• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 38
  • 18
  • 12
  • 12
  • 12
  • 12
  • 11
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Modellierung und Charakterisierung des elektrischen Verhaltens von haftstellen-basierten Flash-Speicherzellen

Melde, Thomas 28 February 2012 (has links) (PDF)
Im Rahmen dieser Arbeit werden haftstellen-basierte Speicherzellen als mögliche Alternative zum bestehenden Floating-Gate Konzept untersucht. Hierbei wird zunächst mittels Simulation und ausgewählten Messverfahren das Verständnis der Funktionsweise vertieft. Der darauffolgende Abschnitt befasst sich mit der Verbesserung der elektrischen Eigenschaften, basierend auf Änderungen der verwendeten Materialien und dem räumlichen Aufbau. Abschließend erfolgt die Untersuchung der Anwendbarkeit des Zellkonzeptes in hochdichten Zellenfeldern.
42

Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin Films

Yurchuk, Ekaterina 06 February 2015 (has links)
Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO2) thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO2 thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO2-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.:1 Introduction 2 Fundamentals 2.1 Non-volatile semiconductor memories 2.2 Emerging memory concepts 2.3 Ferroelectric memories 3 Characterisation methods 3.1 Memory characterisation tests 3.2 Ferroelectric memory specific characterisation tests 3.3 Trapping characterisation methods 3.4 Microstructural analyses 4 Sample description 4.1 Metal-insulator-metal capacitors 4.2 Ferroelectric field effect transistors 5 Stabilisation of the ferroelectric properties in Si:HfO2 thin films 5.1 Impact of the silicon doping 5.2 Impact of the post-metallisation anneal 5.3 Impact of the film thickness 5.4 Summary 6 Electrical properties of the ferroelectric Si:HfO2 thin films 6.1 Field cycling effect 6.2 Switching kinetics 6.3 Fatigue behaviour 6.4 Summary 7 Ferroelectric field effect transistors based on Si:HfO2 films 7.1 Effect of the silicon doping 7.2 Program and erase operation 7.3 Retention behaviour 7.4 Endurance properties 7.5 Impact of scaling on the device performance 7.6 Summary 8 Trapping effects in Si:HfO2-based FeFETs 8.1 Trapping kinetics of the bulk Si:HfO2 traps 8.2 Detrapping kinetics of the bulk Si:HfO2 traps 8.3 Impact of trapping on the FeFET performance 8.4 Modified approach for erase operation 8.5 Summary 9 Summary and Outlook
43

Charged Domain Walls in Ferroelectric Single Crystals

Kämpfe, Thomas 11 January 2017 (has links)
Charged domain walls (CDWs) in proper ferroelectrics are a novel route towards the creation of advancing functional electronics. At CDWs the spontaneous polarization obeying the ferroelectric order alters abruptly within inter-atomic distances. Upon screening, the resulting charge accumulation may result in the manifestation of novel fascinating electrical properties. Here, we will focus on electrical conduction. A major advantage of these ferroelectric DWs is the ability to control its motion upon electrical fields. Hence, electrical conduction can be manipulated, which can enrich the possibilities of current electronic devices e.g. in the field of reconfigurability, fast random access memories or any kind of adaptive electronic circuitry. In this dissertation thesis, I want to shed more light onto this new type of interfacial electronic conduction on inclined DWs mainly in lithium niobate/LiNbO3 (LNO). The expectation was: the stronger the DW inclination towards the polar axis of the ferroelectric order and, hence, the larger the bound polarization charge, the larger the conductivity to be displayed. The DW conductance and the correlation with polarization charge was investigated with a multitude of experimental methods as scanning probe microscopy, linear and nonlinear optical microscopy as well as electron microscopy. We were able to observe a clear correlation of the local DW inclination angle with the DW conductivity by comparing the three-dimensional DW data and the local DW conductance. We investigated the conduction mechanisms on CDWs by temperature-dependent two-terminal current-voltage sweeps and were able to deduce the transport to be given by small electron polaron hopping, which are formed after injection into the CDWs. The thermal activated transport is in very good agreement with time-resolved polaron luminescence spectroscopy. The applicability of this effect for non-volatile memories was investigated in metal-ferroelectric-metal stacks with CMOS compatible single-crystalline films. These films showed unprecedented endurance, retention, precise set voltage, and small leakage currents as expected for single crystalline material. The conductance was tuned and switched according to DW switching time and voltage. The formation of CDWs has proven to be extremely stable over at least two months. The conductivity was further investigated via microwave impedance microscopy, which revealed a DW conductivity of about 100 to 1000 S/m at microwave frequencies of about 1 GHz.:1 INTRODUCTION 1 I THEORETICAL BASICS 5 2 FUNDAMENTALS 7 2.1 Ferroelectricity 7 2.1.1 Spontaneous polarization 8 2.1.2 Domains and domain walls 9 2.1.3 Charged domain walls 13 2.1.4 Conductive domain walls 16 2.2 Visualization of ferroelectric domains and domain walls 21 2.2.1 Light microscopy 22 2.2.2 Second-harmonic generation microscopy 22 2.2.3 Cherenkov second-harmonic generation microscopy 25 2.2.4 Optical coherence tomography 28 2.2.5 Piezo-response force microscopy 30 2.2.6 Ferroelectric lithography 31 2.2.7 Further methods 34 2.3 Lithium niobate and tantalate 37 2.3.1 General Properties 37 2.3.2 Stoichiometry 38 2.3.3 Optical properties 40 2.3.4 Intrinsic and extrinsic defects 43 2.3.5 Polarons 47 2.3.6 Ionic conductivity 51 3 METHODS 53 3.1 Sample Preparation 53 3.1.1 Poling stage 53 3.1.2 Thermal treatment 56 3.1.3 Ion slicing of LNO crystals 57 3.2 Atomic force microscopy 59 3.2.1 Non-contact and contact mode AFM microscopy 59 3.2.2 Piezo-response force microscopy (PFM) 60 3.2.3 Conductive atomic force microscopy (cAFM) 62 3.2.4 Scanning microwave impedance microscopy (sMIM) 63 3.2.5 AFM probes 66 3.3 Laser scanning microscope 67 3.4 Time-resolved luminescence spectroscopy 71 3.5 Energy-resolved photoelectron emission spectromicroscopy 72 II EXPERIMENTS 75 4 RESULTS 77 4.1 Three-dimensional profiling of domain walls 78 4.1.1 Randomly poled LNO and LTO domains 78 4.1.2 Periodically Poled Lithium Niobate 81 4.1.3 AFM-written Domains 83 4.1.4 Thermally treated LNO 84 4.1.5 Laser-written domains 86 4.2 Polarization charge textures 90 4.2.1 Random domains in Mg:LNO and Mg:LTO 90 4.2.2 Thermally-treated LNO 92 4.3 Quasi-phase matching SHG 92 4.4 Photoelectron microspectroscopy 97 4.5 Activated polaron transport 101 4.6 High voltage treated LNO 113 4.7 Conductive domain walls in exfoliated thin-film LNO 115 4.7.1 Conductance maps 116 4.7.2 Resistive switching by conductive domain walls 120 4.8 Microwave impedance microscopy 134 4.8.1 Finite-element method simulation 134 4.8.2 Scanning microwave impedance microscopy 136 5 conclusion & outlook 143 III EPILOGUE 147 a APPENDIX 149 a.1 Laser ablation dynamics on LNO surfaces 149 a.2 XPS across a conductive DW in LNO 150 a.3 XRD of thin-film exfoliated LNO 151 a.4 Domain writing in exfoliated thin-film LNO 152 a.5 Retention in conductance at DWs in thin-film exfoliated LNO 155 a.6 sMIM on DWs in thin-film exfoliated LNO 157 a.7 Domain inversion evolution under a tip by phase-field modeling 159 a.8 Current transients in exfoliated LNO 161 a.9 Surface acoustic wave excitation damping at DWs 162 a.10 Influence of UV illumination on domains in Mg:LNO 162 Acronyms 165 Symbols 169 List of figures 172 List of tables 176 Bibliography 177 Publications 225 Erklärung 233 / Geladene Domänenwände (DW) in reinen Ferroelektrika stellen eine neue Möglichkeit zur Erzeugung zukünftiger, funktionalisierter Elektroniken dar. An geladenen DW ändert sich die Polarisation sehr abrupt - innerhalb nur weniger Atomabstände. Sofern die dadurch hervorgerufene Ladungsträgeranreicherung elektrisch abgeschirmt werden kann, könnte dies zu faszinierenden elektrischen Eigenschaften führen. Wir möchten uns hierbei jedoch auf die elektrische Leitfähigkeit beschränken. Ein großer Vorteil für die Anwendung leitfähiger DW ist deren kontrollierte Bewegung unter Einwirkung elektrischer Felder. Dies ermöglicht die Manipulation das Ladungstransports, welches zum Beispiel im Bereich der Rekonfigurierbarkeit, schneller Speicherbauelemente und jeder Art von adaptiven elektronischen Schaltungen Anwendung finden kann. In dieser Dissertationsschrift möchte ich diesen neuen Typus grenzflächiger elektronischen Ladungstransports an geladenen DW hauptsächlich am Beispiel von Lithiumniobat/-LiNbO3 (LNO) untersuchen. Die Annahme lautete hierbei: umso stärker die DW zur ferroelektrischen Achse geneigt ist, also desto stärker die gebundene Polarisationsladung und folglich die elektrische DW-Leitfähigkeit. Die elektrische DW-Leitfähigkeit und die Korrelation mit der Polarisationsladung wurde mit verschiedenen experimentellen Methoden wie Rasterkraftmikroskopie, linearer und nichtlinearer optischer Mikroskopie als auch Elektronenmikroskopie untersucht. Es konnte eine klare Korrelation durch Vergleich der dreidimensionalen DW-Aufzeichnungsdaten mit der lokalen Leitfähigkeit gezeigt werden. Wir haben weiterhin den Leitfähigkeitsmechanismus an geladenen DW mittels temperaturabhängiger Strom-Spannungskennlinien untersucht und konnten hierbei einen Hopping-Transport kleiner Elektronenpolaronen nachweisen, welche nach Elektroneninjektion in die geladene DW generiert werden. Der thermisch aktivierte Ladungsträgertransport ist in guter Übereinstimmung mit zeitaufgelöster Polaron-Lumineszenzspektroskopie. Die Anwendbarkeit dieses Effektes für nicht-volatile Speicherbauelemente wurde an Metall-Ferroelektrika-Metall Schichtstrukturen mit CMOS-kompatiblen einkristalliner Filmen untersucht. Die Filme zeigen bisher nichtgesehene Durchhalte- und Speichervermögen, genau definierte Schaltspannung sowie sehr geringe Leckageströme wie dies für einkristalline Materialsysteme erwartet wird. Die Leitfähigkeit konnte mittels entsprechender Wahl der elektrischen Schaltzeiten und -spannungen zielgerichtet manipuliert und geschalten werden. Es konnte darüber hinaus gezeigt werden, dass die hergestellten geladenen DW über eine Zeitspanne von mindestens zwei Monaten stabil sind und hierbei leitfähig bleiben. Die Leitfähigkeit der DW wurde weiterhin mittels Mikrowellenimpedanzmikroskopie untersucht. Dabei konnten DW-Leitfähigkeiten von 100 bis 1000 S/m für Mikrowellenfrequenzen von etwa 1GHz ermittelt werden.:1 INTRODUCTION 1 I THEORETICAL BASICS 5 2 FUNDAMENTALS 7 2.1 Ferroelectricity 7 2.1.1 Spontaneous polarization 8 2.1.2 Domains and domain walls 9 2.1.3 Charged domain walls 13 2.1.4 Conductive domain walls 16 2.2 Visualization of ferroelectric domains and domain walls 21 2.2.1 Light microscopy 22 2.2.2 Second-harmonic generation microscopy 22 2.2.3 Cherenkov second-harmonic generation microscopy 25 2.2.4 Optical coherence tomography 28 2.2.5 Piezo-response force microscopy 30 2.2.6 Ferroelectric lithography 31 2.2.7 Further methods 34 2.3 Lithium niobate and tantalate 37 2.3.1 General Properties 37 2.3.2 Stoichiometry 38 2.3.3 Optical properties 40 2.3.4 Intrinsic and extrinsic defects 43 2.3.5 Polarons 47 2.3.6 Ionic conductivity 51 3 METHODS 53 3.1 Sample Preparation 53 3.1.1 Poling stage 53 3.1.2 Thermal treatment 56 3.1.3 Ion slicing of LNO crystals 57 3.2 Atomic force microscopy 59 3.2.1 Non-contact and contact mode AFM microscopy 59 3.2.2 Piezo-response force microscopy (PFM) 60 3.2.3 Conductive atomic force microscopy (cAFM) 62 3.2.4 Scanning microwave impedance microscopy (sMIM) 63 3.2.5 AFM probes 66 3.3 Laser scanning microscope 67 3.4 Time-resolved luminescence spectroscopy 71 3.5 Energy-resolved photoelectron emission spectromicroscopy 72 II EXPERIMENTS 75 4 RESULTS 77 4.1 Three-dimensional profiling of domain walls 78 4.1.1 Randomly poled LNO and LTO domains 78 4.1.2 Periodically Poled Lithium Niobate 81 4.1.3 AFM-written Domains 83 4.1.4 Thermally treated LNO 84 4.1.5 Laser-written domains 86 4.2 Polarization charge textures 90 4.2.1 Random domains in Mg:LNO and Mg:LTO 90 4.2.2 Thermally-treated LNO 92 4.3 Quasi-phase matching SHG 92 4.4 Photoelectron microspectroscopy 97 4.5 Activated polaron transport 101 4.6 High voltage treated LNO 113 4.7 Conductive domain walls in exfoliated thin-film LNO 115 4.7.1 Conductance maps 116 4.7.2 Resistive switching by conductive domain walls 120 4.8 Microwave impedance microscopy 134 4.8.1 Finite-element method simulation 134 4.8.2 Scanning microwave impedance microscopy 136 5 conclusion & outlook 143 III EPILOGUE 147 a APPENDIX 149 a.1 Laser ablation dynamics on LNO surfaces 149 a.2 XPS across a conductive DW in LNO 150 a.3 XRD of thin-film exfoliated LNO 151 a.4 Domain writing in exfoliated thin-film LNO 152 a.5 Retention in conductance at DWs in thin-film exfoliated LNO 155 a.6 sMIM on DWs in thin-film exfoliated LNO 157 a.7 Domain inversion evolution under a tip by phase-field modeling 159 a.8 Current transients in exfoliated LNO 161 a.9 Surface acoustic wave excitation damping at DWs 162 a.10 Influence of UV illumination on domains in Mg:LNO 162 Acronyms 165 Symbols 169 List of figures 172 List of tables 176 Bibliography 177 Publications 225 Erklärung 233
44

Modellierung und Charakterisierung des elektrischen Verhaltens von haftstellen-basierten Flash-Speicherzellen

Melde, Thomas 01 September 2010 (has links)
Im Rahmen dieser Arbeit werden haftstellen-basierte Speicherzellen als mögliche Alternative zum bestehenden Floating-Gate Konzept untersucht. Hierbei wird zunächst mittels Simulation und ausgewählten Messverfahren das Verständnis der Funktionsweise vertieft. Der darauffolgende Abschnitt befasst sich mit der Verbesserung der elektrischen Eigenschaften, basierend auf Änderungen der verwendeten Materialien und dem räumlichen Aufbau. Abschließend erfolgt die Untersuchung der Anwendbarkeit des Zellkonzeptes in hochdichten Zellenfeldern.:Kurzfassung Abstract 1 Einleitung 2 Grundlagen aktiver Halbleiterelemente 2.1 Die MOS-Struktur 2.2 Der MOS-Feldeffekt-Transistor 2.3 Nichtflüchtige Festkörperspeicher 2.4 Speicherarchitekturen 2.5 Charakterisierungsmethoden von Halbleiter-Speicherelementen 3 Defektbasierte Ladungsspeicherung in dielektrischen Schichten 3.1 Physikalische Grundlagen von Haftstellen 3.2 Betrachtung der vertikalen Ladungsverteilung mit Hilfe von Simulationen 3.3 Ableitung der vertikalen Ladungsverteilung aus Messungen 4 Elektrisches Verhalten einer haftstellen-basierten Speicherzelle 4.1 Auswirkung von inhomogen verteilter Ladung in der Speicherschicht 4.2 Auswirkungen von Al2O3-Topoxid auf das Zellverhalten 4.3 Auswirkung des Steuerelektrodenmaterials auf das Zellverhalten 4.4 Einfluss von Kanal- und Source/Drain-Dotierung 5 Integration in eine stark skalierte NAND Architektur 5.1 Auswirkung struktureller Effekte auf die Speicherzelle 5.2 Störmechanismen beim Betrieb von stark skalierten NAND-Speichern 6 Zusammenfassung und Ausblick 6.1 Zusammenfassung 6.2 Ausblick Danksagung Lebenslauf Symbol- und Abkürzungsverzeichnis Literaturverzeichnis

Page generated in 0.0646 seconds