graxos revelaram que o tratamento com TAT-CNTF ou CNTF por igual período (5 dias) produziu modificações no metabolismo energético em relação aos ratos controle (PBS), contudo diferiram quanto à intensidade dos efeitos produzidos. O tratamento prolongado com TAT-CNTF (15 dias) produziu significantes alterações nas concentrações plasmáticas de triglicérides e de colesterol. Entretanto, o tratamento com TAT-CNTF (5 ou 15 dias) produziu efeitos reduzidos sobre os tecidos adiposos quando comparados ao tratamento com CNTF. Os ratos do grupo TAT-CNTF apresentaram peso corporal significativamente menor que aqueles do grupo PBS a partir do 9º dia de tratamento, porém o grupo CNTF apresentou menor peso a partir do 2º dia. Em ambos tratamentos houve reversão desse efeito sobre o peso corporal, porém esta ocorreu mais precocemente nos ratos do grupo TAT-CNTF (P25) quando comparados ao grupo CNTF (P32). A recuperação funcional motora e sensorial dos grupos CNTF e TAT-CNTF foi 50% superior ao grupo controle. Os grupos CNTF e TAT-CNTF também apresentaram maior número de neurônios sensoriais e motores BDA positivos, além de maior número de axônios mielínicos no nervo isquiático quando comparados ao grupo controle. Nossos resultados mostraram que o tratamento com TAT-CNTF, mesmo por períodos mais longos, promoveu a sobrevivência e regeneração axonal de motoneurônios e neurônios sensitivos sem a ocorrência dos efeitos colaterais produzidos pelo tratamento com CNTF. Além disso, tais propriedades da TAT-CNTF contribuíram significativamente para a recuperação funcional motora e sensorial após lesões nervosas periféricas. / Abstract: Ciliary neurotrophic factor (CNTF) is known as a neuroprotective agent on motoneurons after peripheral nerve section in neonatal rats and adult mice. However, side effects like weight loss and caquexia have limited its clinical use. A promising approach for the avoidance of such side effects is the fusion of a protein transduction domain (PTD) with CNTF. Previously we showed that CNTF fused with HIV-1 PTD (TAT-CNTF) also had protective effect on motoneurons and did not produce side effects in a 5 days treatment of sciatic nerve transected neonatal rats (P2-P7). The aim of the present work was investigate if the TAT-CNTF administration for long time was capable to support the motoneurons and sensory neurons survival, as well as to stimulate the axonal regeneration, without CNTF side effects. Thus, neonatal Wistar rats (P2) were subcutaneously treated with CNTF (1.2mg/g/day) for 5 days, TAT-CNTF (1.2mg/g/day) or PBS during 5 or 15 days. By the end of treatment rats were killed by decaptation and blood, intrascapular brown adipose tissue and retroperitonial and epididimal white adipose tissue were collected for further analysis. Another group of animals had the left sciatic nerve crushed (NCE) in P2 and received the same treatment. From 20 to 60 days of age a Walking Track Test was performed in order to evaluate the motor function recovery, and the threshold for paw withdraw was used as a measure of sensitive functional recovery. The retrograde labeling of sciatic nerve neurons using Biotinilated Dextran Amine (BDA) was performed at 30 or 60 days of age. Rats were killed after 7 days and the lumbar enlargement, L4 and L5 dorsal root ganglia and the sciatic nerve were collected for histological analysis. The analysis glucose, triglycerides and fatty acid plasmatic levels demonstrated that 5 days TAT-CNTF or CNTF treatment induced changes in energy metabolism compared to control rats, however the effects of these treatments had different intensities. The long term treatment with TAT-CNTF (15 days) induced important changes in triglycerides and cholesterol plasmatic levels. However TAT-CNTF treatment (5 or 15 days) had reduced effects on adipose tissue when compared to CNTF. After the 9th day of treatment the TAT-CNTF group had a smaller body weight when compared to the PBS group, on the other hand the CNTF group had a smaller body weight after the 2nd day compared to the PBS group. In both treatments (CNTF and TATCNTF) there was a reversion of the body weight effect, however this was earlier in the TAT-CNTF group (P25) than on the CNTF group (P32). The motor and sensorial functional recovery of CNTF and TAT-CNTF groups was 50% greater than the control group. CNTF and TAT-CNTF groups also displayed a greater number of BDA positive motor and sensory neurons, and more myelinic axons in the sciatic nerve compared to the control group. Our results demonstrate that TAT-CNTF long term treatment was able to promote the survival and axonal regeneration of motor and sensory neurons without important CNTF related side effects. Moreover, TAT-CNTF properties had significant contribution for the motor and sensory functional recovery after peripheral nerve lesion. / Doutorado / Biologia Celular / Doutor em Biologia Celular e Estrutural
95

Ações das Neurocinas CNTF e IL-6 Exógenas na Regeneração Nervosa Periférica / Effects of Exogenous Ciliary Neurotrophic Factor and lnterleukin-6 in Peripheral Nerve Regeneration

Francisco Carlos Pereira 20 January 1999 (has links)
Foi estudada a ação do fator neurotrófico ciliar (CNTF) e da interleucina 6 (IL-6) exógenos na regeneração nervosa periférica. Aplicação de CNTF recombinante humano: o nervo ciático de 12 camundongos adultos C57BL/6J (3 grupos, n=4) foi seccionado e os cotos proximal e distal ancorados com ponto único de sutura no interior de tubo de polietileno (TP) com 6 mm d e comprimento e 0,76 mm de diâmetro interno, com intervalo de 4 mm entre os cotos. Os TP foram implantados vazios ou preenchidos com uma das seguintes soluções: (1) colágeno (col.) purificado (Vitrogen, 2,4 mg/ml) em tampão fosfato (0,2M), na proporção d e 1:1; (2) col.+CNTF (1:1, com 100 ng/ml de CNTF/tubo). Após 6 semanas os tubos contendo ao cabos nervosos regenerado s (CR) foram processados e incluídos em Epon. Fibras nervosas mielínicas foram contadas na porção média dos CR com um sistema controlado por computador (Biographics). Camundongos que receberam CNTF apresentaram número significativamente maior de axônios regenerados (3027±62, média±erro padrão) em relação aos animais implantados com tubos vazios (1384±128) ou preenchidos apenas com colágeno (1639±104). Outros 12 animais adicionais tiveram o nervo ciático seccionado e reparado da mesma maneira. Após 6 semanas, um tubo contendo solução do traçador neuronal HRP foi implantado no coto distal do nervo. Decorrido um período suplementar de 3 dias, neurônios marcados foram contados na medula espinhal e nos gânglios das raízes dorsais L4,5,6- Não houve diferença significante no número de motoneurônios entre os diferentes grupos experimentais (vazio=740±21; col.=749±44; CNTF=790±14) e o s animais não-operados (794±30). Não houve também diferença significante no número de neurônios sensitivos entre os diferentes grupos experimentais (vazio=1920±59; co!.=2262±152; CNTF=2124+96) e todos apresentaram número menor de neurônios sensitivos quando comparados com os animais não operados (4211+96) Aplicação de IL-6 recombinante murina: 12 camundongos C57BL/6J adultos foram divididos em dois grupos (n=6) e implantados com TP preenchidos com: (1) Vitrogen (2,4 mg/ml) e tampão fosfato (0,2 M), na proporção d e 1:1; (2) Vitrogen + IL-6 (1:1, com 100 |ig/ml de IL-6/tubo). Após tempo d e sobrevida de 6 semanas , os tubos com os CR foram processados da mesma forma que no experimento anterior. Fibras nervosas mielínicas foram contadas na porção média d o s CR. Os resultados mostraram que os animais implantados com col.+IL-6 tinham número significativamente maior de axônios mielínicos (2025+143) que os animais injetados apenas com col. (1542±122). O gânglio L5 foi também removido dos mesmos animais e cortado seriadamente (5|am), para posterior contagem do número de neurônios sensitivos. Não houve diferença significante no número de neurônios sensitivos entre os grupos experimentais (col.=528+42, col.+IL-6=554±37); todos, no entanto, apresentaram número significantemente menor de neurônios sensitivos quando comparados com os animais não operados (1112+63). Esses resultados indicam que a aplicação local de CNTF ou IL-6 estimula a regeneração de nervos seccionados e que este efeito é devido, provavelmente, a um aumento da taxa de brotamento dos axônios em regeneração / We studied the actions of exogenous ciliary neurotrophic factor (CNTF) and interleukin-6 (IL-6) on peripheral nerve regeneration. The sciatic nerve of 12 adult C57BL/6J mice (3 groups; n=4) w a s transected and both proximal and distal nerve stumps were secured by a single 10-0 suture into a 6-mm of a polyethylene tube (PT) (0,76 mm ID) to give a final gap length of 4mm. The PT were implanted empty or filled with one of the following solutions: (1) a purified preparation of collagen (Vitrogen, 2,4 mg/ml) plus phosphate buffer solution (0,2M), in 1:1 ratio; (2) Vitrogen + human recombinant CNTF (1:1, with 100 ng/ml of CNTF/tube). After 6 weeks the tubes containing the regenerated nerve cables (NC) were processed for Epon embedding. Myelinated nerve fibers were counted from the mid-portion of the cab les with a computer-controlled system (Biographics). CNTF injected mice regenerated significantly more myelinated axons (3027±62, mean±SEM) compared to the animals implanted with tubes left empty (1384±128) or filled with collagen alone (1639±104). Next, 12 additional animals had the sciatic nerve transected and repaired a s above. After 6 weeks, HRP was applied to the distal stump of the regenerated nerves and labeled neurons were counted in the spinal cord an d L4.5.6 dorsal root ganglia (DRG). No significant difference in the number of motoneurons was detected between the experimental (empty=740±21; collagen=749±44; CNTF=790±14) and non-operated (794±30) animals. No difference was also found in the n umber of labeled DRG neurons among the experimental groups (empty=1920±59; collagen=2262±152; CNTF=2124±96) and all had fewer labeled sensory neurons compared to the non-operated group (4211+96). For the IL-6 experiments, 12 C57BL/6J mice were divided into 2 groups (n=6) and implanted with PT filled with one of the following solutions: (1) Vitrogem (2,4 mg/ml) plus phosphate buffer solution (0,2 M), in 1:1 ratio; (2) Vitrogen + murine recombinant IL-6 (1:1, with 100 |ig/ml of IL-6/tube). Following a survival time of 6 weeks, the tubes with the regenerating nerve cables were processed for Epon embedding and myelinated nerve fiber counting. The results showed a significant difference in the number of myelinated axons between the collagen+IL-6 group (2025±143) and the collagen alone group (1542±122). The L5 DRG was also removed from the same mice, and serially sectioned (5^m) for sensory neuron counts. No significant difference was found in the number of DRG neurons between the experimental groups (collagen=528±42; collagen+IL-6=554±37). However, all had significantly fewer sensory neurons compared to the non-operated group (1112+63). These results indicate that locally applied CNTF and IL-6 stimulate peripheral nerve regeneration in adult animals, and that the effects are due to a neurite-promoting activity on axotomized neurons
96

Applications des ultrasons focalisés de haute intensité au traitement du glaucome / High intensity focused ultrasound for the treatment of glaucoma

Aptel, Florent 08 December 2011 (has links)
Le glaucome est une pathologie fréquente principalement due à une élévation de la pression intraoculaire. La pression intraoculaire est le fruit d’un équilibre entre la production du liquide qui remplit la portion antérieure de l’œil - l’humeur aqueuse - et son élimination. Les traitements du glaucome peuvent donc agir selon deux mécanismes : la réduction de la production d’humeur aqueuse par la destruction partielle ou l’inhibition pharmacologique du corps ciliaire, structure responsable de la production de l’humeur aqueuse, ou la facilitation de l’évacuation de l’humeur aqueuse en dehors de l’oeil. De nombreuses méthodes physiques peuvent être utilisées pour détruire le corps ciliaire : lasers, cryothérapie, micro-ondes, etc. Néanmoins, toutes ces méthodes ont deux inconvénients majeurs qui limitent leur utilisation : elles sont peu sélectives de l’organe à traiter, entraînant souvent des dommages des structures adjacentes, et elles présentent une relation effet-dose très inconstante, empêchant de prévoir avec précision l’effet du traitement. L’objectif de ce travail de thèse est le développement d’un dispositif ultrasonore de coagulation du corps ciliaire circulaire, comprenant 6 transducteurs piézoélectriques en forme de segments de cylindre, et générant 6 lésions segmentaires s’inscrivant dans un anneau de diamètre similaire à celui formé par le corps ciliaire. Les expérimentations animales ont montré une nécrose de coagulation sélective des zones du corps ciliaire traitées par le dispositif. Le premier essai clinique a montré que cette méthode était bien tolérée et permettait une réduction importante, prédictible et maintenue dans le temps de la pression intraoculaire / Glaucoma is a common disease mainly due to an increase of the pressure inside the eye. Intraocular pressure is the result of a balance between the production of liquid that fills the anterior part of eye - aqueous humor - and its elimination. All treatments for glaucoma aim to reduce the intraocular pressure and can therefore have two mechanisms of action: reducing aqueous humor production by the partial destruction or medical inhibition of the ciliary body - anatomical structure responsible for the production of aqueous humor - or facilitating the evacuation of aqueous humor out of the eye. Several physical methods can be used to destroy the ciliary body: laser, cryotherapy, microwave, etc. However, all these methods have two major drawbacks limiting their use: they are non-selective of the organ to be treated, often resulting in damage to the adjacent structures, and they have an unpredictable dose-effect relationship, preventing to accurately predict the treatment effect. The objective of this thesis is the development of a circular ultrasonic device incorporating six transducers producing high-intensity focused ultrasound for a selective coagulation of the ciliary body. A circular device with 6 piezoelectric transducers having a geometry of a segment of a cylinder was used to generate six segmental lesions entering in a ring of diameter similar to that formed by the ciliary body. Animal experiments have shown a selective coagulation necrosis of the treated ciliary body. The first clinical trial in humans showed that this method was well tolerated and allowed a significant, predictable and sustained reduction of the intraocular pressure
97

Mutation of Polaris, an Intraflagellar Transport Protein, Shortens Neuronal Cilia

Mahato, Deependra 08 1900 (has links)
Primary cilia are non-motile organelles having 9+0 microtubules that project from the basal body of the cell. While the main purpose of motile cilia in mammalian cells is to move fluid or mucus over the cell surface, the purpose of primary cilia has remained elusive for the most part. Primary cilia are shortened in the kidney tubules of Tg737orpk mice, which have polycystic kidney disease due to ciliary defects. The product of the Tg737 gene is polaris, which is directly involved in a microtubule-dependent transport process called intraflagellar transport (IFT). In order to determine the importance of polaris in the development of neuronal cilia, cilium length and numerical density of cilia were quantitatively assessed in six different brain regions on postnatal days 14 and 31 in Tg737orpk mutant and wildtype mice. Our results indicate that the polaris mutation leads to shortening of cilia as well as decreased percentage of ciliated neurons in all brain regions that were quantitatively assessed. Maintainance of cilia was especially affected in the ventromedial nucleus of the hypothalamus. Furthermore, the polaris mutation curtailed cilium length more severely on postnatal day 31 than postnatal day 14. These data suggests that even after ciliogenesis, intraflagellar transport is necessary in order to maintain neuronal cilia. Regional heterogeneity in the effect of this gene mutation on neuronal cilia suggests that the functions of some brain regions might be more compromised than others.
98

Effects of Brain Injury on Primary Cilia of Glial Cells and Pericytes

Coronel, Marco V. 12 1900 (has links)
Glial cells maintain homeostasis that is essential to neuronal function. Injury to the nervous system leads to the activation and proliferation of glial cells and pericytes, which helps to wall off the damaged region and restore homeostatic conditions. Sonic hedgehog is a mitogen which is implicated in injury-induced proliferation of glial cells and pericytes. The mitogenic effects of sonic hedgehog require primary cilia, but the few reports on glial or pericyte primary cilia do not agree about their abundance and did not address effects of injury on these cilia. Primary cilia are microtubule-based organelles that arise from the centrosome and are retracted before cells divide. Depending on cell type, proteins concentrated in cilia can transduce several mitotic, chemosensory, or mechanosensory stimuli. The present study investigated effects of stab wound injury on the incidence and length of glial and pericyte primary cilia in the area adjacent to the injury core. Astrocytes, polydendrocytes and pericytes were classified by immunohistochemistry based on cell-type markers. In normal adult mice, Arl13b immunoreactive primary cilia were present in a majority of each cell type examined: astrocytes, 98±2%; polydendrocytes, 87±6%; and pericytes, 79±13% (mean ± SEM). Three days post-injury, cilium incidence decreased by 24% in astrocytes (p< 0.008) and 41% in polydendrocytes (p< 0.002), but there was no significant effect in pericytes. Polydendrocytes labeled with the cell cycle marker Ki67 were less likely to have cilia compared to resting, Ki67- polydendrocytes. Considering post-injury rates of proliferation for astrocytes and polydendrocytes, it appears that resorption of cilia due to cell cycle entry may account for much of the loss of cilia in polydendrocytes but was not sufficient to account for the loss of cilia in astrocytes. Under normal conditions, astrocytes rarely divide, and they maintain non-overlapping territories. However, three days after injury, there was a 7-fold increase in the number of paired mirror-image astrocytes (p< 0.018), which are most likely daughter cells from astrocytes that recently divided. Cilia incidence tended to decrease in these pairs compared to single astrocytes (p< 0.057) in injured mice. This is the first systematic investigation of cilia of astrocytes, polydendrocytes, and pericytes in the brain. Moreover, the examination of effects of brain injury on cilia adds to the understanding of injury-induced proliferation in these cells.
99

Studies on Zebrafish Thrombocyte Function

Pulipakkam Radhakrishnan, Uvaraj 05 1900 (has links)
Thrombocytes are important players in hemostasis. There is still much to be explored regarding the molecular basis of the thrombocyte function. In our previous microarray analysis data, we found IFT122 (an intraflagellar transport protein known to be involved in cilia formation) transcripts in zebrafish thrombocytes. Given recent discoveries of non-ciliary roles for IFTs, we examined the possibility that IFT122 affects thrombocyte function. We studied the role of IFT122 in thrombocyte function. We also found that IFT122 plays a central role in thrombocyte activation initiated by the agonists ADP, collagen, PAR-1 peptide and epinephrine. Although the receptors for ADP, PAR-1 peptide and epinephrine are present in the zebrafish genome, the collagen receptor GPVI was missing. In this study, we identified G6fL as a collagen receptor in zebrafish thrombocytes. Furthermore, IFT knockdown results in reduction in Wnt signaling. The Wnt signaling has been shown to be involved in megakaryocyte proliferation and proplatelets production. Therefore, defects in IFT could lead to thrombocytopenia. Splenectomy is performed in humans to treat such conditions. Therefore, in this study we developed a survival surgery protocol for splenectomy. We have shown that number of thrombocytes and their microparticles increase following splenectomy in zebrafish. Thus overall the studies on thrombocyte function in zebrafish could enhance fundamental knowledge on hemostasis and may provide future target candidates for therapies.
100

Regulation of Receptors in Neuronal Cilia with Development, Seizures, and Knockouts: Implications for Excitability

Shrestha, Jessica 08 1900 (has links)
Neurons commonly have a primary cilium, which is a non-motile organelle extending from the centrosome into the extracellular space. In most brain regions, neuronal cilia are enriched in either somatostatin receptor type 3 (SstR3) or melanin concentrating hormone receptor type 1 (MCHR1), or both. The present immunohistochemical study provides novel evidence that primary cilia regulate neuronal excitability via G-protein coupled receptors (GPCRs), and that their identity is governed by brain region and by competition, both in adulthood and in postnatal development. The hippocampus, which is particularly vulnerable to seizures, has opposing gradients of SstR3(+) and MCHR1(+) ciliary GPCRs. We hypothesized that there is a competition between these two ciliary GPCRs, which might take place on any level from gene expression to presence in the cilium. We examined whether receptor colocalization occurs transiently in development before ciliary GPCR dominance is established in neurons in the CNS. In postnatal CA1 and CA3, the first GPCR to appear in cilia was the one that will dominate in adults: MCHR1 in CA1 and SstR3 in CA3. Some days later, the second GPCR was expressed along with the first; dual-receptor cilia were the exclusive type until single-receptor cilia emerged again around P14. Single-receptor cilia then increased in numbers through adulthood. By identifying ciliary receptors that modulate seizure activity in mice, the present study lays a foundation for therapeutic approaches to reduce neuronal excitotoxicity underlying cell death in epilepsy, CNS injury, and neurodegenerative diseases.

Page generated in 0.0238 seconds