• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 274
  • 271
  • 2
  • Tagged with
  • 550
  • 310
  • 245
  • 82
  • 82
  • 81
  • 77
  • 70
  • 66
  • 65
  • 60
  • 58
  • 58
  • 57
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Analys av luftkvaliteten på Hornsgatan med hjälp av maskininlärning utifrån trafikflödesvariabler / Air Quality Analysis on Hornsgatan using Machine Learning with regards to Traffic Flow Variables

Treskog, Paulina, Teurnberg, Ellinor January 2023 (has links)
Denna studie har syftet att undersöka sambandet mellan luftföroreningar och olika fordonsvariabler, såsom årsmodell, bränsletyp och fordonstyp, på Hornsgatan i Stockholm. Studien avser att besvara vilka faktorer som har störst inverkan på luftkvaliteten. Utförandet baseras på maskininlärningsalgoritmerna Random Forest och Support Vector Regression, vilka jämförs utifrån R^2 och RMSE. Modellerna skapade med Random Forest överträffar Support Vector Regression för de olika luftföroreningarna. Den modell som presterade bäst var modellen för kolmonoxid vilken hade ett R^2-värde på 99.7%. Den modell som gav prediktioner med lägst R^2-värde, 68.4%, var modellen för kvävedioxid. Överlag var resultaten goda i relation till tidigare studier. Utifrån modellerna diskuteras variablers inverkan och olika åtgärder som kan införas i Stockholm Stad och på Hornsgatan för att förbättra luftkvaliteten. / This study aims to investigate the relationship between multiple air pollution and different vehicle variables, such as vehicle year, fuel type and vehicle type, on Hornsgatan in Stockholm. The study intends to answer which factors have the greatest impact on air quality. The implementation is based on the two machine learning algorithms Random Forest and Support Vector Regression, which are compared based on R^2 and RMSE. The models created with Random Forest outperform Support Vector Regression for the various air pollutants. The best performing model was the carbon monoxide model which had an R^2-value of 99.7%. The model that gave predictions with the lowest R^2-value, 68.4%, was the model for nitrogen dioxide. Overall, the results were good in relation to previous studies. With regards to these models, the impact of variables and different measures that can be introduced in the City of Stockholm and on Hornsgatan to improve air quality are discussed.
392

Increasing the Efficiency of CyberKnife Cancer Treatments by Faster Robot Traversal Paths / Förbättring av effektiviteten i CyberKnife-cancerbehandlingar genom snabbare robotvägar

Hagström, Theodor January 2023 (has links)
Cancer remains a significant global challenge, constituting one of the leading causes of death worldwide. With an aging population, the demand for cancer treatments is increasing. Nevertheless, due to technological advancements, cancer mortality rates are declining. This study contributes to these advancements, focusing specifically on radiation therapy, a crucial technology widely used today. Since the invention of radiation therapy, there has been significant research and progress in the field. One such advancement is the CyberKnife® system (Accuray Incorporated, Sunnyvale, CA, USA) - a fully robotic radiotherapy device that enables precise patient treatments. Its flexibility allows for the delivery of high-quality plans, but treatment times can be quite long, leading to adverse effects for both patients and healthcare providers. This thesis introduces algorithms aimed at reducing the robot traversal time of the CyberKnife technology. These algorithms are incorporated into an existing optimization framework for treatment planning, with their effectiveness evaluated across various patient cases. Significant reductions in treatment times for some patient cases were observed, while maintaining satisfactory plan quality, primarily due to more efficient traversal paths for the CyberKnife robot. The increased efficiency of the robot can also be leveraged to create treatment plans with more irradiation directions, increasing the treatment quality in some cases. / Cancer förblir en betydande global utmaning och är en av de främsta dödsorsakerna i världen. Med en åldrande befolkning ökar efterfrågan på cancerbehandlingar. Trots detta minskar cancerdödligheten tack vare teknologiska framsteg. Denna studie bidrar till dessa framsteg, med särskilt fokus på strålterapi, en avgörande teknologi som används i stor utsträckning idag.  Sedan uppfinningen av strålterapi har det gjorts betydande forskning och utveckling inom området. Ett sådant framsteg är CyberKnife®-systemet (Accuray Incorporated, Sunnyvale, CA, USA) - en helt robotiserad strålterapimaskin som möjliggör precisa behandlingar för patienter. Dess flexibilitet gör det möjligt att leverera högkvalitativa planer, men behandlingstiderna kan vara långa, vilket leder till negativa effekter för såväl patienter som sjukvården. Denna uppsats introducerar algoritmer som syftar till att minska traverseringstiden för CyberKnife-roboten. Dessa algoritmer integreras i ett befintligt optimeringsramverk för behandlingsplanering, med deras effektivitet utvärderad baserat på olika patientfall.  Betydande minskningar av behandlingstiderna observerades för vissa patientfall, samtidigt som tillfredsställande plankvalitet behölls, främst med anledning av mer effektiva traverseringsvägar för CyberKnife-roboten. Denna effektivisering möjliggör också skapandet av behandlingsplaner med fler strålriktningar, vilket förbättrade behandlingskvaliteten i vissa fall.
393

The Applicability and Scalability of Graph Neural Networks on Combinatorial Optimization / Tillämpning och Skalbarhet av Grafiska Neurala Nätverk på Kombinatorisk Optimering

Hårderup, Peder January 2023 (has links)
This master's thesis investigates the application of Graph Neural Networks (GNNs) to address scalability challenges in combinatorial optimization, with a primary focus on the minimum Total Dominating set Problem (TDP) and additionally the related Carrier Scheduling Problem (CSP) in networks of Internet of Things. The research identifies the NP-hard nature of these problems as a fundamental challenge and addresses how to improve predictions on input graphs of sizes much larger than seen during training phase. Further, the thesis explores the instability in such scalability when leveraging GNNs for TDP and CSP. Two primary measures to counter this scalability problem are proposed and tested: incorporating node degree as an additional feature and modifying the attention mechanism in GNNs. Results indicate that these countermeasures show promise in addressing scalability issues in TDP, with node degree inclusion demonstrating overall performance improvements while the modified attention mechanism presents a nuanced outcome with some metrics improved at the cost of others. Application of these methods to CSP yields bleak results, evincing the challenges of scalability in more complex problem domains. The thesis contributes by detecting and addressing scalability challenges in combinatorial optimization using GNNs and provides insights for further research in refining methodologies for real-world applications. / Denna masteruppsats undersöker tillämpningen av Grafiska Neurala Nätverk (GNN) för att hantera utmaningar inom skalbarhet vid kombinatorisk optimering, med ett primärt fokus på minimum Total Dominating set Problem (TDP) samt även det relaterade Carrier Scheduling Problem (CSP) i nätverk inom Internet of Things. Studien identifierar den NP-svåra karaktären av dessa problem som en grundläggande utmaning och lyfter hur man kan förbättra prediktioner på indatagrafer av storlekar som är mycket större än vad man sett under träningsfasen. Vidare utforskar uppsatsen instabiliteten i sådan skalbarhet när man utnyttjar GNN för TDP och CSP. Två primära åtgärder mot detta skalbarhetsproblem föreslås och testas: inkorporering av nodgrad som ett extra attribut och modifiering av attention-mekanismer i GNN. Resultaten indikerar att dessa motåtgärder har potential för att angripa skalbarhetsproblem i TDP, där inkludering av nodgrad ger övergripande prestandaförbättringar medan den modifierade attention-mekanismen ger ett mer tvetydigt resultat med vissa mätvärden förbättrade på bekostnad av andra. Tillämpning av dessa metoder på CSP ger svaga resultat, vilket antyder om utmaningarna med skalbarhet i mer komplexa problemdomäner. Uppsatsen bidrar genom att upptäcka och adressera skalbarhetsutmaningar i kombinatorisk optimering med hjälp av GNN och ger insikter för vidare forskning i att förfina metoder för verkliga tillämpningar.
394

Sustainability scores for portfolio performance / Hållbarhetsbetyg för portföljintegration

Stern, Felix January 2020 (has links)
In this thesis, the traditional methods of only using ESG scores to screen stocks for sustainable portfolios is broadened. The selection of securities for portfolios will instead depend on aggregation, weighting and normalization of a wider set of sustainability variables, in turn creating more all-encompassing sustainability scores. Using these scores, the aim is to implement them in index tracking portfolios. These portfolios combines a hybrid approach between active and passive investment, with the aim of creating sustainable enhanced index funds that can beat the index without adding significant risk. Additionally, this allows for comparison of how different combinations and levels of sustainability affects returns, risk and index tracking. The results that are obtained shows that in the scenario presented in the thesis, it is possible to create a sustainability score which both increases the average sustainability of portfolios, and yields risk adjusted returns. We also studied how a net increase in sustainability scores over a control portfolio results in higher active returns, and eventually a small drop off in information ratio as we apply too strong of a sustainability constraint to our portfolios. The combination of sustainability scores which showed the highest risk adjusted returns was created using equal parts z-scored ESG ratings, ESG risk ratings and ESG momentum. / Detta examensarbete breddar de traditionella metoderna för att skapa hållbara portföljer. Genom att basera urvalet av aktier på aggregering, viktande och normalisering av ett större set av hållbarhetsvariabler, jämfört med traditionell screening baserad på endast ESG betyg, skapas mer omfattande hållbarhetsbetyg. Syftet med studien är att implementera dessa hållbarhetsbetyg vid skapandet av index-portföljer och analysera resultaten. Dessa portföljer kombinerar då både aktiva och passiva investeringsprinciper, med målet att skapa hållbara indexnära fonder som kan prestera bättre än indexet, utan signifikant höjd risk. Dessa hållbarhetsbetyg tillåter även jämförelse av hur olika kombinationer och nivåer av hållbarhet påverkar avkastning, risk och närhet till index. Resultaten visar tydligt att det, inom uppsatsens avgränsningar, är möjligt att skapa hållbarhetsbetyg som ökar både hållbarheten av portföljer i snitt, och skapar riskjusterad avkastning. Det visar även hur en relativ höjning av hållbarhetsbetygen resulterar i högra aktiv avkastning jämfört med en kontroll-portfölj. Vid en viss nivå av höjning sker dock en avtappning av den riskjusterade avkastningen. Den kombinationen av hållbarhetsvariabler som visar högst riskjusterad avkastning när de aggregeras till ett hållbarhetsbetyg är en kombination, i lika delar, av ESG betyg, ESG risk och ESG momentum.
395

Development and Assessment of Re-Fleet Assignment Model under Environmental Considerations / Utveckling och bedömning av metoder för allokering av flygplanstyper till rutter med hänsyn till miljöaspekter

Prashant, Prashant January 2020 (has links)
The imminent threat of global catastrophe due to climate change gets more real by each passing year. The Aviation trade association, IATA, claims that Aviation accounts for approximately 2% of the Greenhouse Gases (GHG) caused by human activities, and 3.5% of the total Radiative Forcing. With continuous increase in Aviation industry and subsequent drop in fossil fuel prices, these numbers are only expected to up with time. In Addition, these numbers do not include the effects of altitude of emission and many environmentalists believe that the number for some pollutants could be at least 2-3 times larger than IATA estimates. This rising concern engages the Aviation industry to investigate possible methods to alleviate their environmental impact.  The first part of this thesis provides a framework to support Airlines in monitoring their current environmental footprint during the process of scheduling. This objective is realised by developing a robust system for estimating the fuel consumed (ergo quantity of major Greenhouse Gases emitted) by a particular fleet type operating a certain leg, which is then employed in a Fleet Assignment (FA) Operation to reduce emissions and increase the Contribution. An emissions estimation model for Turbojet Aeroplane fleets is created for Industrial Optimizers AB’sMP2 software. The emissions estimation model uses historic fuel consumption data provided by ICAO for a given fleet type to estimate the quantity (in kg) of environmental pollutants during the Landing and Takeoff operation (below 3000 ft) and the Cruise, Climb and Descent operation (above 3000 ft).  The second part of this thesis concerns with assigning monetary weights to the pollutant estimates to calculate an emission cost. This emission cost is then added to MP2’s Fleet Assignment’s objective function as an additional Operational cost to perform a Contribution maximization optimization subjected to the legality constraints. The effects of these monetary weights levied on the results of Fleet Assignment are studied, and utilizing curve-fitting and mathematical optimization, monetary weights are estimated for the desired reduction in GHG emissions.  Finally, a recursive algorithm based on Newton-Raphson method is designed and tested for calculating pollutant weights for untested schedules. / Det omedelbara hotet om en global katastrof pga klimatförändringar blir mer och mer tydligt för varje år som går. IATA, den internationella flyghandelsorganisationen, hävdar att flyget står för runt 2% av växthusgaserna (GHG) som kommer från människans aktiviteter, och 3.5% av den totala avstrålningen. Med den kontinuerliga tillväxten av flygindustrin och prisminskningar av fossila bränslen så förväntas dessa andelar att öka. Dessutom så inkluderar inte dessa siffror effekten av att utsläppen sker på hög höjd, och många miljöaktivister tror att siffrorna för vissa utsläpp kan vara åtminstone 2-3 gånger högre än IATAs uppskattningar. Denna växande oro motiverar flygindustrin till att undersöka metoder för att begränsa dess miljöpåverkan.  Den första delen av denna rapport ger ett ramverk för att hjälpa flygbolag med att bevaka deras aktuella miljöavtryck under schemaläggningsprocessen. Detta mål realiseras genom att utveckla ett robust system för att uppskatta bränsleförbrukningen (och därmed kvantiteten av växthusgasutsläpp) av en specifik flygplanstyp på en given etapp, som sedan kan användas för att allokera flygplanstyper för att minska utsläppen och bidra till att förbättra miljön. En modell för att uppskatta utsläpp för flottor av turbojetflygplan har skapats för Industrial Optimizers AB programvara MP2. Modellen för att uppskatta utsläppen baseras på historiska data om bränsleförbrukning som tillhandahållits av ICAO för en given flygplanstyp som använts för att uppskatta kvantiteten (i kg) av föroreningar vid start (under 3000 fot) och vid sträckflygning, stigning och inflygning (över 3000 fot). Den andra delen av denna rapport handlar om att bestämma monetära vikter till föroreningsskattningarna för att beräkna utsläppskostnader som ska användas i MP2 s målfunktion för allokering av flygplanstyper. Detta ger en ytterligare driftskostnad att beakta i optimeringen för att få med miljöaspekterna och tillåtna lösningar. Effekten som dessa monetära vikter har på resultaten från optimeringen studeras, och genom att använda kurvanpassning och matematisk optimering, de monetära vikterna anpassas för att få den önskade minskningen i växthusgasutsläpp. Slutligen så har en rekursiv algoritm, baserad på Newon-Raphsons metod, designats och testats för att beräkna utsläppsvikter för scheman som inte använts för att beräkna vikterna
396

Optimizing web camera based eye tracking system : An investigating of the effect of network pruning and image resolution / Optimera webbkamerabaserat ögonspårningssystem : En undersökning av effekten av beskärning och inmatning av olika bildupplösningar

Svensson, Olle January 2021 (has links)
Deep learning has opened new doors to things that were only imaginable before. When it comes to eye tracking, the advances in deep learning have made it possible to predict gaze using the integrated camera that most mobile and desktop devices have nowadays. This has enabled the technique to move from needing advanced eye tracking equipment to being available to everyone with mobile and desktop devices. To make a more accurate gaze prediction more advanced neural network is needed and more computational power. This study investigates how a convolutional neural network used for eye tracking using a desktop web camera could be optimized in terms of computational cost while not compromising the accuracy of the network. In this work, two different methods to decrease the computational cost are investigated and evaluated how it impacts the accuracy, namely pruning and reducing the input image resolution fed to the convolutional neural network. Pruning is when weights in a neural network are removed to make the network sparser. The result shows that pruning works for regression tasks like eye tracking using a desktop web camera without compromising accuracy. When the convolutional neural network is pruned to 80% of its original weights in the convolutional layers, the accuracy improves by 6.8% compared to the same network that has not been pruned. The result also shows that reducing the number of pixels in the input images also improves the accuracy of the neural network. This is investigated further and by injecting noise into the input images used for testing, which shown that the networked trained with a lower resolution image for the face input is more robust to noise than the baseline model. This could be one explanation for the improvement when the face image is downsampled to a lower resolution. It is also shown that a model trained with reduced face and eyes input by a factor of four decreases its computational time by 85.7% compared to a baseline model. / Djuptinlärning har öppnat nya dörrar till saker som bara var tänkbara innan. När det gäller ögonspårning har framstegen inom djupinlärning gjort det möjligt att förutsäga blicken med hjälp av den integrerade kameran som de flesta mobil- och datorenheter har idag. Detta har gjort det möjligt för tekniken att gå från att behöva avancerad ögonspårningsutrustning till att vara tillgänglig till alla med mobil och datorenheter. För att göra en mer exakt ögonspårning behövs mer avancerat neuralt nätverk och mer beräkningskraft. Den här studien undersöker hur ett convolutional neural network som används för ögonspårning med hjälp av dator webbkamera skulle kunna optimeras vad gäller beräkningskostnader men samtidigt inte äventyrar nätverkets noggrannhet. I detta arbete undersöks två olika metoder för att minska beräkningskostnaden och utvärderar hur det påverkar noggrannheten, närmare bestämt beskärning och komprimering av bildupplösningen av bilderna som matas till det neurala nätverket. Beskärning är när vikter i ett neuralt nätverk tas bort för att göra nätverket glesare. Beskärning har, såvitt vi vet, aldrig testats på regressionsuppgifter som ögonspårning på dator. Resultatet visar att beskärning fungerar för regressionsuppgifter som ögonspårning med en dator webbkamera utan att kompromettera med noggrannheten. När det neurala nätverket beskärs till 80% av dess ursprungliga vikter i convolutional lagrena förbättras noggrannheten med 6.8% jämfört med samma nätverk som inte har beskärts. Resultatet visar också att komprimering av bildupplösningen också förbättrar neuralnätets noggrannhet. Detta undersöks vidare och genom att injicera brus i bilderna testbilderna som matas till det neurala nätverket, vilket visade att nätverket som tränats med en reducerad bilder med en faktor fyra är mer robusta vad gäller brus än basmodellen. Detta kan vara en förklaring till förbättringen när bilden på ansiktet komprimeras till en lägre upplösning. Det visas också att en modell som tränats med minskat ansikts- och ögoninmatning med en faktor fyra minskar dess beräkningstid med 85.7% jämfört med en basmodell.
397

Scenario dose prediction for robust automated treatment planning in radiation therapy / Scenariodosprediktion för robust automatisk strålterapiplanering

Eriksson, Oskar January 2021 (has links)
Cancer is a group of diseases that are characterized by abnormal cell growth and is considered a leading cause of death globally. There are a number of different cancer treatment modalities, one of which is radiation therapy. In radiation therapy treatment planning, it is important to make sure that enough radiation is delivered to the tumor and that healthy organs are spared, while also making sure to account for uncertainties such as misalignment of the patient during treatment. To reduce the workload on clinics, data-driven automated treatment planning can be used to generate treatment plans for new patients based on previously delivered plans. In this thesis, we propose a novel method for robust automated treatment planning where a deep learning model is trained to deform a dose in accordance with a set of potential scenarios that account for the different uncertainties while maintaining certain statistical properties of the input dose. The predicted scenario doses are then used in a robust optimization problem with the goal of finding a treatment plan that is robust to these uncertainties. The results show that the proposed method for deforming doses yields realistic doses of high quality and that the proposed pipeline can potentially generate doses that conform better to the target than the current state of the art but at the cost of dose homogeneity. / Cancer är ett samlingsnamn för sjukdomar som karaktäriseras av onormal celltillväxt och betraktas som en ledande dödsorsak globalt. Det finns olika typer av cancerbehandling, varav en är strålterapi. Inom strålterapiplanering är det viktigt att säkerställa att tillräckligt med strålning ges till tumören, att friska organ skonas, och att osäkerheter som felplacering av patienten under behandlingen räknas med. För att minska arbetsbelastningen på kliniker används data-driven automatisk strålterapiplanering för att generera behandlingsplaner till nya patienter baserat på tidigare levererade behandlingar. I denna uppsats föreslår vi en ny metod för robust automatisk strålterapiplanering där en djupinlärningsmodell tränas till att deformera en dos i enlighet med en mängd potentiella scenarion som motsvarar de olika osäkerheterna medan vissa statistiska egenskaper bibehålls från originaldosen. De predicerade scenariodoserna används sedan i ett robust optimeringsproblem där målet är att hitta en behandlingsplan som är robust mot dessa osäkerheter. Resultaten visar att den föreslagna metoden för dosdeformation ger realistiska doser av hög kvalitet, vilket i sin tur kan leda till robusta doser med högre doskonformitet än tidigare metoder men på bekostnad av doshomogenitet.
398

Conceptual Design of an Air- launched Multi-stage Launch Vehicle / Konceptuell design av en flerstegsraket uppskjuten från luften

Sigvant, John January 2020 (has links)
In the present thesis, the objective was to find the maximum amount of payload mass that can be put into a 500 km polar orbit by a 1400 kg air-launched multi-stage rocket launched from a fighter jet platform. To fulfill the objective an algorithm incorporating several modules was developed. The modules performed calculations based on theoretical models and literature values to arrive at optimal design variables. From the design the maximum payload mass was able to be derived and it was concluded that a three-stage launch vehicle was able to deliver a 22.0 kg payload to the desired orbit. / I den här avhandlingen var syftet att hitta den maximala mängden nyttolastmassa som kan transporteras av en 1400 kg flerstegsraket uppskjuten från luften till en 500 km polär bana. För att uppfylla målet utvecklades en algoritm med flera moduler. Modulerna utförde beräkningar baserade på teoretiska modeller och litteraturvärden för att komma fram till optimala designvariabler. Från konstruktionen kunde den maximala nyttolastmassan härledas och det konstaterades att en trestegsraket kunde leverera en nyttolast på 22.0 kg till den önskade omloppsbanan.
399

Conceptual Design of an Air- launched Multi-stage Launch Vehicle / Konceptuell design av en flerstegsraket uppskjuten från luften

Sigvant, John January 2020 (has links)
In the present thesis, the objective was to find the maximum amount of payload mass that can be put into a 500 km polar orbit by a 1400 kg air-launched multi-stage rocket launched from a fighter jet platform. To fulfill the objective an algorithm incorporating several modules was developed. The modules performed calculations based on theoretical models and literature values to arrive at optimal design variables. From the design the maximum payload mass was able to be derived and it was concluded that a three-stage launch vehicle was able to deliver a 22.0 kg payload to the desired orbit. / I den här avhandlingen var syftet att hitta den maximala mängden nyttolastmassa som kan transporteras av en 1400 kg flerstegsraket uppskjuten från luften till en 500 km polär bana. För att uppfylla målet utvecklades en algoritm med flera moduler. Modulerna utförde beräkningar baserade på teoretiska modeller och litteraturvärden för att komma fram till optimala designvariabler. Från konstruktionen kunde den maximala nyttolastmassan härledas och det konstaterades att en trestegsraket kunde leverera en nyttolast på 22.0 kg till den önskade omloppsbanan.
400

Route Planning of Transfer Buses Using Reinforcement Learning / Ruttplanering av Transferbussar med Förstärkningsinlärning

Holst, Gustav January 2020 (has links)
In route planning the goal is to obtain the best route between a set of locations, which becomes a very complex task as the number of locations increase. This study will consider the problem of transfer bus route planning and examines the feasibility of applying a reinforcement learning method in this specific real-world context. In recent research, reinforcement learning methods have emerged as a promising alternative to classical optimization algorithms when solving similar problems. This due to their positive properties in terms of scalability and generalization. However, the majority of said research has been performed on strictly theoretical problems, not using real-world data. This study implements an existing reinforcement learning model and adapts it to fit the realms of transfer bus route planning. The model is trained to generate optimized routes in terms of time and cost consumption. Then, routes generated by the trained model are evaluated by comparing them to corresponding manually planned routes. The reinforcement learning model produces routes that outperforms manually planned routes with regards to both examined metrics. However, due to delimitations and assumptions made during the implementation, the explicit differences in consumptions are considered promising but cannot be taken as definite results. The main finding is the overarching behavior of the model, implying a proof of concept; reinforcement learning models are usable tools in the context of real-world transfer bus route planning. / Inom ruttplanering är målet att erhålla den bästa färdvägen mellan en uppsättning platser, vilket blir en mycket komplicerad uppgift i takt med att antalet platser ökar. Denna studie kommer att behandla problemet gällande ruttplanering av transferbussar och undersöker genomförbarheten av att tillämpa en förstärkningsinlärningsmetod på detta verkliga problem. I nutida forskning har förstärkningsinlärningsmetoder framträtt som ett lovande alternativ till klassiska optimeringsalgoritmer för lösandet av liknande problem. Detta på grund utav deras positiva egenskaper gällande skalbarhet och generalisering. Emellertid har majoriteten av den nämnda forskningen utförts på strikt teoretiska problem. Denna studie implementerar en befintlig förstärkningsinlärningsmodell och anpassar den till att passa problemet med ruttplanering av transferbussar. Modellen tränas för att generera optimerade rutter, gällande tids- och kostnadskonsumtion. Därefter utvärderas rutterna, som genererats av den tränade modellen, mot motsvarande  manuellt planerade rutter. Förstärkningsinlärningsmodellen producerar rutter som överträffar de manuellt planerade rutterna med avseende på de båda undersökta mätvärdena. På grund av avgränsningar och antagandet som gjorts under implementeringen anses emellertid de explicita konsumtionsskillnaderna vara lovande men kan inte ses som definitiva resultat. Huvudfyndet är modellens övergripande beteende, vilket antyder en konceptvalidering; förstärkningsinlärningsmodeller är användbara som verktyg i sammanhanget gällande verklig ruttplanering av transferbussar.

Page generated in 0.0783 seconds