• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 23
  • 20
  • 15
  • 12
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 262
  • 262
  • 59
  • 43
  • 34
  • 31
  • 31
  • 30
  • 29
  • 26
  • 25
  • 25
  • 22
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Top-down Fabrication Technologies for High Quality III-V Nanostructures

Naureen, Shagufta January 2013 (has links)
III-V nanostructures have attracted substantial research effort due to their interesting physical properties and their applications in new generation of ultrafast and high efficiency nanoscale electronic and photonic components. The advances in nanofabrication methods including growth/synthesis have opened up new possibilities of realizing one dimensional (1D) nanostructures as building blocks of future nanoscale devices. For processing of semiconductor nanostructure devices, simplicity, cost effectiveness, and device efficiency are key factors. A number of methods are being pursued to fabricate high quality III-V nanopillar/nanowires, quantum dots and nano disks. Further, high optical quality nanostructures in these materials together with precise control of shapes, sizes and array geometries make them attractive for a wide range of optoelectronic/photonic devices. This thesis work is focused on top-down approaches for fabrication of high optical quality nanostructures in III-V materials. Dense and uniform arrays of nanopillars are fabricated by dry etching using self-assembly of colloidal SiO2 particles for masking. The physico-chemistry of etching and the effect of etch-mask parameters are investigated to control the shape, aspect ratios and spatial coverage of the nanopillar arrays. The optimization of etch parameters and the utilization of erosion of etch masks is evaluated to obtain desired pillar shapes from cylindrical to conical. Using this fabrication method, high quality nanopillar arrays were realized in several InP-based and GaAs-based structures, including quantum wells and multilayer heterostructures. Optical properties of these pillars are investigated using different optical spectroscopic techniques. These nanopillars, single and in arrays, show excellent photoluminescence (PL) at room temperature and the measured PL line-widths are comparable to the as-grown wafer, indicating the high quality of the fabricated nanostructures. The substrate-free InP nanopillars have carrier life times similar to reference epitaxial layers, yet an another indicator of high material quality. InGaAs layer, beneath the pillars is shown to provide several useful functions. It effectively blocks the PL from the InP substrate, serves as a sacrificial layer for generation of free pillars, and as a “detector” in cathodoluminescence (CL) measurements. Diffusion lengths independently determined by time resolved photoluminescence (TRPL) and CL measurements are consistent, and carrier feeding to low bandgap InGaAs layer is evidenced by CL data. Total reflectivity measurements show that nanopillar arrays provide broadband antireflection making them good candidates for photovoltaic applications.  A novel post etch, sulfur-oleylamine (S-OA) based chemical process is developed to etch III-V materials with monolayer precision, in an inverse epitaxial manner along with simultaneous surface passivation. The process is applied to push the limits of top-down fabrication and InP-based high optical quality nanowires with aspect ratios more than 50, and nanostructures with new topologies (nanowire meshes and in-plane wires) are demonstrated.  The optimized process technique is used to fabricate nanopillars in InP-based multilayers (InP/InGaAsP/InP and InP/InGaAs/InP). Such multilayer nanopillars are not only attractive for broad-band absorption in solar cells, but are also ideal to generate high optical quality nanodisks of these materials. Finally, the utility of a soft stamping technique to transfer free nanopillars/wires and nanodisks onto Si substrate is demonstrated. These nanostructures transferred onto Si with controlled densities, from low to high, could provide a new route for material integration on Si. / <p>QC 20130205</p>
252

Topics in the theory of inhomogeneous media composite superconductors and dielectrics /

Kim, Kwangmoo, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 166-181).
253

Cellules solaires silicium ultra-minces nanostructurées : conception électro-optique et développement technologique

Champory, Romain 13 December 2016 (has links)
Les cellules photovoltaïques en couches minces de silicium cristallin sont des candidates prometteuses pour les développements futurs de l’industrie photovoltaïque, au travers des réductions de coûts attendues et des applications dans les modules souples. Pour devenir compétitive, la filière des couches minces de silicium monocristallin doit se différencier des filières classiques. Elle est donc généralement basée sur l’épitaxie de couches de haute qualité puis sur le transfert de ces couches vers un support mécanique pour terminer la fabrication de la cellule et réutiliser le premier substrat de croissance. Le but de cette thèse est de trouver les associations technologiques qui permettent de réaliser des cellules photovoltaïques en couches minces et ultra-minces de silicium monocristallin à haut-rendement. Les travaux présentés s’articulent selon deux axes principaux : le développement et la maîtrise de procédés technologiques pour la fabrication de cellules solaires en couches minces et l’optimisation des architectures de cellules minces haut-rendement.Dans ce cadre de travail, les développements des techniques de fabrication ont d’abord concerné la mise au point de procédés de transfert de couches minces : une technologie basse température de soudage laser et un soudage par recuit rapide haute température. Afin d’augmenter le rendement de conversion, nous avons développé des structurations de surface utilisant les concepts de la nano-photonique pour améliorer le pouvoir absorbant des couches minces. Avec une lithographie interférentielle à 266 nm et des gravures sèches par RIE et humides par TMAH (Tetramethylammonium Hydroxide), nous pouvons réaliser des cristaux photoniques performants sur des couches épitaxiées de silicium. Finalement, nous avons pu concevoir des architectures optimisées de cellules solaires minces à homo-jonction de silicium et à hétéro-jonction silicium amorphe / silicium cristallin plus performantes électriquement, grâce aux outils de simulation électro-optique. Notre approche théorique nous a aussi conduits à expliciter les phénomènes électriques propres aux couches minces, et à démontrer tout le potentiel des cellules photovoltaïques minces en silicium monocristallin. / Thin-film crystalline silicon solar cells are promising candidates for future developments in the photovoltaic industry, through expected costs reductions and applications in flexible modules. To be competitive, thin-film monocrystalline silicon solar cell technology must differentiate itself from conventional ones. It is generally based on the epitaxy of high-quality layers and then on the transfer of these layers onto a mechanical support to complete the manufacture of the cell and reuse the growth substrate. The aim of this thesis is to find the technological associations that make it possible to realize high-efficiency photovoltaic cells from thin and ultra-thin layers of monocrystalline silicon. The work presented focuses on two main axes: the development and control of technological processes for the fabrication of thin-film solar cells and the optimization of high-performance thin-cell architectures.In this framework, the development of manufacturing techniques began with the development of thin-film transfer processes: low temperature laser welding technology and high temperature fast annealing welding technology. In order to increase conversion efficiency, we have developed surface patterns using the nano-photonics concepts to improve the absorbency of thin films. With an interferential lithography at 266 nm and dry etching by RIE and wet etching by TMAH (Tetramethylammonium Hydroxide), we can produce high-performance photonic crystals on epitaxial layers of silicon. Finally, we were able to design optimized architectures of thin solar cells with homo-junction of silicon and hetero-junction amorphous silicon / crystalline silicon more efficient electrically, thanks to electro-optical simulation tools. Our theoretical approach has also led us to explain the electrical phenomena specific to thin films, and to demonstrate the full potential of thin photovoltaic cells made of monocrystalline silicon.
254

Study of Light-Matter Interaction at the Nanoscale with Quantum Dots in Photonic and Plasmonic Metamaterials

Indukuri, S R K Chaitanya January 2016 (has links) (PDF)
Optical properties of nanoscopic materials have been intensively pursued over last couple of decades due to their tunable optical properties. Recent interests in this field have been mainly focused on the preparation of ordered arrays of nano materials and study of their optical properties. These interests have been motivated by the applications of such systems for nano photonic devices. Theoretical predictions from such systems reveal complex absorption and emission properties, different from individual ones mainly because of energy transfer between them. These properties can be controlled further by preparing hybrid arrays of nanostructures, including nano crystals of different types. Hybrid arrays with semiconductor quantum dots and metallic nanoparticles are an example of such system. Optical properties of such a system can be tuned by controlling the interaction between excitons and plasmons. This thesis presents the experimental studies on optical properties of polymer capped nanoparticles, quantum dot arrays and hybrid arrays with semi conducting quantum dot and metal nanoparticles. A brief summary of the experimental methods and results have been highlighted below. In this thesis, we study the controlling decay dynamics of CdSe quantum dots by 2D photonic-plasmonic and metamaterial templates. In Chapter 1 we provide a detailed background on the theoretical methods of Light-Matter interaction at nano scale. We also have given the detailed information on both weak and strong coupling region in the light-matter interaction. This chapter includes the discussion controlling light-matter interaction with both photonic crystals and plasmonic materials with some appropriate examples from the literature. In this chapter we have also explained the relevance of our work in this area and organization of the chapters and there importance has given. In chapter 2 we provide details about various experimental methods used in this thesis. A brief introduction is given on the materials used, their synthesis and the preparation of different type of self assembled plasmonic-photonic templates. This chapter starts with an explanation of the materials used along with the justification; moves on to the preparation of different 2D wire metamaterial. The characterization techniques for these different types of templates like spectroscopic ellipsometer, atomic force spectroscopy, scanning electron microscopy and transmission electron microscopy are discussed. We also discussed optical spectroscopic techniques like confocal optical microscopy and near field optical microscopy techniques. The first two chapters form the basis of all the experiments discussed in the forth coming chapters. In chapter 3 Finite difference time domain (FDTD) simulations were performed on two different plasmonic sub wavelength photonic templates embedded with CdSe quantum dots. Tunable loading of these templates with plasmonic nano antenna allowed control of the emission from the embedded quantum dots. We discuss how large loading of nano antenna can effectively control the optical density of states for the quantum dots leading to enhancement of their radiative decay rates as observed in experiments. On the other hand, at low level of loading, while FDTD fails to capture the observed enhancement of decay rates in experiment, an alternative mechanism is suggested to exist in such cases. Thus, subtle interplay of multiple mechanisms engineered by appropriate placement and loading of plasmonic nano antenna in such templates is demonstrated as an effective method to control optical density of states and hence spontaneous emission of embedded quantum dots. In Chapter 4 we report results of controlled tuning of the local density of states (LDOS) in versatile, flexible and hierarchical self assembled plasmonic templates. Using 5 nm diameter gold (Au) spherical nano antenna within a polymer template randomly dispersed with quantum dots, we show how the photo-luminescence intensity and lifetime anisotropy of these dots can be significantly enhanced through LDOS tuning. Finite difference time domain simulations corroborate the experimental observations and extend the regime of enhancement to a wider range of geometric and spectral parameters bringing out the versatility of these functional plasmonic templates. It is also demonstrated how the templates act as plasmonic resonators for effectively engineer giant enhancement of the scattering efficiency of these nano antenna embedded in the templates. Our work provides an alternative method to achieve spontaneous emission intensity and anisotropy enhancement with true nanoscale plasmon resonators. In chapter 5 we reported enhancement optical properties of quantum dot monolayers on top of the functional, flexible and hierarchical self-assembled plasmonic template using extremely small gold (Au) nanoparticles of diameter 5 nm. We reported how the LODS changes with different polarizations for CdSe quantum dot present on top of the template. We observed the enhanced radiative LDOS from the nano antenna filled pores indicating plasmonic enhanced emission from these templates. The difference in spectral and spatial profile of LDOS and Pur-cells with polarization of quantum dot emission results in the anisotropic emission in these templates. In chapter 6 we reported the emergence of strong coupling between quantum emitters and 2D hyperbolic metamaterials (HMM). We studied both spectral dependence and effect of filling fraction of the HMM on strong interaction. We also show the controlling of the transition from weak coupling region to strong coupling region by changing the distance between QD monolayer and HMM. By using FDTD simulation we are able to calculate both spectral function S(!) and coupling efficiency. In chapter 7 as a conclusion we concluded the work done in this thesis. We also indicated the future directions in this field and possible application.
255

Photonic Crystal Ring Resonators for Optical Networking and Sensing Applications

Tupakula, Sreenivasulu January 2016 (has links) (PDF)
Photonic bandgap structures have provided promising platform for miniaturization of modern integrated optical devices. In this thesis, a photonic crystal based ring resonator (PCRR) is proposed and optimized to exhibit high quality factor. Also, force sensing application of the optimized PC ring resonator and Dense Wavelength Division Multiplexing (DWDM) application of the PCRR are discussed. Finally fabrication and characterization of the PCRR is presented. A photonic crystal ring resonator is designed in a hexagonal lattice of air holes on a silicon slab. A novel approach is used to optimize PCRR to achieve high quality factor. The numerical analysis of the optimized photonic crystal ring resonator is presented in detail. For all electromagnetic computations Finite Difference Time Domain (FDTD) method is used. The improvement in Q factor is explained by using the physical phenomenon, multipole cancellation of the radiation held of the PCRR cavity. The corresponding mathematical frame work has been included. The forced cancellation of lower order radiation components are verified by plotting far held radiation pattern of the PCRR cavity. Then, the force sensing application of the optimized PCRR is presented. A high sensitive force sensor based on photonic crystal ring resonator integrated with silicon micro cantilever is presented. The design and modelling of the device, including the mechanics of the cantilever, FEM (Finite Element Method) analysis of the cantilever beam with PC and without PC integrated on it. The force sensing characteristics are presented for forces in the range of 0 to 1 N. For forces which are in the range of few tens of N, a force sensor with bilayer cantilever is considered. PC ring resonator on the bilayer of 220nm thick silicon and 600nm thick SiO2 plays the role of sensing element. Force sensing characteristics of the bilayer cantilever for forces in the range of 0 to 10 N are presented. Fabrication and characterization of PCRR is also carried out. This experimental work is done mainly to understand practical issues in study of photonic crystal ring resonators. It is proved that Q factor of PCRR can be signi cantly improved by varying the PCRR parameters by the proposed method. Dense Wavelength Division Multiplexing (DWDM) application of PC ring resonator is included. A novel 4-channel PC based demultiplexer is proposed and optimized in order to tolerate the fabrication errors and exhibit optimal cross talk, coupling efficiency between resonator and various channels of the device. Since the intention of this design is, to achieve the device performance that is independent of the unavoidable fabrication errors, the tolerance studies are made on the performance of the device towards the fabrication errors in the dimension of various related parameters. In conclusion we summarize major results, applications including computations and practical measurements of this work and suggest future work that may be carried out later.
256

Matériau composite de silice dopée par des nanoparticules magnétiques de ferrite de cobalt : influence de la structuration 3D sur le comportement spectral de l'effet Faraday / Composite material of Silica doped by Cobalt Ferrite magnetic nanoparticles : influence of 3D structure on the spectral behavior of the Faraday effect

Abou Diwan, Elie 24 October 2014 (has links)
Le laboratoire LT2C utilise depuis quelques années un procédé sol-gel basse température pour développer un matériau magnéto-optique composite parfaitement compatible avec les technologies d’optique intégrée sur verre. Néanmoins, la qualité actuelle du matériau ne permet pas son utilisation dans l’intégration des composants à effets non-réciproques. Dans le but d’exalter les effets magnéto-optiques et le facteur de mérite du matériau, le laboratoire LT2C s’est orienté vers sa structuration 3D en adaptant une approche basée sur les opales. Cette dernière consiste à fabriquer des opales directes à partir de l’auto-arrangement de microbilles de polystyrène sur un substrat de verre. Les opales sont ensuite infiltrées par une solution sol-gel dopée par des nanoparticules magnétiques de ferrite de cobalt. Après traitement thermique, le polystyrène est dissout dans l’acétate d’éthyle pour obtenir une structure 3D formée de trous d’air dans une matrice de silice dopée. Dans ce cadre, l’objectif des travaux de cette thèse consiste tout d’abord à optimiser au mieux la procédure d’élaboration des opales afin d’améliorer leur qualité structurelle et magnéto-optique. Ensuite, il consiste à réaliser une étude systématique des effets magnéto-optiques dans ces structures 3D pour investiguer le comportement spectral de l’effet Faraday, et ainsi qualifier les modifications apportées au facteur de mérite. Une analyse des images MEB et une caractérisation optique montrent que notre méthode d’élaboration conduit à la fabrication d’opales de bonne qualité structurelle et optique. Les mesures de rotation et d'ellipticité Faraday en fonction du champ magnétique appliqué présentent des cycles d’hystérésis, et mettent en évidence un effet non-réciproque, ce qui surligne le caractère magnéto-optique des opales inverses dopées. Une étude spectrale systématique des effets magnéto-optiques dans ces structures 3D montre deux pics et une atténuation de rotation et d’ellipticité Faraday, respectivement en bords et au centre de la BIP. Cependant, ces modifications spectrales significatives ne conduisent pas à une exaltation de la valeur du facteur de mérite. Cela est principalement dû aux défauts structurels qui diminuent le niveau de transmission de l’opale inverse dopée par rapport la couche de référence / LT2C laboratory uses since recent years a low temperature sol-gel process to develop a magneto-optical composite material that is perfectly compatible with glass integrated optics. However, due to an actual low figure of merit, this material cannot be embedded on integrated non-reciprocal devices. In order to exalt the magneto-optical effects and figure of merit, the LT2C laboratory adopted a process based on opals to 3D structure the material. The selected process consists in elaborating direct opals by self-assembling monodisperse polystyrene microspheres on glass substrate. Those opals are then impregnated with a homogeneous solution of sol-gel silica precursors doped with cobalt ferrite nanoparticles. Resulting samples are later oven dried for 1 hour at 90°C. Finally, polystyrene spheres are dissolved in ethyl acetate to obtain a 3D structure formed by air voids in doped silica matrix. In this context, the objective of this thesis is to optimize the fabrication process of opals in order to improve their structural and magneto-optical quality. Furthermore, it consists in making a systematic study of the magneto-optical effect in these structures in order to investigate the spectral behavior of the Faraday effect and thus quantify the figure of merit. Analysis of SEM images and optical characterization prove that our elaboration process leads to the fabrication of opals with good structural and optical quality. Measurements of Faraday rotation and ellipticity as a function of applied magnetic field show hysteresis loops with an unambiguous non-reciprocal behavior. These observations highlight the magneto-photonic character of the doped inverse opals. A systematic spectral study of the magneto-optical effect in these 3D structures displays two peaks and an attenuation of Faraday rotation and ellipticity, respectively at the edges and the center of the photonic band gap. However, these significant spectral modifications do not increase the value of figure of merit. This ascertainment is primarily due to structural defects that lower the transmission magnitude of the doped inverse opals in comparison to a magneto-optical reference monolayer
257

Coupling techniques between dielectric waveguides and planar photonic crystals

Sanchis Kilders, Pablo 06 May 2008 (has links)
El objetivo de esta tesis es la investigación de estructuras y técnicas de acoplo para minimizar las pérdidas de acoplo entre guías dieléctricas y cristales fotónicos planares. En primer lugar se ha estudiado el modelado del acoplo entre guías dieléctricas y guías en cristal fotónico así como la influencia de los principales parámetros del cristal en la eficiencia de acoplo. Se han obtenido expresiones cerradas para las matrices de reflexión y transmisión que caracterizan totalmente el scattering que ocurre en el interfaz formado entre una guía dieléctrica y una guía en cristal fotónico. A continuación y con el fin de mejorar la eficiencia de acoplo desde guías dieléctrica de anchura arbitraria, se ha propuesto como contribución original una técnica de acoplo basada en la introducción de defectos puntuales en el interior de una estructura de acoplo tipo cuña realizada en el cristal fotónico. Diferentes soluciones, incluida los algoritmos genéticos, han sido propuestas con el objetivo de conseguir el diseño óptimo de la configuración de defectos. Una vez conseguido un acoplo eficiente desde guías dieléctricas a guías en cristal fotónico, se ha investigado el acoplo en guías de cavidades acopladas. Como contribución original se ha propuesto una técnica de acoplo basada en la variación gradual del radio de los defectos situados entre cavidades adyacentes. Además, se ha realizado un riguroso análisis en el dominio del tiempo y la frecuencia de la propagación de pulsos en guías acopladas de longitud finita. Dicho estudio ha tenido como objetivo la caracterización de la influencia de la eficiencia del acoplo en los parámetros del pulso. Finalmente, se han presentado los procesos de fabricación y resultados experimentales de las estructuras de acoplo propuestas. / Sanchis Kilders, P. (2005). Coupling techniques between dielectric waveguides and planar photonic crystals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1854 / Palancia
258

Molding the flow of light in rolled-up microtubular cavities and topological photonic lattices

Saei Ghareh Naz, Ehsan 03 May 2021 (has links)
The presence of photonic band gap in an arbitrarily shaped photonic structure, particularly structures that are fabricated by exploiting rolled-up nanotechnology, can be understood from the density of optical states. In this thesis, the density of optical states and the local density of optical states in finite-sized photonic structures are calculated using the finite difference time domain method together with a parallelized message passing interface. With this approach, a software package suitable for high-performance computing on multi-platform was published under GNU GPL license. When light is guided to propagate along a rolled-up thin film, whispering gallery mode resonances can be formed in a microtubular structure. Dynamic probing and tuning via a plasmonic nanoparticle-coated glass tip are investigated to demonstrate the transition from dielectric-dielectric to dielectric-plasmonic coupling in the tubular microcavity. The competition of these two coupling mechanisms allow the tuning of the optical cavity modes towards lower and then higher energies in a single coupling system. Moreover, three dimensionally confined higher order axial modes can be selectively coupled and tuned by the glass tip due to their unique spatial distribution of the optical field along the tube axis. In addition, the interaction between sharp optical cavity modes and broad plasmonic modes supported by silver nanoparticles leads to the occurrence of Fano resonance. In particular, Fano resonances occurring at higher-order axial modes has been observed as well. The experimental results are supported by numerical simulations based on the finite difference time domain method. In photonic lattice structures, light propagation behavior can be influenced and defined by the photonic band structure. By designing the unit cell with glide mirror symmetry, topologically protected edge states operating in the visible spectral range have been proposed in two dimensional photonic crystals which can be made of feasible materials. Topological phenomena such as unidirectional waveguiding and/or effective zero refractive index are presented. In addition, a scheme to study topological phase transition in a single photonic crystal device is proposed and studied via unevenly stretching photonic lattice. Moreover, a new method is explored to distinguish the topological phase from the bulk modes. The research presented in this thesis concerns molding the flow of light in specially designed photonic devices for various potential applications. The software package can be used to design and investigate finite-sized photonic structures with an arbitrary shape, which is much faster in terms of computation than other reported techniques and software packages. The rolled-up microcavities can be employed to trap and store light in the way of whispering gallery mode resonances, and the resonant light can be tuned and modulated by a plasmonic nanoparticles-coated glass tip. This research is particularly interesting for optical signal processing, slowing light via Fano resonances, and high sensitive sensing. In addition, the topological photonic crystal design and examination scheme presented in this thesis provide a simplified yet more efficient way to obtain non-trivial topological phase from a tunable photonic crystal that can be verified not only by edge modes but also by bulk modes.:Bibliographic record 1 Abstract 1 LIST OF ABBREVIATIONS and Symbols 3 1 Introduction 9 1.1 Introduction and Motivation 9 1.2 Objectives 11 1.3 Organization of the thesis 12 2 Density of optical states in rolled-up photonic crystals and quasi crystals 15 2.1 Introduction 15 2.1.1 background 17 2.1.2 Infinitely extended ideal photonic crystal 17 2.2 Finite-sized photonic crystal, photonic quasicrystal, and arbitrary photonics structures 20 2.2.1 Numerical algorithm 25 2.2.2 Rolled-up photonic crystals and quasi crystals 30 2.3 Software package 33 2.3.1 Computational performance 33 2.3.2 FPS User interface 35 2.3.3 Detailed tutorial 37 2.3.4 Alternative rolled-up photonic crystals 47 2.3.5 Beyond 3D photonic crystals. 48 2.4 Conclusion 49 3 Rolled-up microesonator 51 3.1 Introduction 51 3.2 Rolled-up microresonators 52 4 Tip-assisted photon-plasmon coupling in three-dimensionally confined microtube cavities 57 4.1 Introduction 57 4.2 Tube and plasmonic particle preparation and characterization 60 4.3 Results and discussion 62 4.4 Axial mode tuning 64 4.5 Fano resonance 65 4.5.1 Background 65 4.5.2 Fano resonance in the tip assisted coupling setup 68 4.6 Conclusion 71 5 Topological photonics 73 5.1 Introduction and motivation 73 5.2 Topological phase transition point 77 5.2.1 Fundamental phase transition point 77 5.2.2 Zero refractive index material 79 5.3 Non-trivial topology in realistic materials 80 6 Topological phase transition in stretchable photonic crystals 85 6.1 Introduction and motivation 85 6.2 SSH model 88 6.3 Photonic crystal 91 6.4 Band structure and end modes of the photonic crystal 99 6.5 Conclusion 101 7 Summary and outlook 103 7.1 Summary 103 7.2 Outlook 104 Bibliography 111 List of figures 127 Publications 133 Acknowledgments 136 Selbständigkeitserklärung 137 Curriculum Vitae 138
259

Simulation of III-V Nanowires for Infrared Photodetection

Azizur-Rahman, Khalifa M. January 2016 (has links)
The absorptance in vertical nanowire (nw) arrays is typically dominated by three optical phenomena: radial mode resonances, near-field evanescent wave coupling, and Fabry–Perot (F-P) mode resonances. The contribution of these optical phenomena to GaAs, InP and InAs nw absorptance was simulated using the finite element method. The study compared the absorptance between finite and semi-infinite nws with varying geometrical parameters, including the nw diameter (D), array period (P), and nw length (L). Simulation results showed that the resonance peak wavelength of the HE1n radial modes linearly red-shifted with increasing D. The absorptance and spectral width of the resonance peaks increased as L increased, with an absorptance plateau for very long nws that depended on D and P. Near-field coupling between neighbouring nanowires (nws) was observed to increase with increasing diameter to period ratio (D/P). The effect of F-P modes was more pronounced for shorter nws and weakly coupled light. Based on the collective observation of the correlation between nw geometry and optical phenomena in GaAs, InP, and InAs nw arrays, a periodic array of vertical InSb nws was designed for photodetectors in the low-atmospheric absorption window (λ = 3-5 μm) within the mid-wavelength infrared (MWIR) spectrum (λ = 3-8 μm). Simulations, using the finite element method, were implemented to optimize the nw array geometrical parameters (D, P, and L) for high optical absorptance (~0.8), which exceeded that of a thin film of equal thickness. The results further showed that the HE1n resonance wavelengths in InSb nw arrays can be tuned by adjusting D and P, thus enabling multispectral absorption throughout the near infrared (NIR) to MWIR region. Optical absorptance was investigated for a practical photodetector consisting of a vertical InSb nw array embedded in bisbenzocyclobutene (BCB) as a support layer for an ultrathin Ni contact layer. Polarization sensitivity of the photodetector was examined. Lastly, how light flux enters the nw top and sidewalls on HE11 resonance was investigated. / Dissertation / Doctor of Philosophy (PhD)
260

EM Characterization of Magnetic Photonic / Degenerate Band Edge Crystals and Related Antenna Realizations

Mumcu, Gokhan 01 October 2008 (has links)
No description available.

Page generated in 0.1674 seconds