Spelling suggestions: "subject:"arganic aerosols"" "subject:"arganic erosols""
11 |
Modélisation d'interfaces par simulations numériques : des polymères en solutions à la troposphère / computer simulations in modeling interfacial phenomena : from polymer solutions to the tropospherDarvas, Marias 05 December 2012 (has links)
Ce travail a pour objectif de montrer la capacité des simulations numériques à modéliser les phénomènes aux interfaces solides et liquides. Dans le travail sur les interfaces solides, la méthode GCMC a été utilisée pour simuler l'isotherme d'adsorption de !'acétaldéhyde sur la glace dans les conditions de la haute troposphère, puis l'adsorption de composés organiques bi-fonctionnalisés sur la glace a été caractérisée par dynamique moléculaire avec pour objectif d'interpréter des résl1ltats expérimentaux de la littérature. Une partie de ce travail a été consacrée à la circulation du diagramme de phase (p,T) d'aérosols organiques (acide oxalique et malonique) clans les conditions troposphériques afin d'étudier la capacité de ces aérosols à jouer le rôle de noyaux de condensation pour les particules de glace. Le travail sur les interfaces liquides a concerné tout d'abord l'adsorption compétitive de polymères et de smfactants à la surface de l'eau. Il s'appuie sur une description très précise, par simulation, de la structure et de la dynamique de la surface des systèmes considérés. La deuxième partie des travaux sur les interfaces liquides s'est intéressée à la caractérisation du transfert d'ions à travers une interface liquide/liquide par le biais du calcul des variations de l'énergie libre du système au cours du transfc1i. Afin d'obtenir une description très rigoureuse des détails des processus mis enjeu, une méthode spécifique a été développée dans cette thèse pour calculer le profil d'énergie libre en tenant compte directement du caractère très dynamique de l'interface. / This work aims to demonstrate the ability of numerical simulations to mode] solid · and liquid interfaces. In the work on the solid interfaces, the GCMC method was used to sin:rnlatc the ads011Jtion isotherrn of acetaldehyde on ice under the conditions of the ·upper tropospherc and the molecular dynamics method was usecl to characterize the adsorption of difünctionalized organic compounds on ice, aiming at interpreting experimental results. Part of this work was devotcd to the simulation of the phase diagrarn (p, T) of organic aerosols (oxalic acid and malonic) in tropospberic conditions to study the ability of aerosols to act as condensation nuclei for icc particlcs. The work: on liquid interfaces concerned firstly the competitive adsorption of polymcrs and surfactants at the water surface. It is based on a very precise desc1iption, by mnncrical simulation, of the structure émd dynamics cif the surface of the considered systems. The second pari of the work on liquid interfaces bas focused on the characterization of ion transfer across a liquid/liquid interface through the calculations of the free energy variations of the system during the transfo·. To obtain a rigorous desc1iptio11 of the details of the corresponding processes, a specific method was developed in this thesis to calculate the free energy profile while taking into account tbe dynamics of the interface.
|
12 |
Production and properties of atmospheric organic particulate matter / Παραγωγή και ιδιότητες ατμοσφαιρικών οργανικών σωματιδίωνΛούβαρης, Ευάγγελος 30 April 2014 (has links)
Atmospheric aerosol contains a variety of both inorganic and organic species and plays a significant role in atmospheric chemistry and physics. Organic compounds are usually the dominant component of the submicrometer particles contributing around 50% of its mass. One of the most important physical properties of organic aerosol is volatility which determines its gas-to particle partitioning and provides both direct information about its origin and indirect information about its chemical composition and age.
The objectives of the Thesis are to measure the volatility distributions of OA produced from olive tree branches burning and of ambient organic aerosol mainly attributed to residential wood burning in Athens. A thermodenuder system operating in a range of residence times was used to measure the aerosol fraction that remains after partial heating. The operation of the thermodenuder system was tested with ammonium sulfate model aerosol. Ammonium sulfate particles are easily produced and behave as non-volatile at lower temperature (25-75oC), as semivolatile at intermediate temperatures (75-120o) and evaporate completely at higher temperatures (T≥ 150oC). Thermodenuder wall losses were determined for our system using sodium chloride particles which are non-volatile even at 500oC. These results are used to post correct the thermodenuder measurements.
Fifty percent of the OA produced during olive tree branches burning evaporated at 113oC at 15.8 s in our thermodenuder. For temperatures higher than 150oC no evaporation occurred. This was attributed to reactions that probably took place inside the thermodenuder at such high temperatures. The post correction of measurement resulted on average in 15-20% increase of the Mass Fraction Remaining values. Fitting our measurements with a thermodenuder dynamic model resulted in a wide volatility distribution including OA with effective saturation concentrations from 10-2-102 μg m-3, vaporization enthalpy of 68±18 kJ mol-1 and mass accommodation coefficient in the range 0.01-0.14. The gas-to-particle partitioning behavior of the produced aerosol from olive tree branches burning was consistent with recent studies for a range of fuels.
Ambient organic aerosol volatility was also determined for wood burning periods in Athens. The estimated volatility distribution of ambient organic aerosol from the thermodenuder dynamic model showed that almost 80% of ambient organic aerosol during the burning periods can be characterized as semivolatile while the other 20% has low volatility. The gas-to-particle partitioning determination showed that the ambient organic aerosol during burning periods in Athens is a little more volatile than both the organic aerosol of wild fires of recent studies in the US and the organic aerosol of olive tree branches burning.
The volatility distributions and enthalpies of vaporization obtained in this study can be used as inputs to Chemical Transport Models simulating the emission, dispersion, and chemical evolution of OA from wood burning. / Το ατμοσφαιρικό αεροζόλ περιέχει πληθώρα τόσο ανόργανων όσο και οργανικών στοιχείων παίζοντας σημαντικό ρόλο στην χημεία και την φυσική της Ατμόσφαιρας.Οι οργανικές ενώσεις αποτελούν συνήθως το κυρίαρχο συστατικό των σωματιδίων διαμέτρου μικρότερης της τάξεως του μm, συνεισφέροντας περίπου το 50% της συνολικής τους μάζας. Μια από τις σημαντικότερες φυσικές ιδιότητες των οργανικών αεροζόλ είναι η πτητικότητά τους , η οποία καθορίζει την κατανομή τους στην αέρια και τη σωματιδιακή φάση καθώς επίσης παρέχει τόσο άμεσες πληροφορίες για την πηγή προέλευσής τους όσο και έμμεσες πληροφορίες σχετικά με τη χημική σύσταση και την ηλικία τους.
Οι στόχοι της Μεταπτυχιακής αυτής διατριβής είναι η μέτρηση της πτητικότητας οργανικών αεροζόλ προερχόμενων από την καύση ελαιοκλάδων καθώς και ατμοσφαιρικών οργανικών αεροζόλ κυριώς προερχόμενων από καύση ξύλων για οικιακή θέρμανση στην Αθήνα. Ένα σύστημα θερμοαπογυμνωτή που μπορεί να λειτουργεί σε ένα εύρος χρόνων παραμονής χρησιμοποιήθηκε για τη μέτρηση του κλάσματος των οργανικών αεροζόλ που παραμένουν στη σωματιδιακή φάση μετά από μερική θέρμανσή τους. Η λειτουργία του θερμοαπογυμνωτή δοκιμάστηκε αρχικά χρησιμοποιώντας αεροζόλ προερχόμενο από διάλυμα Θειϊκού Αμμωνίου. Τα σωματίδια Θειϊκού Αμμωνίου δημιουργούνται έυκολα και συμπεριφέρονται ως μη πτητκά σε χαμηλότερες θερμοκαρασίες (25-75oC), ως ημι-πτητικά σε ενδιάμεσες θερμοκρασίες (75-120oC) και εξατμίζονται πλήρως σε υψηλότερες θερμοκρασίες (T≥150οC). Οι απώλειες σωματιδίων στα τοιχώματα του θερμοαπογυμνωτή καθορίστηκαν χρησιμοποιώντας σωματίδια παραγόμενα από διάλυμα Χλωριούχου Νατρίου τα οποία είναι μη πτητικά ακόμη και σε θερμοκρασίες που αγγίζουν τους 500οC. Τα αποτελέσματα των απωλειών σωματιδίων στα τοιχώματα του θερμοαπογυμνωτή χρησιμοποιούνται για διόρθωση των πειραματικών αποτελεσμάρων του θερμοαπογυμνωτή.
Το 50% του παραγόμενου οργανικού αεροζόλ λόγω καύσης ελαιοκλάδων εξατμίστηκε στους 113οC για χρόνο παραμονής στο θερμοαπογυμνωτή 15.8 s. Σε θερμοκρασίες μεγαλύτερες των 150οC δεν παρατηρήθηκε επιπλέον εξάτμιση. Αυτό αποδόθηκε σε αντιδράσεις που πιθανόν να λαμβάνουν χώρα μέσα στον θερμοαπογυμνωτή σε τόσο υψηλές θερμοκρασίες. Η διόρθωση των μετρήσεων του θερμοαπογυμνωτή για απώλειες σωματιδίων επάνω στα τοιχώματα του είχε ως αποτέλεσμα την αύξηση του απομένωντος κλάσματος μάζας των οργανικών αεροζόλ στην σωματιδιακή φάση κατά μέσο όρο 15-20%. Προσαρμόζοντας τις μετρήσεις μας σε ένα δυναμικό μοντέλο για τον θερμοαπογυμνωτή είχε ως αποτέλεσμα μια ευρεία κατανομή πτητικότητας η οποία περιείχε οργανικό αεροζόλ με εύρος ενεργών συγκεντρώσεων κορεσμού από 10-2-102 μg m-3, ενθαλπία εξάτμισης 68±18 kJ mol-1 και συντελεστή διαμονής εύρους 0.01-0.14. Ο διαχωρισμός του παραγόμενου οργανικού αεροζόλ από την καύση ελαιοκλάδων σε αέρια και σωματιδική φάση είναι συνεπής με συγχρονες έρευνες που έχουν γίνει για διάφορους τύπους ξύλων που χρησιμοποιούνται ως κάυσιμο.
Καθορισμός πτητικότητας ατμοσφαιρικών οργανικών αεροζόλ έγινε επίσης για περιόδους που χαρακτηρίστηκαν ως περίοδοι καύσης ξύλων για οικιακή θέρμαση κατά τη διάρκεια εντατικών μετρήσεων στην Αθήνα το χειμώνα του 2013. Η εκτιμώμενη κατανομή πτητικότητας του ατμοσφαιρικού οργανικού αεροζόλ από το δυναμικό μοντέλο του θερμοαπογυμνωτή έδειξε ότι περίπου ένα ποσοστό 80% του παραγόμενου ατμοσφαιρικού οργανικού αεροζόλ κατά τις περιόδους κάυσης μπορεί να χαρακτηριστεί ως ημι-πτητικό ενώ το υπόλοιπο 20% έχει χαμηλή πτητικότητα. Ο διαχωρισμός του ατμοσφαιρικού οργανικού αεροζόλ κατά τις περιόδους καύσης σε αέρια και σωματιδιακή φάση εμφανίζει το ατμοσφαιρικό οργανικό αεροζόλ ως ελάχιστα πιο πτητικό από τα οργανικά αεροζόλ προερχόμενα από τις έρευνες με τους διάφορους τύπους ξύλων ως καύσιμα που πραγματοποιήθηκαν στις Η.Π.Α καθώς και από το παραγόμενο οργανικό αεροζόλ προερχόμενο από την καύση ελαιοκλάδων.
Οι κατανομές πτητικότητας καθώς και οι ενθαλπίες εξάτμισης που βρέθηκαν στην παρούσα εργασία μπορούν να χρησιμοποιηθούν ως δεδομένα εισαγωγής σε μοντέλα χημικής μεταφοράς προσομοιώνοντας τις εκπομπές, τη διασπορά και τη χημική εξέλιξη του οργανικού αεροζόλ προερχόμενο από καύση ξύλων.
|
13 |
Approche multi-échelle de la formation des particules secondaires / Multi-scale approach of the atmospheric new secondary particle formationBoulon, Julien 20 September 2011 (has links)
Dans le cadre de l’étude de l’évolution du système climatique terrestre, comprendre la composition gazeuse et particulaire de l’atmosphère est un enjeu majeur dans notre compréhension de la Terre et de son atmosphère, de son passé et de son évolution à venir. Les aérosols secondaires, i.e. formés par nucléation, représentent la source la plus importante en nombre des aérosols atmosphériques mais prédire où, quand et en quelle proportion ces aérosols sont formés dans l’atmosphère demeure à ce jour un exercice peu fiable. C’est dans ce contexte que cette étude s’est attachée à compléter nos connaissances des processus conduisant à la formation et à la croissance des particules atmosphériques secondaires. Des études réalisées à partir de mesures de terrain à long terme sur différents sites d’altitude en Europe ont permis de mettre en évidence différentes spéciations verticales de la nucléation démontrant que ce phénomène semble être jusqu’à deux fois plus fréquents à la frontière avec la basse troposphère libre que dans la couche limite planétaire. D’autre part ces mêmes études ont pu mettre en évidence que les mécanismes conduisant à la nucléation de nouvelles particules se différencient avec l’altitude impliquant un rôle plus important de la voie de formation induite par les ions ainsi que des composés organiques volatils. La contribution de cette dernière famille de composés à la nucléation a été également testée durant plusieurs campagnes d’expérimentation en systèmes réactifs ainsi qu’en chambre de simulation atmosphérique. Différents comportements et paramétrisation de la nucléation selon la nature chimique du composé parent ont pu être mis en évidence. Enfin, des études numériques réalisées à partir de données de terrain et d’expérimentation ont permis d’explorer, d’infirmer, de confirmer et de proposer différentes approches numériques afin de simuler les évènements de formation des aérosols secondaires. / As part of the study of the evolution of Earth’s climate system, understanding the composition of gaseous and particulate atmospheric matter is a major issue in our understanding of Earth and its atmosphere, its past and its evolution. The secondary aerosols, i.e. formed from nucleation, represents the largest source in a number concentration of atmospheric particles but predicting, where, when and in what proportion these aerosols are formed in the atmosphere are still challenging. It is in this context that this study focused to complete our understanding of the process leading to the formation and growth of atmospheric secondary particles. Investigations conducted from long term field measurements at different altitude sites across Europe have made possible to highlight different vertical speciation of the nucleation process and that this phenomenon seems to be occur two times more frequently at the interface between the planetary boundary layer and the free troposphere than in the low planetary boundary layer. In addition these studies have been able to show that different nucleation path are enhanced according to the altitude, implicant a greater role in the process of formation induced by ions and volatile organic compounds at altitude sites. The contribution of this last family of compounds to the nucleation has also been examinated through numerous experimenal campaigns using reactive system as well as smog chambers experiments. Different behaviors of the new particle formation and nucleation parametrization depending on the chemical nature of the parent compound were pointed out. Finally, numerical studies based on both field and smog chamber experiments were conducted to confirm or explore, different numerical approaches to simulate the new secondary aerosol formation.
|
14 |
Modélisation régionale de la composition chimique des aérosols prélevés au puy de Dôme (France) / Regional modeling of aerosol chemical composition at the puy de Dôme (France)Barbet, Christelle 02 July 2014 (has links)
Dans l’atmosphère, les particules d’aérosol jouent un rôle clef sur le climat et, par leur action sur la qualité de l’air, ont un impact néfaste sur la santé publique. Ces particules sont composées d’un mélange complexe d’espèces inorganiques et organiques formées à partir d’une grande variété de sources. Si les sources et mécanismes de production des espèces inorganiques sont désormais relativement bien connus, la caractérisation de la fraction organique des aérosols est beaucoup plus complexe : elle est constituée d’aérosols organiques primaires, émis directement dans l’atmosphère, et d’aérosols organiques secondaires (AOS) produits par la conversion gaz-particules de Composés Organiques Volatils (COV). Afin de comprendre les processus de formation des aérosols organiques, des modèles tridimensionnels de chimie-transport sont mis en œuvre. Or, à ce jour, les concentrations en aérosols organiques observées dans l’atmosphère demeurent sous-estimées par ces modèles. L’objectif de cette thèse est d’étudier les différents processus de transport, d’émissions et de transformations chimiques intervenant dans la formation des aérosols organiques à partir du modèle de chimie-transport WRF-Chem (Weather Research and Forecasting – Chemistry). Les sorties du modèle ont été comparées à des mesures effectuées à la station du puy de Dôme au cours de trois situations correspondant à trois saisons (automne, hiver, été) durant lesquelles des masses d’air de diverses origines ont été échantillonnées. Ces mesures documentent les conditions météorologiques, les propriétés des espèces chimiques gazeuses et des particules d’aérosol. En particulier, les mesures fournies par un spectromètre de masse (AMS : Aerosol Mass Spectrometer), fournissent de informations détaillées sur la variabilité temporelle de la composition chimique des aérosols et notamment sur leur concentration en masse. Les comparaisons modèle/mesures ont montré que les variations saisonnières de la composition chimique des aérosols observées au puy de Dôme étaient bien capturées par le modèle. Cependant, il s’est avéré que les concentrations en aérosols organiques étaient fortement sous-estimées par le modèle et plus particulièrement lors de la situation d’été. La confrontation des origines des masses d’air simulées par le modèle WRF-Chem à celles déterminées par le modèle lagrangien HYSPLIT reconnu pour l’étude de la dispersion atmosphérique et l’analyse des variations de la localisation du sommet du puy de Dôme vis-à-vis de la couche limite atmosphérique ont mis en évidence que le transport était correctement reproduit par le modèle. Les mesures de gaz disponibles au puy de Dôme ont mis en évidence une forte sous-estimation des concentrations en COV d’origine anthropique simulées par le modèle. Des tests de sensibilité ont été réalisés sur les émissions de ces espèces pour restituer les niveaux de concentration observés. Les émissions et les rendements en AOS des COV d’origine anthropique implémentés dans la paramétrisation VBS dédiée aux aérosols organiques dans le modèle ont pu être modifiés afin de reproduire les niveaux de concentration en aérosols organiques observés au puy de Dôme. / In the atmosphere, aerosol particles play a key role on both climate change and human health due to their effect on air quality. These particles are made of a complex mixture of organic and inorganic species emitted from several sources. Although the sources and the production mechanisms for inorganic species are now quite well understood, the characterization of the organic fraction is much more difficult to study. Indeed, particulate organic matter comes from primary organic aerosols directly emitted to the atmosphere and secondary organic aerosols (SOA), which are formed from gas-to-particle conversion of Volatile Organic Compounds (VOC). Three-dimensional chemistry-transport models are developed to better understand the organic aerosol formation processes. However, these models underestimate the organic aerosol concentrations. The aim of this thesis is to study the transport, the emissions and the chemical transformations involved in the formation of the organic aerosols using the WRF-Chem chemistry-transport model (Weather Research and Forecasting – Chemistry; Grell .et al., 2005). Model outputs are compared to measurements performed at the puy de Dôme station (France) during three campaigns. These measurements allow for characterizing various air masses and different seasonal behaviours (in autumn, winter and summer). The station hosts many probes for controlling meteorological parameters, gas phase species and aerosol properties. In particular, a mass spectrometer (AMS: Aerosol Mass Spectrometer) provides detailed time evolution of the chemical composition and mass concentration of the particulate matter. The comparisons between model results and observations have shown that seasonal variations of the aerosol chemical composition are captured by the WRF-Chem model. However, the organic aerosols mass concentrations are strongly underestimated and this underestimation is more important for the polluted summer case. The calculated origins of air masses are comparable to the results of the lagrangian model HYSPLIT currently used for atmospheric dispersion. The top of the puy de Dôme is observed to be either in the boundary layer or above depending on the season and these observations are correctly reproduced by the WRF-Chem model. As the anthropogenic VOC concentrations are underestimated by WFR-Chem model, sensitivity tests on the anthropogenic VOC emissions and SOA yields, used in the VBS secondary organic aerosols parameterisation, are done to better reproduce the organic aerosol concentrations observed at the puy de Dôme station.
|
15 |
CROSS PHOTOREACTION OF PYRUVIC AND GLYOXYLIC ACIDS IN MODEL AQUEOUS AEROSOLSXia, Shasha 01 January 2014 (has links)
Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. Aerosols from natural and anthropogenic sources can be primary organic aerosols (POA), which are directly emitted to the atmosphere, or secondary organic aerosols (SOA) that are formed from chemical reactions of gas-phase precursors. At variance with the well investigated formation of SOA from gas phase precursors, the chemistry of aqueous SOAs that contribute to the total SOA budget remains unknown. Field measurements have revealed that carboxylic, dicarboxylic and oxocarboxylic acids are abundant species present in SOAs. This thesis explores the fate of two such acids, pyruvic (PA) and glyoxylic (GA) acids surrogates of the oxocarboxylic acids in the atmosphere, in their cross reaction under solar irradiation and dark thermal aging. Mixtures of complex photoproducts are identified by ion chromatography (IC) with conductivity and electrospray (ESI) mass spectrometry (MS) detection, direct ESI-MS analysis in the negative ion mode, and nuclear magnetic resonance spectroscopy (NMR) analysis including one-dimensional (1H- and 13C-NMR) and two-dimensional techniques such as gradient correlation spectroscopy (gCOSY) and heteronuclear single quantum correlation (HSQC). A reaction mechanism for the cross reaction is provided based on all experimental observations.
|
16 |
Characterization of Atmospheric Aerosols in Kathmandu, New Hampshire, and Texas: Carbonaceous, Isotopic, and Water-soluble Organic CompositionJanuary 2011 (has links)
To improve the understanding of aerosol composition, sources, and spatial and temporal variations, atmospheric aerosols were characterized in three locations. Ambient aerosols were characterized using 24-hour samples collected from Kathmandu, Nepal (urban), New Hampshire (semi-rural) and Houston (urban). Results are reported in the main chapters. Chamber studies of secondary organic aerosols (SOA) formation from polycyclic aromatic hydrocarbons (PAHs) and the effects of in-situ SOA formation on atmospheric mercury oxidation are described in the appendices. Carbonaceous, ionic, and isotopic species in aerosols from Kathmandu identified local primary emissions, most likely vehicular exhaust as the most important aerosol sources. Carbonaceous aerosols collected in Kathmandu (24.5 μg C m -3 ) were much larger than those in New Hampshire (3.74 μg C m -3 ) during winter. Stable carbon isotope in aerosols of Kathmandu and New Hampshire were similar (Δδ 13 C ∠ 0.5[per thousand]) while stable nitrogen isotope were much lower in aerosols of Kathmandu (Δδ 15 N = 8.3[per thousand]). Aerosols in New Hampshire exhibited a large seasonal variation for carbonaceous aerosols, stable nitrogen isotope, and the aromatic fraction of water-soluble organic carbon (WSOC). Pure aliphatics (H-C) were the dominant functional group in WSOC. Results illustrate the importance of secondary aerosol sources throughout the year, with enhanced importance of primary sources during winter. Stable carbon isotope values suggest a consistent isotopic signature of carbonaceous aerosol sources, while the nitrogen isotope values indicate the variable nitrogenous sources and the strong influence of meteorological parameters (temperature and relative humidity) on nitrogen isotope fractionation. Characteristics of methoxyphenols (lignin macropolymers) in the ambient aerosols are reported for the first time using CuO oxidation method. The study illustrates the use of lignin oxidation products (LOPs) in aerosols as potential tracers of primary biological aerosol particles (PBAP). The methoxyphenols identified soil organic matter and altered woody angiosperms, with minor influence from soft tissues and gymnosperms as the important PBAP sources in mainly coarse particles in Houston atmosphere. Solvent-extracted methoxyphenols (lignin monomers) and anhydrosugars (levoglucosan, mannosan, and galactosan) in aerosols were either absent or very small, suggesting very limited biomass burning influence with any trace-level presence originating from long-range transport.
|
17 |
Laboratory Aerosol Kinetics Studies of the Hydrolysis Reaction of N2O5 Using a Flow Tube Coupled to a New Chemical Ionization Mass SpectrometerEscorcia, Egda Nadyr 26 July 2010 (has links)
The hydrolysis reaction of N2O5 was investigated at room temperature on two aerosol types using a flow tube coupled to a newly built Chemical Ionization Mass Spectrometer (CIMS). This instrument was fully constructed and optimized during this research period, as well as employed to conduct one of two aerosol studies. The first examined the reaction on ammonium bisulphate aerosols using a new ion detection method, I-•N2O5 cluster formation, which proved to be highly advantageous over the common approach of dissociative charge transfer, yielding a sensitivity for I-•N2O5 of 0.024 Hz/pptv. The uptake coefficients at 30% and 50% relative humidity were 0.0067 ± 0.0002 and 0.0120 ±0.0014, respectively. The second study was performed using a different CIMS previously assembled in the laboratory. In this case, the reaction was investigated on secondary organic aerosols produced through the ozonolysis of α-pinene, and resulted in an uptake coefficient of 8.5x10-5 ± 7x10-6 at 0% relative humidity.
|
18 |
Laboratory Aerosol Kinetics Studies of the Hydrolysis Reaction of N2O5 Using a Flow Tube Coupled to a New Chemical Ionization Mass SpectrometerEscorcia, Egda Nadyr 26 July 2010 (has links)
The hydrolysis reaction of N2O5 was investigated at room temperature on two aerosol types using a flow tube coupled to a newly built Chemical Ionization Mass Spectrometer (CIMS). This instrument was fully constructed and optimized during this research period, as well as employed to conduct one of two aerosol studies. The first examined the reaction on ammonium bisulphate aerosols using a new ion detection method, I-•N2O5 cluster formation, which proved to be highly advantageous over the common approach of dissociative charge transfer, yielding a sensitivity for I-•N2O5 of 0.024 Hz/pptv. The uptake coefficients at 30% and 50% relative humidity were 0.0067 ± 0.0002 and 0.0120 ±0.0014, respectively. The second study was performed using a different CIMS previously assembled in the laboratory. In this case, the reaction was investigated on secondary organic aerosols produced through the ozonolysis of α-pinene, and resulted in an uptake coefficient of 8.5x10-5 ± 7x10-6 at 0% relative humidity.
|
19 |
Characterisation of the chemical properties and behaviour of aerosols in the urban environmentYoung, Dominique Emma January 2014 (has links)
Atmospheric aerosols have adverse effects on human health, air quality, and visibility and frequently result in severe pollution events, particularly in urban areas. However, the sources of aerosols and the processes governing their behaviour in the atmosphere, including those which lead to high concentrations, are not well understood thus limit our ability to accurately assess and forecast air quality. Presented here are the first long-term chemical composition measurements from an urban environment using an Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS). Organic aerosols (OA) were observed to account for a significant fraction (44%) of the total non-refractory submicron mass during 2012 at the urban background site in North Kensington, London, followed by nitrate (28%), sulphate (14%), ammonium (13%), and chloride (1%). The sources and components of OA were determined using Positive Matrix Factorisation (PMF) and attributed as hydrocarbon-like OA (HOA), cooking OA (COA), solid fuel OA (SFOA), type 1 oxygenated OA (OOA1), and type 2 oxygenated OA (OOA2), where HOA, COA, and SFOA were observed to be of equal importance across the year. The concentration of secondary OA increased during the summer yet the extent of oxidation, as defined by the oxygen content, showed no variability during the year. The main factors governing the diurnal, monthly, and seasonal trends observed in all organic and inorganic species were meteorological conditions, specific nature of the sources, and availability of precursors. Regional and transboundary pollution influenced total aerosol concentrations and high concentration events were observed to be governed by different factors depending on season. High-Resolution ToF-AMS measurements were used to further probe OA behaviour, where two SFOA factors were derived from PMF analysis in winter, which likely represent differences in burn conditions. In the summer an OA factor was identified, likely of primary origin, which was observed to be strongly associated with organic nitrates and anthropogenic emissions. This work uses instruments and techniques that have not previously been used in this way in an urban environment, where the results further the understanding of the chemical components of urban aerosols. Aerosol sources are likely to change in the future with increases in solid fuel burning as vehicular emissions decrease, with significant implications on air quality and health. Thus it is important to understand aerosol sources and behaviour in order to develop effective pollution abatement strategies.
|
20 |
Sources des aérosols en milieu urbain : cas de la ville de Paris / Aerosol composition and source apportionment in urban areas : case of Paris City Metropolitan AreaAbidi, Ehgere 18 December 2013 (has links)
La connaissance des sources des particules dans le milieu ambiant est devenue une préoccupation majeure depuis que leur impact sur la santé est avéré. Ainsi, une connaissance détaillée de la nature des fines particules (PM) et de leurs sources, devient nécessaire pour quantifier l’importance des émissions sur la masse totale en PM. Dans ce contexte, l’objectif de ce travail est de mieux connaître la composition chimique et les sources de l’aérosol organique. Les travaux réalisés s’intègrent dans le cadre du projet MEGAPOLI. Deux campagnes ont été conduites en région parisienne en été et en hiver sur deux sites urbain (LHVP) et suburbain (SIRTA). Une caractérisation chimique des PM2.5 a été effectuée. La contribution des sources primaires des PM2.5 fut calculée par modélisation CMB et les résultats furent par la suite intercomparés à ceux obtenus par les approches AMS/PMF et radiocarbone 14C. L’analyse CMB montra qu’en hiver, les principales sources contributrices sont les sources primaires, dominées par les émissions véhiculaires et la combustion de la biomasse. En été, les concentrations de PM2.5 sont gouvernées par les espèces secondaires. D’après l’approche basée sur les marqueurs organiques secondaires, le SOA biogénique traditionnel contribue faiblement à la masse de PM2.5. La comparaison des deux approches CMB et AMS-PMF a montré qu’en hiver, les différences ont été observées pour les deux sources majeures d’aérosol organique : combustion de biomasse et source véhiculaire. En été, les différences obtenues sont moins marquées. Les comparaisons des résultats de modélisation CMB avec les mesures de 14C, approche totalement indépendante, montrèrent un bon accord. / Knowing the sources of airborne fine particulate matter in ambient area became a major concern since their adverse effects on health were. Then, knowing in detail the nature and the sources of the fine particles (PM) is necessary to quantify the relative importance of the emissions on the total PM concentration. In this context, the main objective is to better know the chemical composition and the sources of the organic aerosol. This works is integrated within the MEGAPOLI framework. Two intensive campaigns were led in Paris region in summer and in winter at an urban (LHVP) and a suburban (SIRTA) sites. During the both sampling campaigns, a complete PM2.5 chemical characterization was made. The contributions of the PM2.5 primary sources were calculated by CMB modelling and the results were intercompared with those obtained by the AMS/PMF and the radiocarbon 14C approaches. The CMB analysis showed that in winter, the main contributing sources were primary, dominated by vehicular exhaust and biomass burning. In summer, the PM2.5 ambient concentrations were mainly governed by secondary species. According to the approach based on the secondary organic markers, the traditional biogenic SOA contribution to the PM2.5 mass was. The both CMB and AMS-PMF approaches comparison showed that in winter, the differences were particularly observed for both major organic aerosol sources: biomass burning and vehicular exhaust. In summer, the differences between both approaches were less visible. The comparisons of the CMB modeling approach results with the radiocarbon 14C measurements, a totally independent approach, show a very good agreement between both approaches
|
Page generated in 0.0574 seconds