• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 21
  • 9
  • 8
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 134
  • 67
  • 39
  • 37
  • 27
  • 24
  • 20
  • 19
  • 18
  • 17
  • 17
  • 17
  • 16
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Síntese e avaliação biológica de selenoaminas heteroarílicas : uma nova proposta quimioterápica para malária

Silva, Gabriela Dias da January 2014 (has links)
Orientador: Prof. Dr. Rodrigo Luiz Oliveira Rodrigues Cunha / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Ciência & Tecnologia - Química, 2014. / Errata: Folha 4, linha 20. Onde se lê "Figura 1. Imagem de microscopia evidanciando o anel trofozoíta (no centro em destaque), leia-se Figura 1. Imagem de microscopia evidanciando o anel trofozoíta (no centro, em destaque). Fonte: https://pt.wikipedia.org/wiki/ficheiro:Plasmodium_ovale_01.png / As doenças tropicais negligenciadas (DTNs), características de regiões menos desenvolvidas do planeta com baixos níveis de escolaridade, habitação e saneamento básico estão sujeitas às opções terapêuticas limitadas e ineficientes. A cada ano, cerca de 250 milhões de casos de malária são diagnosticados e aproximadamente um milhão de pessoas morre desta doença. A baixa eficácia, elevada toxicidade e a emergência de cepas de parasitas resistentes à fármacos, são fatores que determinam a necessidade da síntese de novos fármacos e programas de investimentos e inovação em pesquisa e desenvolvimento (P&D). A proposta de compostos híbridos ou funcionalização de moléculas, como também pode ser chamada, é uma abordagem bem estabelecida para síntese de fármacos. Moléculas híbridas ganham destaque com o uso em várias áreas terapêuticas, tais como inflamação, alergia, depressão, propostas quimioterápicas contra o câncer e parasitemia. Recentemente as atividades biológicas de compostos de Selênio têm recebido crescente atenção, em especial os derivados hipervalentes de Selênio (IV) que têm sido estudados por nosso grupo de pesquisas como inibidores de cisteína peptidases. O merecido destaque dos compostos de Selênio hipervalentes, avaliados como inibidores enzimáticos aumentam as chances de encontrar inibidores mais eficientes e seletivos para enzimas envolvidas em infecções parasitárias. Neste sentido, esse trabalho propôs a junção de duas propriedades químicas que atuam contra o desenvolvimento do Plasmodium falciparum (protozoário responsável pela Malária): a inibição da heme-polimerase através da ação de sistemas hetrocíclicos nitrogenados (como bases fracas), e a inibição de cisteína peptidases com a atuação das selenuranas, as quais reduzem o efluxo da droga em cepas resistentes a outros fármacos. Os compostos sintetizados foram submetidos a testes biológicos para a avaliação de seu potencial como quimioterápicos para a malária. Os compostos foram eficientes na inibição do desenvolvimento dos parasitas in vitro e mostraram interferir na homeostase celular. Além disso, não causaram hemólise e nem diminuição significativa da viabilidade de células endoteliais. Juntos, os resultados obtidos mostram que esses compostos são potenciais candidatos para desenvolvimento de novos fármacos, uma vez que é letal ao parasita e contém os benefícios de composto híbrido. / Neglected tropical diseases (NTDs), typical of less developed regions of the world with low levels of education, habitation and sanitation are subject to limited and ineffective treatment options. Each year, about 250 million cases of Malaria are diagnosed and about 1 million people die of this disease. The low efficacy, high toxicity and the emergence of chloroquine resistant in Plasmodium falciparum strains are factors that determine the necessity for synthesis of new drugs and investments and innovations programs in research and development (R&D). The proposed of hybrid compounds, or they are also called functionalization of molecules, is a well-established approach to synthesis of drugs. Hybrid molecules are highlighted on use in various therapeutic areas such as inflammation, allergy, depression, proposals for cancer and parasitosis chemotherapy. Recently the biological activities of selenium compounds has received great attention, particularly hypervalent derivatives of selenium (IV) that it has been studied by our research group as inhibitors of cysteine peptidases. The worth prominence of hypervalent selenium compounds evaluated as enzyme inhibitors, which increase the chances of finding more efficient and selective for enzymes involved in parasitic infections inhibitors . In this way, this work proposed the addition of two chemical properties that act against the development of Plasmodium falciparum (protozoan responsible for Malaria). Inhibition of heme polymerase by way of the action of amino groups (such as weak bases), and inhibition of cysteine peptidases with the performance of selenuranes reduces the efflux of drug in resistant strains to other drugs. The synthesized compounds were subjected to biological evaluation of their potential as chemotherapeutic agents for Malaria tests. The compounds were effective in inhibiting the development of parasites in vitro and interference on cellular homeostasis. In addition, didn¿t cause hemolysis or a significant decrease in viability of endothelial cells. Together, the results show that these compounds are good candidates for development of new drugs since it is lethal to the parasite, does not harm the host and has the benefits of a hybrid compound.
82

Resolução cinética em reações de substituição nucleofílica mediadas por catalisadores por transferência de fase derivados da efedrina, cinchonidina e quinina / Kinetic resolution in nucleophilic substitution reactions mediated by phase transfer catalysts derived from ephedrine, cinchonidine and quinine

José Luiz Fejfar 17 April 2001 (has links)
Neste trabalho foram estudadas reações de substituição nucleofílica alifática de seis substratos halogenados, na presença de sais quaternários de amônio quirais (catalisadores por transferência de fase), derivados de alcalóides naturais. O sistema usado durante os trabalhos foi o sólido-líquido, sendo utilizado o tolueno como solvente do substrato halogenado. Os eletrófilos escolhidos para este trabalho foram, em sua grande maioria, compostos halogenados na posição alfa à carbonila e o nucleófilo foi o fenilmercapteto de sódio. A estrutura do substratos, as condições de reação e o tipo de catalisador foram variados visando-se avaliar qual a melhor condição de interação entre o catalisador e o substrato, usando-se como parâmetro comparativo o excesso enantiomérico obtido em cada caso. Os substratos foram também colocados para reagir na ausência de catalisador (\"branco de reação\") para avaliar a possibilidade de haver reações não catalisadas competindo com a reação enantiosseletiva. Tais reações diminuiriam a enantiosseletividade do processo, o que tomou imprescindível determinar sua extensão. Métodos de análise do excesso enantiomérico dos produtos de reação obtidos, por CLAE utilizando fase estacionária quiral e/ou RMN de 1H na presença de reagentes de deslocamento quirais, foram desenvolvidos para cada caso. Os resultados experimentais permitiram propor e discutir um modelo de associação catalisador/tiolato/eletrófilo, baseado em interações do tipo π-π e ligação de hidrogênio. / The main focus of the present work was the investigation of some aliphatic nucleofilic substitution reactions of halogenated compounds in the presence of chiral phase transfer catalyst, in a solid-liquid two phase system, using toluene as solvent. Most electrophiles were carbonylic or carboxylic derivatives bearing a halogen atom in the a-position to the carbonyl group. As for the nucleophile, sodium thiophenolate was employed in all reactions. Factors such as molecular structure of the electrophile, reaction conditions and catalyst were varied in order to optimize product enantiomeric excesses, and to gain an insight into the mode of action of the chiral catalyst in the kinetic resolution. In all cases blank experiments in the absence of the catalyst were performed, considering the possibility of a competitive uncatalyzed reaction as being responsible for lower enantiomeric excesses. Methods for determining the enantiomeric excess, based on HPLC and/or 1H-NMR, were developed for each specific product. The mechanistic and geometrical factors responsible for the kinetic resolution are analyzed in each case. The structure of the catalyst/thiolate/electrofile is discussed in terms of hydrogen bonding and π-π interactions.
83

Gas-Phase Studies of Nucleophilic Substitution Reactions: Halogenating and Dehalogenating Aromatic Heterocycles

Donham, Leah L 01 January 2018 (has links)
Halogenated heterocycles are common in pharmaceutical and natural products and there is a need to develop a better understanding of processes used to synthesize them. Although the halogenation of simple aromatic molecules is well understood, the mechanisms behind the halogenation of aromatic heterocycles have been more problematic to elucidate because multiple pathways are possible. Recently, new, radical-based mechanisms have been proposed for heterocycle halogenation. In this study, we examine and test the viability of possible nucleophilic substitution, SN2@X, mechanisms in the halogenation of anions derived from the deprotonation of aromatic heterocycles. All the experiments were done in a modified Thermo LCQ Plus equipped with ESI. The modifications allow a neutral reagent to be added to the helium buffer gas in the 3D ion trap. In this system, it is possible to monitor ion/molecule reactions over time periods up to 10 seconds. A variety of aromatic heterocyclic nucleophiles were chosen based on their inclusion of nitrogen and or sulfur as the heteroatoms. In addition to this, the halogenating molecules chosen included traditional halobenzenes and a new class of perfluorinated alkyl iodides. It was found that, experimentally, the SN2@X path is the likely mechanism in the halogenation of deprotonated heterocycles. With computational modeling, we have additional support for this substitution mechanism. From this original study, two more studies were developed to look at the competing nucleophilic aromatic substitution reaction, SNAr. In the first of these studies, the focus was to look at how electron withdrawing substituents about an aromatic ring affect the ratio of SN2@X verses SNAr. As nucleophiles, 2-thiophenide and 5-thiazolide were used. The neutral reagents focus on trifluorobromobenzene derivatives along with pentafluorobromo- and -iodobenzene, and a two trifluoroiodobenzenes. What was found was that the ratio of the reactions depends on where the fluorines, or electron withdrawing substituents are in relation to the bromine or iodine on the ring. If the fluorines are in a close location to stabilize the resulting ionic product, SN2@X proceeds easily. However, the fluorines directly adjacent to the bromine or iodine also provide steric hinderance in the SNAr reaction. In the final project, arylation and benzylation of bromopyridines was examined. The nucleophiles used were benzyl and phenyl anions as well as 5-thiazolide, and the neutral reagents were bromopyridines, with fluorines used as an electron withdrawing groups to help stabilize the transition state. In these experiments, steric hinderance highly affected the results between the phenyl and benzyl nucleophiles. With benzylic anions, the nucleophile is able to reach the aromatic ring with less steric interference and therefore can proceed with an SNAr reaction. In addition to this, with mono and difluorinated pyridine substrates, the nitrogen in the ring activated the ring yielding nucleophilic aromatic substitution losing fluoride rather than bromide in many cases.
84

A Computational Study Of Nucleophilic Attacks In Organometallic Complexes

Dinda, Shrabani 12 1900 (has links) (PDF)
A wide variety of computational methods are available for exploring molecular structures and reactivity in chemistry. These range from molecular mechanics calculations allowing determination of the geometry of a molecule to ab initio calculations for the electronic structure of compounds. Electronic structure calculations can be carried out with sufficient rigor so that the results are now comparable with experimental results in many cases. Density Functional Theory (DFT) with hybrid functional like B3LYP, for example, is very popular especially for studies on organometallic molecules and their reactions. Traditional ab initio approaches including Hartree-Fock (HF) and post-HF methods that include configuration interaction, such as MP2 and MP4 continue to be used, often for comparison with DFT based methods. Semi-empirical methods now appear to have only limited use except in large systems, in combination with molecular mechanics (MM) calculations. A relatively new use of MM for large systems is in hybrid calculations where the reactive center of the system is treated at a higher level leaving the remainder to be treated at the MM level. These hybrid QM/MM (quantum mechanics/molecular mechanics) calculations, such as ONIOM (our own n-layered integrated molecular orbital and molecular mechanics developed by Morokuma and co-workers) enable one to treat the steric bulk of the big system effectively and computationally efficiently. They appear to be very standard methods particularly in studies relating to reactions of organometallic systems and structures of large biomolecules. A short description of these methods is given below. • ab initio: a wide variety of programs that calculate the electronic structure of molecules using the Schrödinger equation, the values of the fundamental constants and the atomic numbers of the atoms present (Atkins, 1991). Molecular structures, optimized as a function of the electronic structure, are valuable starting points for many studies. • Density Functional Theory (DFT): a theoretical model in which the energy of an N-electron system is described as a functional of the density. • Semi-empirical techniques use approximations to evaluate the overlap, repulsion and exchange integrals in solving the Schrodinger equation. Often, these integrals are not evaluated but estimated to reproduce experimental data. • Molecular mechanics uses classical physics to explain and interpret the behavior of atoms and molecules. • Molecular dynamics (MD): Newton’s laws of motion are used to examine the time-dependent behavior of systems, including vibrations and Brownian motion, using a classical mechanical description. When combined with DFT, it leads to the Car-Parrinello method. • QM/MM method: It is a molecular simulation method that combines the strength of both QM (accuracy) and MM (speed) calculations, thus resulting in an extremely powerful tool for the study of bigger systems like chemical process in solution, interaction of drugs with biomolecules etc. Several commercial and educational packages in computational chemistry include a suite of programs that enable study of organic and organometallic molecules in an integrated fashion. While no list can be comprehensive, those that are more popular and useful are listed in several websites URL (http://www.ccl.net/chemistry/links/software/index.shtml). In the early days of computational chemistry up to 1980's, detailed studies were only carried out on small organic compounds or empirical studies were carried out on transition metal containing organometallics. However, in recent times, significant advancements in theoretical methods and computer capability (hardware and software), have led to the acceleration of theoretical and computational studies of complex systems including compounds containing transition metal elements. Computational and theoretical studies of organometallic complexes and their reactions have gained immense popularity and the numbers of papers including theoretical studies are dramatically increasing. One reason for this popularity is that organometallic complexes exhibit unusual geometries, bonding, and reactivity which often do not fall into the domain of inorganic or organic chemistry making them difficult to understand. Catalysis is one of the most extensively studied areas in organometallic chemistry where computational studies already make a real and valuable contribution to the analysis and interpretation of experimental data. However, what might be called ‘in silico’ catalyst screening and design, has rarely been achieved. One might say that successful prediction of catalyst performance is still a dream. A recent review summarizes the current state of the art in computational chemistry as applied to organometallic catalysis, covering both calculated ligand property descriptors and mechanistic studies of catalytic cycles.1 Some of the widely studied catalytic reactions of current interest, that provide huge scope for computational and theoretical analysis, are allylic alkylation (Pd),2 hydrogenation (Rh),3 hydroformylation (Rh),4 alkene metathesis (Ru),5 cross-coupling (Pd),6 C–H activation (Pd)7 and amination (Pd).8 There are many more examples where computational studies appear to be very useful for analysis of crystal structures and NMR structures or prediction of structures where no experimental data are available for complicated organometallic systems. There are a number of studies on drug-DNA/nucleobases interactions using QM/MM-MD simulations where people have investigated the interactions of metal complexes with double stranded (ds) DNA/nucleobases and the effects of their binding on the local and the global structure of DNA. QM/MM methods are also very helpful for studying catalytic reactions, interpretation of structure of large systems (proteins) and understanding reactions in biological systems. Scope of the Thesis In this thesis an attempt is made to use computational chemistry to understand organometallic reactions that are of significance from biological and synthetic view points, such as the action of organometallic complexes on DNA and the mechanism of some catalytic reactions. In many of these cases, the key step involved a nucleophillic attack. Specifically four such problems have been addressed where experimental results are not sufficient to provide a complete mechanistic picture of the reaction. Hence, the thesis contains four chapters with each having an independent brief introduction. The first chapter deals with the substitution reaction where water replaces chloride ion in the piano stool type ruthenium (II)-arene complexes and subsequently coordination of Ru to guanine/adenine occurs in these complexes. These steps have been studied using density functional theory at the B3LYP level. The complexes have promising anticancer activity. These nucleophilic substitution reactions are very important for activating these complexes so that they can interact with DNA, because DNA is thought to be primary target for their anticancer activity. In this chapter, both associative and dissociative pathways have been explored in the gas phase, as well as in the presence of other solvents for substitution reactions. Among the associative paths, a variety of possibilities can exist for the hydrolysis based on the direction of the nucleophilic attack by a water molecule. The proposed theoretical model for hydrolysis provides new insight into the hydrolysis process in half sandwich ruthenium complexes. The second chapter deals with the QM/MM calculations to investigate the structural and electronic properties of drug-DNA interactions, where DNA acts as nucleophile towards the metal complex. A series of piano-stool type ruthenium (II)-arene complexes were selected for the present study. These interactions were analyzed using the two layer ONIOM method. The importance of this study lies in the detailed understanding of factors that govern DNA binding and reactivity which is clearly of great pharmacological interest, as it may provide the basis for designing better anticancer agents. Experimental results that explore the structural feature of DNA-metal complexes at a molecular level are very limited. Thus theoretical calculations of molecular and electronic structure represent a valuable complement to experiments. They provide an alternative way to explore structure-activity relationships, and the drug binding mechanism, in detail. The third chapter reports the use of QM/MM methods in understanding the reaction mechanism and enantioselectivity in an organic transformation. In this section, a computational investigation of the enantioselectivity observed in the allylation of cinnamaldehyde, catalyzed by chiral platinum phosphinite complexes, have been carried out. The catalysts are ascorbic acid based phosphinite complexes where enantioselectivity depends on the substitution of benzyl groups on the chiral phosphinite ligands. From the experiment, it is not clear how the effect of an ancillary ligand can make such a big impact on enantioselectivity. To find out the origin of stereoselectivity, a computational study was taken up. A reaction mechanism was established where the nucleophilic attack determines the rate of the reaction and the corresponding enantioselectivity. A screening process has been utilized to select relevant reactant adducts and corresponding transition states from approximately 200 theoretically possible conformers using MM calculations. Finally with the help of QM/MM calculations, the numbers of contributions of these conformers were estimated. This approach correctly predicts the enantioselectivity in these reactions catalyzed by these complexes especially when the experimental enantioselectivity is very high. The fourth chapter of the thesis discusses the use of computational techniques to study the nucleophilic attack of an imine on a Ti-olefin complex. The reaction of Grignard reagents with imines mediated by stoichiometric amounts of titanium isopropoxide has been reported recently. On the basis of deuterium labeling experiments, nucleophilic attack of an imine on a Ti-olefin complex was believed to be a key step. Effect of deuterium labeling on the ratio of products formed is not easy to understand from experiments. Hence a computational study was performed using the DFT method to establish the mechanism of substitution and to understand the role of deuterium labeling. The thesis also includes a study of Cu-Cu interactions using Atoms in Molecules (AIM) theory in copper complexes with reasonably short Cu-Cu distances. The concept of bond critical points (BCP) from AIM analysis is employed to investigate the CuI-CuI bonding interactions in ligand unsupported copper complexes where the CuI-CuI contacts are shorter than the sum of their van der Waals radii. There is extensive debate about the nature of interactions between d10 "closed shell" systems in copper (CuI) complexes, which is known as cuprophilicity. In this study, an attempt has been made to compute the electron density between the two CuI centers and examine the nature of this “interaction”. As this falls outside the main theme of nucleophilic interactions in metal complexes, it has been relegated to an appendix.
85

Synthesis of 2,4-Disubstituted Pyrimidine Derivatives as Potential 5-HT7 Receptor Antagonist.

Sullivan, Shannon M. 05 May 2008 (has links)
The synthesis of a series of 2-chloropyrimidine derivatives is described. The synthesis began with a nucleophilic addition of lithiated heterocyclic molecules to the 4 position of 2-chloropyrimidine to give dihydropyrimidine intermediates. The intermediates were oxidized to the pyrimidine ring using the DDQ method. This was followed by an addition-elimination reaction of an amine to the 2-chloropyrimidine derivative. The structure and properties of the final compounds were analyzed by melting point, combustion analysis, and 13C-NMR and 1H-NMR spectroscopy. Biological activities in vitro of the synthesized compounds as antagonists of the 5-HT2a and 5-HT7 receptors were determined by an independent laboratory.
86

Perfluroaryl azides : Reactivities, Unique Reactions and their Applications in the Synthesis of Theranostic Agents

Xie, Sheng January 2015 (has links)
The work centersaround perfluoroaryl azides (PFAAs), and theirability to undergo certain fast and robusttransformations. The chemistry was furtherappliedfor biomedical applications. The first section focuses on the azide-aldehyde-amine cycloaddition using PFAAs. Experimental and computational investigations uncovered a fast azide-enamine cycloaddition to form triazolines, which spontaneously rearrange into stable amidine products. In addition, this transformation was explored in the formulation of pure nanodrugs. Because this reaction can introduce a phenyl and a perfluoroaryl moiety enabling supramolecular interactions near the antibiotic drug, the resulting ciprofloxacin derivatives formed nano-sized aggregates by precipitation, which displayed aggregation-induced emission for bacterial imaging as well as enhanced size-dependent antibacterial efficacy. In the second section, the high electrophilicity of PFAAs was explored to transform azides to aryl amides. The reactivity of PFAAs in the thioacid/azide reaction was studied. In addition, PFAAs were discovered to react with phenylacetaldehyde to form aryl amidesviaan azide-enol cycloaddition, similar tothe perfluoroaryl azide-aldehyde-amine reaction.This strategyof amide synthesiswas furthermoregeneralized through a combination of base-catalyzed azide-enolate cycloaddition reaction and acid-or heat-promoted rearrangement of triazolines. The last section describes a type of azide fluorogens whose fluorescence can be switched on by alight-initiated intramolecular nitrene insertion intoa C-H bond in the neighboring aromaticring. These fluorogenic structures were efficiently accessed via the direct nucleophilic aromatic substitution of PFAAs. / <p>QC 20150903</p>
87

Development of 18F- and 68Ga-Labelled Tracers : Design Perspectives and the Search for Faster Synthesis

Blom, Elisabeth January 2009 (has links)
This thesis deals with the design of 18F- and 68Ga-labelled positron emission tomography (PET) tracers and the development of technologies that enable faster and simpler preparation with high specific radioactivity. Techniques like microwave heating and reducing the concentrations of the precursor were investigated with this perspective. A few applications were explored using molecular design perspectives. A nucleophilic 18F-labelling strategy using perfluoro-containing leaving groups was explored. We observed that [18F]fluoride was interacting with the perfluoro alkyl chains of the substrate, preventing the nucleophilic substitution from taking place. When a perfluoroaryl group was instead used in the leaving group, the substitution took place and purification by fluorous solid-phase extraction was possible. 18F-Labelled analogues of the monoamine oxidase-A inhibitor harmine were prepared by one-step nucleophilic fluorinations and evaluated by in vitro autoradiography, showing high specific binding. Biotin analogues labelled with 18F and 68Ga were prepared and their binding to avidin evaluated. All analogues retained their binding ability and will be further evaluated in transplantation models with avidin-coated islets of Langerhans. Peptide design perspectives were used in some examples where the Arg-Gly-Asp (RGD) sequence and a single-chain version of vascular endothelial growth factor (VEGF) protein functionalized with 2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) or 2,2',2''-(1,4,7-triazonane-1,4,7-triyl)triacetic acid (NOTA) as chelators were labelled with 68Ga. The RGD motif and VEGF have high affinity for, respectively, αvβ3 integrin and VEGFR-2 receptor that are overexpressed in angiogenesis process. The 68Ga-labelled scVEGF maintained its functional activity in vitro. A polypeptide conjugate containing phosphocholine, which has affinity for the C-reactive protein released during the inflammatory process, was labelled with 68Ga for the development of an imaging agent for inflammation in vivo. Finally [18F]/19F exchange in fluorine-containing compounds was studied in order to investigate whether the exchange reaction can be of practical use for labelling.
88

Modèles prédictifs pour les paramètres cinétiques et thermodynamiques des réactions chimiques / Predictive models for kinetic and thermodynamic parameters of reactions

Gimadiev, Timur 11 July 2018 (has links)
Ce travail est consacré à la modélisation QSPR des propriétés cinétiques et thermodynamiques des réactions chimiques à l'aide de l'approche Graphe Condensé de Réaction (CGR). Le CGR permet de coder des structures de réactifs et de produits en un seul graphe moléculaire pour lequel des descripteurs moléculaires peuvent être générés.Une base de données contenant plus de 11000 réactions collectées manuellement a été développée puis utilisée dans la modélisation. Les modèles prédictifs ont été construits pour les constantes de vitesse de réactions Diels-Alder, SN2 et E2 ainsi que pour les constantes d'équilibre des transformations tautomères. Ils sont rendus publics via un portail WEB. Une partie de la thèse concerne une étude de mécanique quantique des réactions entre des sydnones et des alcynes contraints pour lesquels la taille du jeux de données n'était pas suffisante pour produire des modèles statistiquement significatifs. / This work is devoted to QSPR modeling of kinetic and thermodynamic properties of chemical reactions using the Condensed Graph of Reaction (CGR) approach. CGR allows encoding structures of reactants and products into one sole molecular graph for which molecular descriptors can be generated. A comprehensive database containing some 11000 manually collected reactions has been developed then used in the modeling. Predictive models were built for rate constants of Diels-Alder, SN2 and E2 reaction as well as for equilibrium constants of tautomeric transformations. They are available for the users via WEB portal. A part of the thesis concerned quantum mechanics studies of reactions between sydnones and strained alkynes for which the size of the dataset was not sufficient to produce statistically meaningful models.
89

Synthèse de nouveaux dérivés pyridopyrimidiniques, imidazopyridiniques et imidazopyridaziniques : évaluation de leurs propriétés biologiques. / Synthesis of new pyridopyrimidine, imidazopyridine and imidazopyridazine derivatives : evaluation of their biological properties

Dehbi, Oussama 08 December 2012 (has links)
Les produits appartenant à la famille des pyridopyrimidines sont caractérisés par leur intense utilisation dans le domaine pharmacologique, ce qui a poussé différentes équipes de recherche, de par le monde, à les étudier chimiquement et biologiquement. Dans ce travail, nous nous sommes intéressés au groupe des pyridopyrimidines et, plus particulièrement, à l’isomère le moins décrit dans la littérature, à savoir les pyrido[3,2-d]pyrimidines. Les composés ciblés sont synthétisés à partir de la 2,7-dichloropyrido[3,2-d]pyrimidine, via des substitutions nucléophiles aromatiques et des couplages pallado-catalysés et ce, dans le but d’obtenir de puissants inhibiteurs de kinases. Ce but a été atteint puisqu’en effet plusieurs des molécules élaborées inhibent les kinases testées avec des concentrations de l’ordre du nanomolaire. Des résultats pharmacologiques aussi concluants nous ont amenés à étendre nos études à d’autres pyridopyrimidines, à savoir les pyrido[2,3-d]pyrimidines ainsi qu’à d’autres types de bicycles polyazotés, en l’occurrence les imidazo[1,2-a]pyridines et les imidazo[1,2-b]pyridazines. / Products belonging to the pyridopyrimidine family are characterized by their intense use in pharmacology. The increase of interest for this heterocyclic scaffold prompted different research teams around the world to study their chemically and biologically properties. In this work, we are interested in the functionalization of pyridopyrimidines and, more specifically, of the less described regioisomer, namely pyrido[3,2-d]pyrimidines. The target compounds were synthesized from 2,7-dichloropyrido[3,2-d]pyrimidine via nucleophilic aromatic substitution and palladium-catalyzed couplings and, in order to obtain potent kinases inhibitors. Our goal has been achieved with several elaborate molecules. These bioactive compounds inhibit kinases such as Cyclin Dependant Kinases (CDK), Glycogen Synthase 3 (GSK3) or Dual specificity tYRosine-phosphorylation-regulated Kinase 1A (DYRK1A) in the nanomolar range. These biological targets are mainly involved in degenerative process or down syndrome. These pharmacological results led us to extend our studies to other pyridopyrimidines, namely pyrido[2,3-d]pyrimidines as well as other types of polynitrogenated bicycles, namely imidazo[1,2- a]pyridine and imidazo[1,2-b]pyridazine.
90

Nouvelles méthodes de synthèse pour la formation de liaisons C(aryl)-hétéroatome et C(aryl)-C par réactions de substitution nucléophile aromatique et vinylique / New Synthetic Methods for the Creation of C(aryl)-Heteroatom and C(aryl)-C Bonds Through Nucleophilic Aromatic and Vinylic Substitutions

Pichette drapeau, Martin 27 May 2015 (has links)
L'objectif central de notre thèse de doctorat visait l'utilisation d'halogénures d'aryles en tant qu'électrophiles dans des réactions de substitution nucléophile aromatique (SNAr). D'abord, nous avons cherché à former des liaisons C(aryl) hétéroatome par réaction entre des nucléophiles hétéroatomiques et des halogénures d'aryles substitués par des groupements électro-attracteurs. Les résultats de cette étude ont été comparés à des incohérences relevées dans la littérature et montrent que l'ordre de réactivité d'halogénures d'aryles communément accepté n'est pas toujours respecté. Un effet positif a été observé par l'ajout de 2,2,6,6-tétraméthyl-3,5-heptanedione pour l'arylation de phénols avec des halogénures d'aryles substitués par des groupements électro-donneurs, ce qui en fait la première méthode capable de générer des diaryléthers par cette voie réactionnelle sans ajout de catalyseurs métalliques. Ensuite, nous avons mis au point une réaction générale d'± arylation de cétones aromatiques avec des halogénures d'aryles dans des conditions réactionnelles douces. L'utilisation du t-BuOK, une base inorganique capable de transferts mono-électroniques, et de DMF comme additif permet la synthèse d'±-arylcétones avec d'excellents rendements. Cette méthode a été appliquée à la synthèse d'hétérocycles fusionnés et de (Z)-tamoxifène, des molécules montrant une activité biologique. Une étude mécanistique a montré que l'anion carbamoyle du DMF est impliqué dans une étape clé de transfert mono-électronique avec des halogénures d'aryles. Nous avons également appliqué cette méthode à la substitution nucléophile vinylique de ″-halostyrènes. Bien que des précédents de la littérature font état de mécanismes ioniques pour les réactions de ces substrats, nos résultats expérimentaux supportent un mécanisme radicalaire. Enfin, nous avons tenté de mettre au point le premier protocole permettant la synthèse de biaryles dissymétriques au départ d'halogénures d'aryles et de triarylbismuths(III) via une catalyse par des sels de cuivre. Malgré le fait que de nombreux ligands bidentates et tétradentates ont été testés, les faibles rendements obtenus font que les conditions réactionnelles demeurent à optimiser. Globalement, nous avons donc apporté une contribution en ce qui concerne la détermination de la frontière expérimentale entre la SNAr et la catalyse métallique, la fonctionnalisation en ± de cétones aromatiques et la synthèse de biaryles dissymétriques par réactions de couplages croisés de triarylbismuths catalysées au cuivre. / The primary objective of our doctoral research was centered on the use of aryl halides as electrophiles for nucleophilic aromatic substitution (SNAr). First, we tried to create C(aryl)−heteroatom bonds by reacting heteroatom nucleophiles with aryl halides substituted by electron-withdrawing groups. The results of this study were compared with inconsistencies found in the literature and show that the expected order of reactivity of aryl halides is not always observed. A beneficial effect was observed by adding 2,2,6,6-tetramethylheptane-3,5-dione to the reaction of phenols and aryl halides substituted by electron-donating groups in what is the first method allowing the synthesis of diarylethers without added metal catalysts by this pathway. Second, we developed a general α-arylation reaction of aryl ketones with aryl halides under mild reaction conditions. Use of KOt-Bu, an inorganic base capable of single-electron transfer, and DMF as additive enables the synthesis of α-arylketones in excellent yields. This method was applied to the synthesis of fused heterocycles and (Z) tamoxifen, molecules possessing biological activity. A mechanistic study showed that the carbamoyl anion of DMF is involved in a single-electron transfer reaction with aryl halides as the key step of the mechanism. We next applied this method to the nucleophilic vinylic substitution of β-halogenostyrenes. While literature precedents suggest ionic mechanisms for reactions involving these substrates, we obtained experimental evidence suggesting a radical mechanism. Third, we tried to develop the first protocol enabling the copper-catalyzed synthesis of unsymmetrical biaryls starting from aryl halides and triarylbismuthanes(III). Although many bidentate and tetradentated ligands were tested, further optimization is required in order to develop a general method, as only low yields are obtained. Globally, we have contributed to the determination of the experimental frontier between SNAr and metallic catalysis, to the α-functionnalization of aryl ketones and to the synthesis of biaryls through copper-catalyzed cross-coupling reactions of triarylbismuths.

Page generated in 0.0564 seconds