Spelling suggestions: "subject:"orbits."" "subject:"órbits.""
181 |
The Weinstein conjecture with multiplicities on spherizations / Conjecture de Weinstein avec multiplicités pour les spherisations.Heistercamp, Muriel 02 September 2011 (has links)
Soit M une variété lisse fermée et considérons sont fibré cotangent T*M muni de la structure symplectique usuelle induite par la forme de Liouville. Une hypersurface S de T*M$ est dite étoilée fibre par fibre si pour tout point q de M, l'intersection Sq de S avec la fibre au dessus de q est le bord d'un domaine étoilé par rapport à l'origine 0q de la fibre T*qM. Un flot est naturellement associé à S, il s'agit de l'unique flot généré par le champ de Reeb le long de S, le flot de Reeb. <p><p>L'existence d'une orbite orbite fermée du flot de Reeb sur S fut annoncée par Weinstein dans sa conjecture en 1978. Indépendamment, Weinstein et Rabinowitz ont montré l'existence d'une orbite fermée sur les hypersurfaces de type étoilées dans l'espace réel de dimension 2n. Sous les hypothèses précédentes, l'existence d'une orbite fermée fut démontrée par Hofer et Viterbo. Dans le cas particulier du flot géodésique, l'existence de plusieurs orbites fermées fut notamment étudiée par Gromov, Paternain et Paternain-Petean. Dans cette thèse, ces résultats sont généralisés. <p><p>Les résultats principaux de cette thèse montrent que la structure topologique de la variété M implique, pour toute hypersurface étoilée fibre par fibre, l'existence de beaucoup d'orbites fermées du flot de Reeb. Plus précisément, une borne inférieure de la croissance du nombre d'orbites fermées du flot de Reeb en fonction de leur période est mise en évidence. /<p><p>Let M be a smooth closed manifold and denote by T*M the cotangent bundle over M endowed with its usual symplectic structure induced by the Liouville form. A hypersurface S of T*M is said to be fiberwise starshaped if for each point q in M the intersection Sq of S with the fiber at q bounds a domain starshaped with respect to the origin 0q in T*qM. There is a flow naturally associated to S, generated by the unique Reeb vector field R along S ,the Reeb flow. <p><p>The existence of one closed orbit was conjectured by Weinstein in 1978 in a more general setting. Independently, Weinstein and Rabinowitz established the existence of a closed orbit on star-like hypersurfaces in the 2n-dimensional real space. In our setting the Weinstein conjecture without the assumption was proved in 1988 by Hofer and Viterbo. The existence of many closed orbits has already been well studied in the special case of the geodesic flow, for example by Gromov, Paternain and Paternain-Petean. In this thesis we will generalize their results.<p><p>The main result of this thesis is to prove that the topological structure of $M$ forces, for all fiberwise starshaped hypersurfaces S, the existence of many closed orbits of the Reeb flow on S. More precisely, we shall give a lower bound of the growth rate of the number of closed Reeb-orbits in terms of their periods. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
182 |
On the minimal number of periodic Reeb orbits on a contact manifold / Sur le nombre minimal d'orbites de reeb périodiques sur une variété de contactGutt, Jean 27 June 2014 (has links)
Le sujet de cette thèse est la question du nombre minimal d’orbites de Reeb distinctes sur une variété de contact qui est le bord d’une variété symplectique compacte. L’homologie symplectique S1-équivariante positive est un des outils principaux de cette thèse; elle est construite à partir d’orbites périodiques de champs de vecteurs hamiltoniens sur une variété symplectique dont le bord est la variété de contact considérée.Nous analysons la relation entre les différentes variantes d’homologie symplectique d’une variété symplectique exacte compacte (domaine de Liouville) et les orbites de Reeb de son bord. Nous démontrons certaines propriétés de ces homologies. Pour un domaine de Liouville plongé dans un autre, nous construisons un morphisme entre leurs homologies.Nous étudions ensuite l’invariance de ces homologies par rapport au choix de la forme de contact sur le bord. Nous utilisons l’homologie symplectique S1-équivariante positive pour donner une nouvelle preuve d’un théorème de Ekeland et Lasry sur le nombre minimal d’orbites de Reeb distinctes sur certaines hypersurfaces dans R2n. Nous indiquons comment étendre au cas de certaines hypersurfaces dans certains fibrés en droites complexes négatifs.Nous donnons une caractérisation et une nouvelle fa ç on de calculer l’indice de Conley-Zehnder généralisé, défini par Robbin et Salamon pour tout chemin de matrices symplectiques. Ceci nous a mené à développer de nouvelles formes normales de matrices symplectiques. / This thesis deals with the question of the minimal number of distinct periodic Reeb orbits on a contact manifold which is the boundary of a compact symplectic manifold.The positive S1-equivariant symplectic homology is one of the main tools considered in this thesis. It is built from periodic orbits of Hamiltonian vector fields in a symplectic manifold whose boundary is the given contact manifold.Our first result describes the relation between the symplectic homologies of an exact compact symplectic manifold with contact type boundary (also called Liouville domain), and the periodic Reeb orbits on the boundary. We then prove some properties of these homologies. For a Liouville domain embedded into another one, we construct a morphism between their homologies. We study the invariance of the homologies with respect to the choice of the contact form on the boundary.We use the positive S1-equivariant symplectic homology to give a new proof of a Theorem by Ekeland and Lasry about the minimal number of distinct periodic Reeb orbits on some hypersurfaces in R2n. We indicate how it extends to some hypersurfaces in some negative line bundles. We also give a characterisation and a new way to compute the generalized Conley-Zehnder index defined by Robbin and Salamon for any path of symplectic matrices. A tool for this is a new analysis of normal forms for symplectic matrices.
|
183 |
Séparation des représentations des groupes de Lie par des ensembles moments / Separation of Lie group representations with moment setsZergane, Amel 17 December 2011 (has links)
Si (π, H) est une représentation unitaire irréductible d'un groupe de Lie G, on sait lui associer son application moment Ψπ. La fermeture de l'image de Ψπ s'appelle l'ensemble moment de π. Généralement, cet ensemble est Conv(Oπ), si Oπ est l'orbite coadjointe associée à π. Mais il ne caractérise pas π : deux orbites distinctes peuvent avoir la même enveloppe convexe fermée. On peut contourner cette non séparation en considérant un surgroupe G+ de G et une application non linéaire ø de g* dans (g+)* telle que, pour les orbites générique, ø(O) est une orbite et Conv (ø(O)) caractérise O. Dans cette thèse, on montre que l'on peut choisir le couple (G+, ø), avec ø de degré ≤ 2 pour tous les groupes nilpotents de dimension ≤ 6, à une exception près, tous les groupes résolubles de dimension ≤ 4, et pour un exemple de groupe de déplacements. Ensuite, on étudie le cas des groupes G = SL(n, R). Pour ces groupes, il existe un tel couple avec ø de degré n, mais il n'en existe pas avec ø de degré 2 si n>2, il n'en existe pas avec ø de degré 3 si n=4. Enfin, on montre que l'application moment Ψπ est celle d'une action fortement hamiltonienne de G sur la variété de Fréchet symplectique PH∞. On construit un foncteur qui associe à tout G un surgroupe de Lie Fréchet G̃, de dimension infinie et, à tout π de G, une action π̃ fortement hamiltonienne, dont l'ensemble moment caractérise π / To a unitary irreducible representation (π,H) of a Lie group G, is associated a moment map Ψπ. The closure of the range of Ψπ is the moment set of π. Generally, this set is Conv(Oπ), if Oπ is the corresponding coadjoint orbit. Unfortunately, it does not characterize π : 2 distincts orbits can have the same closed convex hull. We can overpass this di culty, by considering an overgroup G+ for G and a non linear map ø from g* into (g+)* such that, for generic orbits, ø(O) is an orbit and Conv( ø(O)) characterizes O. In the present thesis, we show that we can choose the pair (G+,ø), with deg ø ≤2 for all the nilpotent groups with dimension ≤6, except one, for all solvable groups with diemnsion ≤4, and for an example of motion group. Then we study the G=SL(n,R) case. For these groups, there exists ø with deg ø =n, if n>2, there is no such ø with deg ø=2, if n=4, there is no such ø with deg ø=3. Finally, we show that the moment map Ψπ is coming from a stronly Hamiltonian G-action on the Frécht symplectic manifold PH∞. We build a functor, which associates to each G an infi nite diemnsional Fréchet-Lie overgroup G̃,and, to each π a strongly Hamiltonian action, whose moment set characterizes π
|
184 |
Berechnung von STM-Profilkurven und von Quantenbillards endlicher WandhoeheSbosny, Hartmut 20 October 1995 (has links)
Die Arbeit befasst sich mit zweierleiZum einen wird der STM-Abbildungsprozess simuliert, indem Probe
und Spitze durch zweidimensionale Sommerfeld-Metalle frei
waehlbarer Geometrie beschrieben werden und der Tunnelstrom im
Transfer-Hamiltonian-Formalismus bestimmt wird. Die Berechnung der
Eigenzustaende der Elektroden erfolgt numerisch durch Diskretisierung
der Schroedingergleichung im Differenzenverfahren. Ueber die
geometrische Entfaltung der erhaltenen Konstantstromprofile mit
der Spitzengeometrie werden der Vergleich zum geometrischen
(mechanischen) Abtasten gezogen und Moeglichkeiten einer Vermessung
von Spitze und Probe diskutiert.
Zum anderen wird durch Berechnung von Eigenzustaenden in
grossen zweidimensionalen Potentialkaesten (Quantenbillards)
endlicher Wandhoehe der Frage nachgegangen, welchen Einfluss
klassisch verbotene Gebiete (Aussenraum, Tunnelbarriere) auf
Eigenfunktionen in semiklassisch grossen Systemen haben.
Betrachtet wird insbesondere ein Gesamtsystem bestehend aus zwei
Potentialkaesten, die ueber eine Tunnelbarriere koppeln
(¨Quantenbillards endlicher Wandhoehe im Tunnelkontakt¨).
Bei einer Reihe von Zustaenden zeigen sich Scars, die aus der
Barriere austreten und in diese zuruecklaufen. Das Gesamtsystem ist
in hohem Masse nichtintegrabel, ¨sichtbar¨ wird dieses aber nur fuer
Bahnen entweder des Kontinuums oder fuer komplexe Orbits. Eine
semiklassische Beschreibung dieses Phaenomens mit der gegenwaertigen,
auf klassischen Orbits fussenden Theorie periodischer Bahnen ist nicht
mehr moeglich. Die Einbeziehung komplexer Orbits oder Bahnen des
Kontinuums (¨ungebundener Orbits¨) wird durch diese Ergebnisse angemahnt.
|
185 |
Gravity Recovery by Kinematic State Vector Perturbation from Satellite-to-Satellite Tracking for GRACE-like Orbits over Long ArcsHabana, Nlingilili Oarabile Kgosietsile 17 September 2020 (has links)
No description available.
|
186 |
Distribution of reflection points of periodic billiard trajectories in a strictly convex tableHan, Xurui 03 1900 (has links)
Ce mémoire de maîtrise porte sur les billards mathématiques et la distribution des points de réflexion des trajectoires périodiques d’une table de billard strictement convexe. Un billard mathématique est un système dynamique généré par le mouvement libre d’une particule à l’intérieur d’un domaine dont la frontière est parfaitement réfléchissante. Une question d’intérêt particulier dans l’étude des billards mathématiques est celle de ses trajectoires périodiques. Nous considérons le cas des billards planaires strictement convexes. Il est connu que les points de réflexion des trajectoires périodiques de période n faisant un tour de table sont équidistribués par rapport à une mesure naturelle sur la frontière. Nous montrons ce résultat par une méthode nouvelle et relativement élémentaire utilisant la théorie de Lazuktin [12]. Dans le premier chapitre, nous donnons une description précise de la dynamique des billards et une brève introduction à la théorie de Lazuktin, aux applications de torsion et aux caustiques. Dans les chapitres 2 à 4, nous développons chacun des concepts précédents et expliquons comment ceux-ci sont liés aux billards. Le chapitre 5 est consacré à la preuve de notre résultat principal, divisée en deux parties. Nous concluons en donnant une annexe sur la théorie de la mesure. / This master’s thesis is concerned with mathematical billiards and distribution of reflection points of periodic trajectories of a strictly convex billiard table. A mathematical billiard is a dynamical system generated by the free motion of a particle inside of a domain with a perfectly reflecting boundary. A question of particular interest in the study of mathematical billiards is that of its periodic trajectories. We consider the case of planar strictly convex billiards. It is known that the reflection points of periodic trajectories of period n making one turn around the table are equidistributed with respect to a natural measure on the boundary. We show this result by a new and relatively elementary method using Lazuktin’s theory [12]. In the first chapter, we give a precise description of billiard dynamics and a brief introduction of Lazuktin’s theory, twist mappings and caustics. In Chapter 2 to 4, we elaborate each of the previous concepts and explain how they are related to billiards. Chapter 5 is dedicated to the proof of our main result, divided into two parts. We conclude by giving an appendix about measure theory.
|
187 |
There and Back Again: Generating Repeating Transfers Using Resonant StructuresNoah Isaac Sadaka (15354313) 25 April 2023 (has links)
<p>Many future satellite applications in cislunar space require repeating, periodic transfers that shift away from some operational orbit and eventually return. Resonant orbits are investigated in the Earth-Moon Circular Restricted Three Body Problem (CR3BP) as a mechanism to enable these transfers. Numerous resonant orbit families possess a ratio of orbital period to lunar period that is sufficiently close to an integer ratio and can be exploited to uncover period-commensurate transfers due to their predictable periods. Resonant orbits also collectively explore large swaths of space, making it possible to select specific orbits that reach a region of interest. A framework for defining period-commensurate transfers is introduced that leverages the homoclinic connections associated with an unstable operating orbit to permit ballistic transfers that shuttle the spacecraft to a certain region. Resonant orbits are incorporated by locating homoclinic connections that possess resonant structures, and the applicability of these transfers is extended by optionally linking them to resonant orbits. In doing so, transfers are available for in-orbit refueling/maintenance as well as surveillance/communications applications that depart and return to the same phase in the operating orbit.</p>
|
188 |
Transfer Trajectory Design Strategies Informed by Quasi-Periodic OrbitsDhruv Jain (17543799) 04 December 2023 (has links)
<p dir="ltr">In the pursuit of establishing a sustainable space economy within the cislunar region, it is vital to formulate transfer design strategies that uncover economically viable highways between different regions of the space domain. The inherent complexity of spacecraft dynamics in the cislunar space poses challenges in determining feasible transfer options. However, the motion characterized by known dynamical structures modeled through the circular restricted three-body problem (CR3BP) aids in the identification of pathways with reasonable maneuver costs and flight times. A framework is proposed that incorporates a quasi-periodic orbit (QPOs) as an option to design transfer scenarios. This investigation focuses on the construction of transfers between periodic orbits. The framework is exemplified by the construction of pathways between an L2 9:2 synodic resonant Near-Rectilinear Halo Orbit (NRHO) and a planar Moon-centered Distant Retrograde Orbit (DRO). The innate difference in the geometries of the departure and arrival orbits of the sample case, along with the lack of natural flows towards and away from them, imply that links between these orbits may necessitate costly maneuvers. A strategy is formulated that leverages the stable and unstable manifolds associated with intermediate periodic orbits and quasi-periodic orbits to construct end-toend trajectories. As part of this strategy, a systematic methodology is outlined to streamline the determination of transfer options provided by the 5-dimensional manifolds associated with a QPO family. This approach reveals multiple local basins of solutions, both interior and exterior-types, characterized by selected intermediate orbits. The construction of transfers informed by the manifolds associated with QPOs is more intricate than those based on periodic orbits. However, QPO-derived solutions allow for the recognition of alternative local basins of solutions and often offer more cost-effective transfer options when compared to trajectories designed using periodic orbits that underlie the QPOs.</p>
|
189 |
Characterization of Quasi-Periodic Orbits for Applications in the Sun-Earth and Earth-Moon SystemsBrian P. McCarthy (5930747) 17 January 2019 (has links)
<div>As destinations of missions in both human and robotic spaceflight become more exotic, a foundational understanding the dynamical structures in the gravitational environments enable more informed mission trajectory designs. One particular type of structure, quasi-periodic orbits, are examined in this investigation. Specifically, efficient computation of quasi-periodic orbits and leveraging quasi-periodic orbits as trajectory design alternatives in the Earth-Moon and Sun-Earth systems. First, periodic orbits and their associated center manifold are discussed to provide the background for the existence of quasi-periodic motion on n-dimensional invariant tori, where n corresponds to the number of fundamental frequencies that define the motion. Single and multiple shooting differential corrections strategies are summarized to compute families 2-dimensional tori in the Circular Restricted Three-Body Problem (CR3BP) using a stroboscopic mapping technique, originally developed by Howell and Olikara. Three types of quasi-periodic orbit families are presented: constant energy, constant frequency ratio, and constant mapping time families. Stability of quasi-periodic orbits is summarized and characterized with a single stability index quantity. For unstable quasi-periodic orbits, hyperbolic manifolds are computed from the differential of a discretized invariant curve. The use of quasi-periodic orbits is also demonstrated for destination orbits and transfer trajectories. Quasi-DROs are examined in the CR3BP and the Sun-Earth-Moon ephemeris model to achieve constant line of sight with Earth and avoid lunar eclipsing by exploiting orbital resonance. Arcs from quasi-periodic orbits are leveraged to provide an initial guess for transfer trajectory design between a planar Lyapunov orbit and an unstable halo orbit in the Earth-Moon system. Additionally, quasi-periodic trajectory arcs are exploited for transfer trajectory initial guesses between nearly stable periodic orbits in the Earth-Moon system. Lastly, stable hyperbolic manifolds from a Sun-Earth L<sub>1</sub> quasi-vertical orbit are employed to design maneuver-free transfer from the LEO vicinity to a quasi-vertical orbit.</div>
|
190 |
Models for adaptive feeding and population dynamics in planktonPiltz, Sofia Helena January 2014 (has links)
Traditionally, differential-equation models for population dynamics have considered organisms as "fixed" entities in terms of their behaviour and characteristics. However, there have been many observations of adaptivity in organisms, both at the level of behaviour and as an evolutionary change of traits, in response to the environmental conditions. Taking such adaptiveness into account alters the qualitative dynamics of traditional models and is an important factor to be included, for example, when developing reliable model predictions under changing environmental conditions. In this thesis, we consider piecewise-smooth and smooth dynamical systems to represent adaptive change in a 1 predator-2 prey system. First, we derive a novel piecewise-smooth dynamical system for a predator switching between its preferred and alternative prey type in response to prey abundance. We consider a linear ecological trade-off and discover a novel bifurcation as we change the slope of the trade-off. Second, we reformulate the piecewise-smooth system as two novel 1 predator-2 prey smooth dynamical systems. As opposed to the piecewise-smooth system that includes a discontinuity in the vector fields and assumes that a predator switches its feeding strategy instantaneously, we relax this assumption in these systems and consider continuous change in a predator trait. We use plankton as our reference organism because they serve as an important model system. We compare the model simulations with data from Lake Constance on the German-Swiss-Austrian border and suggest possible mechanistic explanations for cycles in plankton concentrations in spring.
|
Page generated in 0.0546 seconds