181 |
Contribution aux techniques dites d'ajout de signal pour la Réduction du Facteur de Crête des signaux OFDM. / Contribution to reduction the Peak-To-Average Power Reduction in OFDM systems by thanks to the Adding Signal Based TechniquesDiallo, Mamadou Lamarana 08 June 2016 (has links)
Comme toutes modulations multiporteuses, l'OFDM souffre d'une forte variation d'amplitudes qui se traduit par un PAPR élevé. Cette caractéristique de l'OFDM la rend très sensible aux non-linéarités de l'amplificateur de puissance. Pour faire face à cette problématique, on peut surdimensionner l'amplificateur de puissance (solution non efficace en terme de rendement énergétique), linéariser l'amplificateur via les techniques de pré-distorsions, ou réduire le PAPR du signal avant amplification. L'objectif de cette thèse s'inscrit dans cette dernière thématique et plus particulièrement sur les techniques dites d'ajout de signal.Dans cette thèse, après une étude sur l'état de l'art des techniques de réduction du PAPR et en particulier les techniques dites d'ajout de signal, nous avons développé et proposé de nouvelles techniques de réduction du PAPR. Ces contributions s'articulent principalement autour des techniques de Clipping et de la Tone Reservation. / One of the main drawbacks of the OFDM modulation scheme is its high Peak-To-Average Power variation (PAPR) which can induce poor power efficiency at the transmitter amplifier. The digital base band pre-distortion for linearisation of power amplifier and the PAPR mitigation are the most commonly used solution in order to deals with efficiency and linearisation at the high power amplifier. This thesis is focused on the PAPR mitigation solution, and particularly on the adding signal based techniques. The proposed solutions in this report are about improving the Tone Reservation method which is the most popular adding signal based technique for PAPR mitigation, and also the classical clipping method which is the most simple method (in terms of computational complexity) actually.
|
182 |
Etude d'une nouvelle forme d'onde multiporteuses à PAPR réduit. / Study of a new multicarrier waveform with low PAPRChafii, Marwa 07 October 2016 (has links)
L’OFDM est une technique de modulation multiporteuses largement utilisée dans des applications de communications filaires et sans-fils comme le DVB-T/T2, le Wifi, et la 4G, grâce à sa robustesse contre les canaux sélectifs en fréquence en comparaison avec la modulation monoporteuse. Cependant, le signal OFDM souffre de grandes variations d’amplitude. Les fluctuations de l’enveloppe du signal OFDM génèrent des distorsions non-linéaires quand on introduit le signal dans un équipement non-linéaire comme l’amplificateur de puissance. Réduire les variations du signal améliore le rendement de l’amplificateur, réduit la consommation énergétique et diminue les émissions de CO2 des transmissions numériques.Le PAPR (rapport de la puissance crête sur la puissance moyenne) est une variable aléatoire qui a été introduite pour mesurer les variations du signal. Il existe plusieurs systèmes multiporteuses basés sur différentes bases de modulation et filtres de mise en forme. Nous prouvons d’abord dans ces travaux que le PAPR dépend de cette structure de modulation. Ensuite, nous étudions le comportement du PAPR vis-à-vis des formes d’ondes utilisées dans la modulation. Le problème de réduction du PAPR est ainsi formulé en un problème d’optimisation. Par ailleurs, une condition nécessaire pour construire des formes d’ondes avec un meilleur PAPR que l’OFDM est développée. Cette condition est notamment satisfaite par des bases en ondelettes. Enfin, une nouvelle forme d’onde en paquets d’ondelettes adaptative est proposée, permettant des gains significatifs en PAPR, tout en maintenant les avantages des modulations multiporteuses. / OFDM is a multicarrier modulation system widely used in wireline and wireless applications such as DVB-T/T2, Wifi, and 4G, due to its resilience against frequency selective channels compared with the single carrier modulation systems. However, the OFDM signal suffers from large amplitude variations. The fluctuations of the OFDM envelope generate non-linear distortions when we introduce the signal into a non-linear device like the power amplifier. Reducing the variations of the signal improves the power amplifier efficiency, reduces the energy consumption and decreases CO2 emissions.The peak-to-average power ratio (PAPR) has been introduced as a random variable that measures the power variations of the signal. There exist several multicarrier modulation systems based on different modulation basis and shaping filters. We first prove in this work that the PAPR depends on this modulation structure. Moreover, the behaviour of the PAPR regarding to the modulation waveforms is analysed and the PAPR reduction problem is formulated as an optimization problem. Furthermore, a necessary condition for designing waveforms with better PAPR than OFDM is developed. This necessary condition is particularly satisfied by wavelet basis. Finally, a new adaptive wavelet packet waveform is proposed, allowing significant gain in terms of PAPR, while keeping the advantages of multicarrier modulations.
|
183 |
Approche conjointe de la réduction du facteur de crête et de la linéarisation dans le contexte OFDM. / Joint Approach of Crest Factor Reduction and Linearization in OFDM contextGouba, Oussoulare 10 December 2013 (has links)
Les amplificateurs de puissance sont au centre des systèmes actuels de télécommunications. Leur linéarité (pour préserver la qualité des données transmises) et leur rendement énergétique (pour faire des économies d’énergie) sont très importants et constituent les préoccupations majeures des concepteurs. Cependant, ce sont des composants analogiques intrinsèquement non-linéaires et leur utilisation avec des signaux à enveloppes non-constantes génèrent des distorsions à savoir des remontées spectrales hors-bandes et une dégradation du taux d’erreurs. Les signaux OFDM à la base de nombreux standards comme le Wifi, le Wi-Max, la télévision numérique, le LTE, etc. ont de fortes variations de puissance encore appelées PAPR (Peak-to-Average Power Ratio) qui aggravent ces problèmes de non-linéarité de l’amplificateur et réduit son rendement. Le traitement conjoint des non-linéarités et l’amélioration du rendement de l’amplificateur est l’objectif de cette thèse.Pour cela, l’accent est mis sur une approche conjointe de la linéarisation et de la réduction du PAPR. Ces deux méthodes jusqu’à présent abordées séparément dans la littérature sont en fait complémentaires et interdépendantes. Cela a été prouvé grâce à une étude analytique que nous avons menée. Grâce à l’approche conjointe, on peut simplement les associer, on parle dans ce cas d’approche non-collaborative ou leur permettre en plus d’échanger des informations et de s’adapter l’une par rapport à l’autre et/ou vice versa. Ce dernier cas est l’approche collaborative. Nous avons ensuite proposé des algorithmes d’approche conjointe collaborative basés sur les techniques d’ajout de signal. La réduction du PAPR et la prédistorsion (choisie comme méthode de linéarisation) sont fusionnées sous une seule formulation d’ajout de signal. Un signal additionnel conjoint est alors généré pour à la fois compenser les non-linéarités de l’amplificateur de puissance et réduire la dynamique du signal à amplifier. / Power amplifiers are key components of current telecommunications systems. Their linearity (to preserve the quality of the data) and efficiency (for power savings) are the primary concerns of designers. However, they are non-linear analog components in nature that cause spectral leakage, warping and clustering of the constellation. The overall consequences of this are out-of-band interferences and Bit Error Rate (BER) degradation at the receiver.OFDM’s modulation used in many standards such as Wi-Fi, WiMAX, digital TV, LTE, etc. generates temporal signals with high power fluctuations also termed as Peak-to-average Power Ratio (PAPR). High PAPRs aggravate the non-linearity problem of the amplifier and reduce its efficiency. The objective of this thesis is to jointly increase the linearity and the efficiency of the power amplifier.For this, we focus on a joint approach of linearization and PAPR reduction. These two methods so far discussed separately in the literature are complementary and interdependent. This has been proven through an analytical study that we conducted. Through the joint approach, the two methods can be simply associated; in this case we speak of non-collaborative approach, or allowed to exchange some information in order to adapt each other. This latter case is collaborative approach. Then, we proposed algorithms of collaborative approach based on adding signal techniques. PAPR reduction and predistortion (chosen as linearization’s method) are merged into one global adding signal formulation. A joint additional signal is then generated to compensate at the same time the non-linearities introduced by the power amplifier and reduce the dynamic range of the signal to be amplified.
|
184 |
Projeto de sistema crítico para transmissão de vídeo em um link de comunicação para vants / A critical system project to transmit video in a communication link for UAVsDiego Leonardo Função 19 March 2012 (has links)
Este projeto tem como objetivo a especicação de um enlace de comunicação digital para veículos aéreos não tripulados. Os principais desaos presentes no meio de transmissão serão evidenciados, assim como o impacto acarretado no sistema de comunicação. O projeto foi dividido entre a parte analógica e digital. A parte analógica tratará dos requisitos de potência para o devido funcionamento do canal através do procedimento de link budget. O projeto da parte digital, por sua vez, empregará a técnica de transmissão OFDM. No presente trabalho foi sugerido um método de estimação do canal utilizando os tons pilotos. O desempenho desta abordagem será medido através de uma simulação de monte Carlo / This project aims to design a digital data communication link for unmaned aerial vehicles. We will focus the main challenges and their impacts in the communication system. The project was divided in an analog and digital block. The analog block address the power requirements that make the system works by using a link budget procedure. The digital block will use the OFDM transmission technique. In this work we also suggest a channel estimation procedure via pilot tones. The performance of this approach will be measured by Monte Carlo Simulation
|
185 |
Phase And Amplitude Modulated Ofdm For Dispersion Managed Wdm SystemsEisele, Andreas 01 January 2008 (has links)
Amplitude and phase modulated optical OFDM (Orthogonal Frequency Division Multiplexing) are analyzed in a 50GBit/s single channel and 40GBit/s 5 channel 512 subcarrier non-ideal dispersion-compensated fiber optic communication systems. PM-OFDM is investigated as an alternative to AM-OFDM to alleviate the problem associated with amplitude-modulated signals in a nonlinear medium. The inherent dispersion compensation capability in OFDM (using a cyclic prefix) allows transmission over a link whose dispersion map is not exactly known. OFDM also mitigates the effects of dispersion slope in wavelength-division multiplexed (WDM) systems. Moreover, the overall dispersion throughout the transmission link may vary due to environmental effects and aging. OFDM is inherently tolerant to over- or under-compensation and dispersion slope mismatch. OFDM transmission over dispersive, non-dispersion managed fiber links using OFDM requires an overhead in excess of the maximum accumulated dispersion. Existing WDM systems usually employ periodic dispersion management. OFDM in these systems requires a smaller overhead. It is, however, more susceptible to nonlinearity due to the coherent beating of subcarriers after each dispersion-compensated span. The large variation in intensity associated with amplitude-modulated OFDM makes this modulation format more susceptible to nonlinear effects in fiber compared to phase-modulated signals. This holds true unless dispersion and EDFA noise lead to amplitude variations strong enough for PM-OFDM to be degraded by nonlinear effects as well. In conclusion OFDM is beneficial for non-ideal dispersion managed systems. PM-OFDM can further improve the performance.
|
186 |
An Analog/Mixed Signal FFT Processor for Ultra-Wideband OFDM Wireless TransceiversLehne, Mark 02 October 2008 (has links)
As Orthogonal Frequency Division Multiplexing (OFDM) becomes more prevalent in new leading-edge data rate systems processing spectral bandwidths beyond 1 GHz, the required operating speed of the baseband signal processing, specifically the Analog- to-Digital Converter (ADC) and Fast Fourier Transform (FFT) processor, presents significant circuit design challenges and consumes considerable power. Additionally, since Ultra-WideBand (UWB) systems operate in an increasingly crowded wireless environment at low power levels, the ability to tolerate large blocking signals is critical. The goals of this work are to reduce the disproportionately high power consumption found in UWB OFDM receivers while increasing the receiver linearity to better handle blockers.
To achieve these goals, an alternate receiver architecture utilizing a new FFT processor is proposed. The new architecture reduces the volume of information passed through the ADC by moving the FFT processor from the digital signal processing (DSP) domain to the discrete time signal processing domain. Doing so offers a reduction in the required ADC bit resolution and increases the overall dynamic range of the UWB OFDM receiver.
To explore design trade-offs for the new discrete time (DT) FFT processor, system simulations based on behavioral models of the key functions required for the processor are presented. A new behavioral model of the linear transconductor is introduced to better capture non-idealities and mismatches. The non-idealities of the linear transconductor, the largest contributor of distortion in the processor, are individually varied to determine their sensitivity upon the overall dynamic range of the DT FFT processor. Using these behavioral models, the proposed architecture is validated and guidelines for the circuit design of individual signal processing functions are presented. These results indicate that the DT FFT does not require a high degree of linearity from the linear transconductors or other signal processing functions used in its design.
Based on the results of the system simulations, a prototype 8-point DT FFT processor is designed in 130 nm CMOS. The circuit design and layout of each of the circuit functions; serial-to-parallel converter, FFT signal flow graph, and clock generation circuitry is presented. Subsequently, measured results from the first proof-of-concept IC are presented. The measured results show that the architecture performs the FFT required for OFDM demodulation with increased linearity, dynamic range and blocker handling capability while simultaneously reducing overall receiver power consumption. The results demonstrate a dynamic range of 49 dB versus 36 dB for the equivalent all-digital signal processing approach. This improvement in dynamic range increases receiver performance by allowing detection of weak sub-channels attenuated by multipath. The measurements also demonstrate that the processor rejects large narrow-band blockers, while maintaining greater than 40 dB of dynamic range. The processor enables a 10x reduction in power consumption compared to the equivalent all digital processor, as it consumes only 25 mWatts and reduces the required ADC bit depth by four bits, enabling application in hand-held devices.
Following the success of the first proof-of-concept IC, a second prototype is designed to incorporate additional functionality and further demonstrate the concept. The second proof-of-concept contains an improved version of the serial-to-parallel converter and clock generation circuitry with the additional function of an equalizer and parallel- to-serial converter.
Based on the success of system level behavioral simulations, and improved power consumption and dynamic range measurements from the proof-of-concept IC, this work represents a contribution in the architectural development and circuit design of UWB OFDM receivers. Furthermore, because this work demonstrates the feasibility of discrete time signal processing techniques at 1 GSps, it serves as a foundation that can be used for reducing power consumption and improving performance in a variety of future RF/mixed-signal systems. / Ph. D.
|
187 |
Design and Implementation of a Constant Envelope OFDM Waveform in a Software-Defined Radio PlatformAjo Jr, Amos V. 30 June 2016 (has links)
This thesis examines the high peak-to-average-power ratio (PAPR) problem of OFDM and other spectrally-efficient multicarrier modulation schemes, specifically their stringent requirements for highly linear, power-inefficient amplification. The thesis then presents a most intriguing answer to the PAPR-problem in the form of a constant-envelope OFDM (CE-OFDM) waveform, a waveform which employs phase modulation to transform the high-PAPR OFDM signal into a constant envelope signal, like FSK or GMSK, which can be amplified with non-linear power amplifiers at near saturation levels of efficiency. A brief analytical description of CE-OFDM and its suboptimal receiver architecture is provided in order to define and analyze the key parameters of the waveform and their performance impacts.
The primary contribution of this thesis is a highly tunable software-defined radio (SDR) implementation of the waveform which enables rapid-prototyping and testing of CE-OFDM systems. The digital baseband processing of the waveform is executed on a general purpose processor (GPP) in the Linux Ubuntu 14.04 operating system, and programmed using the GNU Radio SDR software framework with a mixture of Python and C++ routines. A detailed description of the software implementation is provided, and baseband simulations of the SDR CE-OFDM receiver in additive white Gaussian noise (AWGN) validate the performance of the implemented signal processing.
A fully-functional CE-OFDM radio system is proposed in which GPPs executing the software defined transmitter and receiver routines are interfaced with Ettus Universal Software Radio Peripheral (USRP) transceiver front ends. A software testbench is created to enable rapid configuration and testing of the CE-OFDM waveform over all permutations of its parameters, over both simulated and physical RF channels, to draw deeper insights into the characteristics of the waveform and the necessary design considerations and improvements for further development and deployment of CE-OFDM systems. / Master of Science
|
188 |
Orthogonal Frequency Division Multiplexing for Wireless CommunicationsZhang, Hua 24 November 2004 (has links)
OFDM is a promising technique for high-data-rate wireless communications because it can combat inter-symbol interference (ISI) caused by the dispersive fading of wireless channels. The proposed research focuses on techniques that improve the performance of OFDM-based wireless communications and its commercial and military applications. In particular, we address the following aspects of OFDM: inter-channel interference (ICI) suppression, interference suppression for clustered OFDM, clustered OFDM based anti-jamming modulation, channel estimation for MIMO-OFDM, MIMO transmission with limited feedback.
For inter-channel interference suppression, a frequency domain partial response coding (PRC) scheme is proposed to mitigate ICI. We derive the near-optimal weights for PRC that is independent on the channel power spectrum. The error floor resulting from ICI can be reduced significantly using a two-tap or a three-tap PRC. Clustered OFDM is a new technique that has many advantages over traditional OFDM. In clustered OFDM systems, adaptive antenna arrays are used for interference suppression. To calculate weights for interference suppression, we propose a polynomial-based parameter estimator to combat the severe leakage of the DFT based estimator due to the small size of the cluster. An adaptive algorithm is developed to obtain optimal performance. For high data rate military communications, we propose a clustered OFDM base spread spectrum modulation to provide both anti-jamming and fading suppression capability. We analyze the performance of uncoded and coded system. Employing multiple transmit and receive antennas in OFDM systems (MIMO-OFDM) can increase the spectral efficiency and link reliability. We develop a minimum mean-square-error (MMSE) channel estimator that takes advantage of the spatial-frequency correlations in MIMO-OFDM systems to minimize the estimation error. We investigate the training sequence design and two optimal training sequence designs are given for arbitrary spatial correlations. For a MIMO system, the diversity and array gains can be obtained by exploiting channel information at the transmitter. For MIMO-OFDM systems, we propose a subspace tracking based approach that can exploit the frequency correlations of the OFDM system to reduce the feedback rate. The proposed approach does not need recalculate the precoding matrix and is robust to multiple data stream transmission.
|
189 |
A new approach for implementing QO-STBC over OFDMDama, Yousef A.S., Migdadi, Hassan S.O., Shuaieb, Wafa S.A., Elkhazmi, Elmahdi A., Abdulmula, E.A., Abd-Alhameed, Raed, Hammoudeh, W., Masri, A. January 2015 (has links)
No / A new approach for implementing QO-STBC and DHSTBC over OFDM for four, eight and sixteen transmitter antennas is presented, which eliminates interference from the detection matrix and improves performance by increasing the diversity order on the transmitter side. The proposed code promotes diversity gain in comparison with the STBC scheme, and also reduces Inter Symbol Interference.
|
190 |
The Performance Evaluation of an OFDM-Based iNET TransceiverLu, Cheng, Roach, John 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The nXCVR-2000G transceiver is an 802.11a OFDM-based system undergoing performance studies that uses both simulation and laboratory tests. The multi-path channel model used in the simulation experiments is based on a telemetry multi-path channel model described in the iNET Telemetry Experimental Standard document. To date, the results using the simulation have been confirmed by outdoor laboratory tests. They show that multi-path has less impact on the OFDM performance when the channel spread is within a limit of 800ns; the same specified guard interval (GI) used by 802.11a. For example, with a channel spread of 144ns (τ1) and a reflection coefficient of -0.26dB (Γ1), the Error Vector Magnitude (EVM) is on the order of 2.5%. As the channel spread expands beyond the standard GI 800ns, the demodulated signal degrades. The performance penalty depends upon the channel spread factor and the total Signal to Interference plus Noise Ratio (SINR).
|
Page generated in 0.0263 seconds