Spelling suggestions: "subject:"objektdetektering"" "subject:"objektsdetektering""
11 |
LiDAR Perception in a Virtual Environment Using Deep Learning : A comparative study of state-of-the-art 3D object detection models on synthetic data / LiDAR perception i en virtuell miljö med djupinlärning : En jämförelsestudie av state-of-the-art 3D objekt detekteringsmodeller på syntetisk dataSkoog, Samuel January 2023 (has links)
Perceiving the environment is a crucial aspect of autonomous vehicles. To plan the route, the autonomous vehicle needs to be able to detect objects such as cars and pedestrians. This is possible through 3D object detection. However, labeling this type of data is time-consuming. By utilizing a virtual environment, there is an opportunity to generate data and label it in a quicker manner. This thesis aims to investigate how well three selected state-of-the-art models perform on a synthetic dataset of point cloud data. The results showed that the models attain a higher average precision compared to a dataset from the real world. This is mainly due to the virtual environment’s simplicity in relation to the real world’s detail. The results also suggest that models using different representations of point cloud data have different capabilities of transferring knowledge to the real world. / Att uppfatta miljön är en avgörande aspekt av autonoma fordon. Till planera rutten behöver det autonoma fordonet kunna upptäcka föremål som bilar och fotgängare. Detta är möjligt genom 3D-objektdetektering. Att märka denna typ av data är dock tidskrävande. Genom att använda en virtuell miljö, finns det en möjlighet att generera data och märka dem på ett snabbare sätt sätt. Denna avhandling syftar till att undersöka hur väl tre valda state-of-the-art modeller utför på en syntetiskt dataset av punktmolndata. Resultaten visade att modellerna uppnår en average precision jämfört med ett dataset från den riktiga världen. Detta beror främst på den virtuella miljöns enkelhet i förhållande till den verkliga världens detaljer. Resultaten tyder också på att modeller som använder olika representationer av punktmolnsdata har olika möjligheter att överföra kunskap till den verkliga världen.
|
12 |
Image-Guided Zero-Shot Object Detection in Video Games : Using Images as Prompts for Detection of Unseen 2D Icons / Bildstyrd Zero-Shot Objektdetektering i Datorspel : Användning av Bilder för att Diktera Detektion av Osedda 2D-ikonerLarsson, Axel January 2023 (has links)
Object detection deals with localization and classification of objects in images, where the task is to propose bounding boxes and predict their respective classes. Challenges in object detection include large-scale annotated datasets and re-training of models for specific tasks. Motivated by these problems, we propose a zero-shot object detection (ZSD) model in the setting of user interface icons in video games. Allowing to quickly and accurately analyze the state of a game, with potentially millions of people watching, would greatly benefit the large and fast-growing video game sector. Our resulting model is a modification of YOLOv8, which, at inference time, is prompted with the specific object to detect in an image. Many existing ZSD models exploit semantic embeddings and high-dimensional word vectors to generalize to novel classes. We hypothesize that using only visual representations is sufficient for the detection of unseen classes. To train and evaluate our model, we create synthetic data to reflect the nature of video game icons and in-game frames. Our method achieves similar performance as YOLOv8 on bounding box prediction and detection of seen classes while retaining the same average precision and recall for unseen classes, where the number of unseen classes is in the order of thousands. / Objektdetektering handlar om lokalisering och klassificering av objekt i bilder, där uppgiften är att föreslå omskrivande rektanglar och prediktera de respektive klasserna. Utmaningar i objektdetektering inkluderar storskaliga annoterade datamängder och omträning av modeller för specifika uppgifter. Motiverade av dessa problem föreslår vi en zero-shot-modell för objektdetektering riktat mot användargränssnittsikoner i datorspel. Att snabbt och precist kunna analysera tillståndet i ett spel, med potentiellt miljontals människor som tittar, skulle vara till stor nytta för den snabbväxande datorspelssektorn. Vår slutliga modell är en modifiering av YOLOv8, som vid inferens förses med det specifika objektet som ska upptäckas i en given bild. Många befintliga zero-shot-modeller inom objektdetektering utnyttjar semantiska inbäddningar och högdimensionella ordvektorer för att generalisera till nya klasser. Vi hypotiserar att det är tillräckligt att använda visuella representationer för att upptäcka osedda klasser. För att träna och utvärdera vår modell skapar vi syntetisk data för att återspegla spelbilder och ikoner från datorspel. Vår metod uppnår liknande prestanda som YOLOv8 på prediktion av omskrivande rektanglar och på sedda klasser där antalet klasser är lågt. Samtidigt upprätthåller vi samma positiva prediktionsvärde och sensitivitet för osedda klasser där antalet klasser uppgår till tusentals.
|
13 |
A tracking framework for a dynamic non- stationary environment / Ett spårningsramverk för en dynamisk icke- stationär miljöStåhl, Sebastian January 2020 (has links)
As the use of unmanned aerial vehicles (UAVs) increases in popularity across the globe, their fields of application are constantly growing. This thesis researches the possibility of using a UAV to detect, track, and geolocate a target in a dynamic nonstationary environment as the seas. In this case, different projection and apparent size of the target in the captured images can lead to ambiguous assignments of coordinated. In this thesis, a framework based on a UAV, a monocular camera, a GPS receiver, and the UAV’s inertial measurement unit (IMU) is developed to perform the task of detecting, tracking and geolocating targets. An object detection model called Yolov3 was retrained to be able to detect boats in UAV footage. This model was selected due to its capabilities of detecting targets of small apparent sizes and its performance in terms of speed. A model called the kernelized correlation filter (KCF) is adopted as the visual tracking algorithm. This tracker is selected because of its performance in terms of speed and accuracy. A reinitialization of the tracker in combination with a periodic update of the tracked bounding box are implemented which resulted in improved performance of the tracker. A geolocation method is developed to continuously estimate the GPS coordinates of the target. These estimates will be used by the flight control method already developed by the stakeholder Airpelago to control the UAV. The experimental results show promising results for all models. Due to inaccurate data, the true accuracy of the geolocation method can not be determined. The average error calculated with the inaccurate data is 19.5 meters. However, an in- depth analysis of the results indicates that the true accuracy of the method is more accurate. Hence, it is assumed that the model can estimate the GPS coordinates of a target with an error significantly lower than 19.5 meters. Thus, it is concluded that it is possible to detect, track and geolocate a target in a dynamic nonstationary environment as the seas. / Användandet av drönare ökar i popularitet över hela världen vilket bidrar till att dess tillämpningsområden växer. I denna avhandling undersöks möjligheten att använda en drönare för att detektera, spåra och lokalisera ett mål i en dynamisk icke- stationär miljö som havet. Målets varierande position och storlek i bilderna leda till tvetydiga uppgifter. I denna avhandlingen utvecklas ett ramverk baserat på en drönare, en monokulär kamera, en GPS- mottagare och drönares IMU sensor för att utföra detektering, spårning samt lokalisering av målet. En objektdetekteringsmodell vid namn Yolov3 tränades för att kunna detektera båtar i bilder tagna från en drönare. Denna modell valdes på grund av dess förmåga att upptäcka små mål och dess prestanda vad gäller hastighet. En modell vars förkortning är KCF används som den visuella spårningsalgoritmen. Denna algoritm valdes på grund av dess prestanda när det gäller hastighet och precision. En återinitialisering av spårningsalgoritmen i kombination med en periodisk uppdatering av den spårade avgränsningsrutan implementeras vilket förbättrar trackerens prestanda. En lokaliseringsmetod utvecklas för att kontinuerligt uppskatta GPS- koordinaterna av målet. Dessa uppskattningar kommer att användas av en flygkontrollmetod som redan utvecklats av Airpelago för att styra drönaren. De experimentella resultaten visar lovande resultat för alla modeller. På grund av opålitlig data kan inte lokaliseringsmetodens precision fastställas med säkerhet. En djupgående analys av resultaten indikerar emellertid att metodens noggrannhet är mer exakt än det genomsnittliga felet beräknat med opålitliga data, som är 19.5 meter. Därför antas det att modellen kan uppskatta GPS- koordinaterna för ett mål med ett fel som är lägre än 19.5 meter. Således dras slutsatsen att det är möjligt att upptäcka, spåra och geolocera ett mål i en dynamisk icke- stationär miljö som havet.
|
14 |
AI-assisterad spårning av flygande objekt och distansberäkning inom kastgrenar / AI-assisted Tracking of Flying Objects and Distance Measuring within Throwing SportsJonsson, Fredrik, Eriksson, Jesper January 2022 (has links)
Detta examensarbete har utförts under tio veckor på uppdrag av företaget BitSim NOW. Den manuella metod som idag används för mätning av stötar inom kulstötning kan utgöra en risk för felaktiga resultat och personskador. Med hjälp av tekniska hjälpmedel kan en lösning med noggrannare mätningar och lägre risk för skador implementeras i sporten kulstötning. Denna rapport presenterar en lösning som med hjälp av artificiell intelligens identifierar kulan utifrån en filmsekvens. Därefter beräknas längden av stöten med hjälp av en formel för kastparabeln. Lösningen jämförs sedan med en metod utan artificiell intelligens för att fastställa den bästa av de två metoderna. De variablersom jämfördes var noggrannheten på stötens längd och hur bra de två olika metoderna spårade kulan. Resultatet analyserades i relation till de uppsatta målen och sattes därefter in i ett större sammanhang. / This thesis project has been done during ten weeks on behalf of the companyBitSim NOW. The current method used to measure the length of shot-puts presents a risk of inaccurate results along with the risk of injury for the measuring personnel. With the help of technical aids, a solution with more accurate measurements and a lower risk for injuries could be implemented in the sport of shot-puts. This report presents a solution using artificial intelligence to first identify the shotin video films and secondly calculate the length using mathematical formulas. Thesolution is then compared to a method that does not use artificial intelligence, to determine what method is the superior one. The parameters that were compared were the accuracy of the length and the quality of the tracking. The result was analyzed in relation to the aims of the project and then put into a larger context.
|
15 |
Implementation of an object-detection algorithm on a CPU+GPU targetBerthou, Gautier January 2016 (has links)
Systems like autonomous vehicles may require real time embedded image processing under hardware constraints. This paper provides directions to design time and resource efficient Haar cascade detection algorithms. It also reviews some software architecture and hardware aspects. The considered algorithms were meant to be run on platforms equipped with a CPU and a GPU under power consumption limitations. The main aim of the project was to design and develop real time underwater object detection algorithms. However the concepts that are presented in this paper are generic and can be applied to other domains where object detection is required, face detection for instance. The results show how the solutions outperform OpenCV cascade detector in terms of execution time while having the same accuracy. / System så som autonoma vehiklar kan kräva inbyggd bildbehandling i realtid under hårdvarubegränsningar. Denna uppsats tillhandahåller anvisningar för att designa tidsoch resurseffektiva Haar-kasad detekterande algoritmer. Dessutom granskas en del mjukvaruarkitektur och hårdvaruaspekter. De avsedda algoritmerna är menade att användas på plattformar försedda med en CPU och en GPU under begränsad energitillgång. Det huvudsakliga målet med projektet var att designa och utveckla realtidsalgoritmer för detektering av objekt under vatten. Dock är koncepten som presenteras i arbetet generiska och kan appliceras på andra domäner där objektdetektering kan behövas, till exempel vid detektering av ansikten. Resultaten visar hur lösningarna överträffar OpenCVs kaskaddetektor beträffande exekutionstid och med samtidig lika stor träffsäkerhet.
|
16 |
Detection of Rail Clip with YOLO on Raspberry PiShahi, Jonathan January 2024 (has links)
I en modern värld där artificiell intelligens blir allt mer integrerad i våra dagliga liv är en av de mest grundläggande och nödvändiga färdigheterna för en AI att lära sig och bearbeta information, särskilt genom objektdetektering. Det finns många algoritmer som kan användas för denna specifika uppgift, men vårt huvudsakliga fokus ligger på "You Only Look Ones", även känd som YOLO-algoritmen. Denna studie fördjupar sig i användningen av YOLO inom inbyggda system specifikt för att upptäcka tågrelaterade objekt på en Raspberry Pi. Målet med denna studie är att övervinna begränsningar i processorkraft och minne, typiska för småskaliga databehandlingsplattformar som Raspberry Pi, samtidigt som hög detekteringsnoggrannhet, hastighet och låg energiförbrukning bibehålls. Detta uppnås genom att träna YOLO-modellen med olika bildupplösningar och olika inställningar av hyperparametrar och sedan köra inferens på dem så att energiförbrukningen kan beräknas. Resultaten indikerar att även om lägre upplösningar resulterar i lägre noggrannhet, minskar de avsevärt de beräkningsmässiga kraven på Raspberry Pi, vilket gör det till en genomförbar lösning för realtidsapplikationer i miljöer där tillgången till ström är begränsad. / In a modern world where artificial intelligence (AI) is becoming increasingly integrated into our daily lives, one of the most fundamental and essential skills for an AI is to learn and process information especially through object detection. There are many algorithms that could be used for this specific task but our mainly focus is on "You Only Look Ones" aka YOLO algorithm. This study dives into the use of YOLO within embedded systems specifically for detecting train-related objects on a Raspberry Pi. The aim of this study is to overcome limitations in processing power and memory, typical in small-scale computing platforms like Raspberry pi, while maintaining high detection accuracy, fast processing time and low energy consumption. This is achieved by training the YOLO model with different image resolutions and different hyper parameters tuning then running inference on them so that the energy consumption can be calculated. The results indicate that while lower resolutions result in lower accuracy, they significantly reduce the computational demands on the Raspberry Pi, making it a viable solution for real-time applications in environments where power availability is limited
|
17 |
AI-vision som tillämpning i en stålindustri : Med inriktning på objektdetektering & bildklassificeringWenger, Jakob January 2020 (has links)
I takt med att industri 4.0 sveper över dagens industrier så utvecklas tillämpningsområden inom artificiell intelligens (AI). En relativt nyfunnen tillämpning som vanligen benämns AI-vision eller Computer-vision, inom detta arbete har benämningen AI-vision valts. Tillämpningen handlar om att datorer och maskiner upprättas med förmågan att tolka visuellt innehåll.I och med detta tränas en intelligent modell som klarar av att fatta beslut utifrån visuell data, såsom bild och video. Inriktningen i arbetet belyser inom AI-Vision teknikerna objektdetektering och bildklassificering. Objektdetektering innebär att ett eller flera specifika objekt upptäcks från en bild av flera komplexa linjer och former. Tekniken används inom en rad olika tillämpningar såsom t.ex. robotnavigering och automatisk fordonsstyrning. Syftet med bildklassificering ibland kallat bildigenkänning, handlar om att klassificera och kategorisera bilden genom att identifiera och sortera väsentlig data. Detta i försök att konstatera vad bilden i sig föreställer. För att forma och rama in detta arbete på ett lämpligt sätt ämnas huvudsakliga målet med arbetet beskriva hur tekniker såsom objektdetektering och bildklassificerings-modeller konstrueras. Så även redogöra kring bakomliggande intelligens i modellerna, samt vilka verktyg och metoder som används för att skapa dessa modeller. Arbetet syftar även till att presentera presumtiva tillämpningar inom en stålindustri, därför kommer förslag till applikationer framföras. I resultatdelen av arbetet presenteras i huvudsak uppbyggnaden av en objekdetekteringsapplikation som hanterar personsäkerhet och i diskussionsdelen framhävs vidare förslag till applikationer. Detta avses lägga grund för eventuell implementation i verkliga produktionsutrustningar i framtiden. / As Industry 4.0 sweeps across today's industries, applications within artificial intelligence (AI) are developing. A relatively new application that is commonly called AI-vision or sometimes Computer-vision, in this study the term AI-vision is used. The application is about making computers and machines visually inclined. With this, an intelligent model is trained that can make decisions based on visual data, such as image and video. The orientation in this study within AI-Vision, is to highlight object detection and image classification. Object detection defines as follows, one or more specific objects are detected from an image of several complex lines and shapes. The technology is used in a variety of applications such as robot navigation and automatic vehicle control. The purpose of image classification, sometimes called image recognition, is to classify and categorize the image by identifying and sorting essential data. This in attempt to ascertain what the image itself represents. In order to frame this work in an appropriate way, the main quest of this thesis is to describe how techniques such as Object Detection and Image Classification models are constructed. Explain the underlying intelligence in the models as well as what tools and methods are used to create these models. As the thesis also alludes to present prospective applications in a steel industry, proposals of specific applications will be presented. The results section mainly presents an Object Detection application that handles personal safety and drafts to applications is presented in the discussion section. This work intends to contribute for possible implementation in production equipment in the future.
|
18 |
Hybrid pool based deep active learning for object detection using intermediate network embeddingsMarbinah, Johan January 2021 (has links)
With the advancements in deep learning, object detection networks have become more robust. Nevertheless, a challenge with training deep networks is finding enough labelled training data for the model to perform well, due to constraints associated with acquiring relevant data. For this reason, active learning is used to minimize the cost by sampling the unlabeled samples that increase the performance the most. In the field of object detection, few works have been done in exploring effective hybrid active learning strategies that exploit the intermediate feature embeddings in neural networks. In this work, hybrid active learning methods are proposed and tested, using various uncertainty sampling techniques and the well-respected core-set method as the representative strategy. In addition, experiments are conducted with network embeddings to find a suitable strategy to model representation of all available samples. Experiments show mixed outcomes as to whether hybrid methods perform better than the core-set method used separately. / Med framstegen inom djupinlärning, har neurala nätverk för objektdetektering blivit mer robusta. En utmaning med att träna djupa neurala nätverk är att hitta en tillräcklig mängd träningsdata för att ett nätverk ska prestera bra, med tanke på de begränsningar som är förknippade med anskaffningen av relevant data. Av denna anledning används aktiv maskininlärning för att minimera kostnaden med att förvärva nya datapunkter, genom att göra kontinuerliga urval av de omärkta bilder som ökar prestandan mest. När det gäller objektsdetektering har få arbeten gjorts för att utforska effektiva hybridstrategier som utnyttjar de mellanliggande lagren som finns i ett neuralt nätverk. I det här arbetet föreslås och testas hybridmetoder i kontext av aktiv maskininlärning med hjälp av olika tekniker för att göra urval av datamängder baserade på osäkerhetsberäkningar men även beräkningar med hänsyn till representation (core-set-metoden). Dessutom utförs experiment med mellanliggande nätverksinbäddningar för att hitta en lämplig strategi för att modellera representation av alla tillgängliga bilder i datasetet. Experimenten visar blandade resultat när det gäller huruvida hybridmetoderna presterar bättre i jämförelse med seperata aktiv maskininlärning strategier där core-set metoden inte används.
|
19 |
Design and implementation of an affordable reversing camera system with object detection and OBD-2 integration for commercial vehicles / Design och implementering av ett prisvärt backkamerasystem med objektdetektering och OBD-2-integration för kommersiella fordonEbrahimi, Alireza, Akbari, Esmatullah January 2023 (has links)
This thesis is about designing and implementing an affordable reversing camera sys-tem with object detection and OBD-2 integration for commercial vehicles. The aim is to improve the safety and efficiency of these vehicles by giving drivers a clear view of their surroundings behind the vehicle and alerting them to the presence of nearby obstacles. Ultrasonic sensors are used for object detection and give the driver control over the environment behind the vehicle and warn of present obstacles. The system is also integrated with the vehicle's on-board diagnostics system (OBD-2), which provides important information on speed and engine performance, among other things. This project contributes to making safety systems more accessible to com-mercial vehicles and reduces the risk of accidents and collisions. / Detta examensarbete handlar om att utforma och implementera ett prisvärt backkamerasystem objektdetektering och integration med On-Board Diagnostics 2 för kommersiella fordon. Syftet är att förbättra säkerheten och effektiviteten för dessa fordon genom att ge förarna en tydlig vy av deras omgivningar bakom fordonet och varna dem för närvaron av hinder i närheten. Ultraljudssensorer används för objekt-detektering och ger föraren en kontroll över omgivningen bakom fordonet samt var-nar för närvarande hinder. Systemet är också integrerat med fordonets omborddia-gnostiksystem (OBD-2), som ger viktig information om bland annat hastighet och motorprestanda. Detta projekt bidrar till att göra säkerhetssystem mer tillgängliga för kommersiella fordon och minskar risken för olyckor och kollisioner.
|
20 |
Evaluation and Analysis of Perception Systems for Autonomous DrivingSharma, Devendra January 2020 (has links)
For safe mobility, an autonomous vehicle must perceive the surroundings accurately. There are many perception tasks associated with understanding the local environment such as object detection, localization, and lane analysis. Object detection, in particular, plays a vital role in determining an object’s location and classifying it correctly and is one of the challenging tasks in the self-driving research area. Before employing an object detection module in autonomous vehicle testing, an organization needs to have a precise analysis of the module. Hence, it becomes crucial for a company to have an evaluation framework to evaluate an object detection algorithm’s performance. This thesis develops a comprehensive framework for evaluating and analyzing object detection algorithms, both 2D (camera images based) and 3D (LiDAR point cloud-based). The pipeline developed in this thesis provides the ability to evaluate multiple models with ease, signified by the key performance metrics, Average Precision, F-score, and Mean Average Precision. 40-point interpolation method is used to calculate the Average Precision. / För säker rörlighet måste ett autonomt fordon uppfatta omgivningen exakt. Det finns många uppfattningsuppgifter associerade med att förstå den lokala miljön, såsom objektdetektering, lokalisering och filanalys. I synnerhet objektdetektering spelar en viktig roll för att bestämma ett objekts plats och klassificera det korrekt och är en av de utmanande uppgifterna inom det självdrivande forskningsområdet. Innan en anställd detekteringsmodul används i autonoma fordonsprovningar måste en organisation ha en exakt analys av modulen. Därför blir det avgörande för ett företag att ha en utvärderingsram för att utvärdera en objektdetekteringsalgoritms prestanda. Denna avhandling utvecklar ett omfattande ramverk för utvärdering och analys av objektdetekteringsalgoritmer, både 2 D (kamerabilder baserade) och 3 D (LiDAR-punktmolnbaserade). Rörledningen som utvecklats i denna avhandling ger möjlighet att enkelt utvärdera flera modeller, betecknad med nyckelprestandamätvärdena, Genomsnittlig precision, F-poäng och genomsnittlig genomsnittlig precision. 40-punkts interpoleringsmetod används för att beräkna medelprecisionen.
|
Page generated in 0.0777 seconds