• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 381
  • 65
  • 46
  • 45
  • 23
  • 15
  • 13
  • 11
  • 10
  • 7
  • 3
  • Tagged with
  • 755
  • 315
  • 226
  • 156
  • 143
  • 139
  • 103
  • 78
  • 77
  • 76
  • 74
  • 70
  • 69
  • 68
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Environmental stability study of holographic solar spectrum splitting materials

Chrysler, Benjamin D., Ayala Pelaez, Silvana, Wu, Yuechen, Vorndran, Shelby D., Kostuk, Raymond K. 23 September 2016 (has links)
In this study the impact of outdoor temperature variations and solar illumination exposure on spectral filter material and holographic optical elements is examined. Although holographic components have been shown to be useful for solar spectrum splitting designs, relatively little quantitative data exist to demonstrate the extent to which these materials can withstand outdoor conditions. As researchers seek to investigate practical spectrum splitting designs, the environmental stability of holographic materials should be considered as an important factor. In the experiment presented, two holographic materials, Covestro Bayfol HX photopolymer and dichromated gelatin, and 3M reflective polymer filter materials are exposed to outdoor conditions for a period of several months. The environmental effect on absorption, spectral and angular bandwidth, peak efficiency, and Bragg matching conditions for the holograms are examined. Spectral bandwidth and transmittance of the 3M reflective filter material are also monitored. Holographic gratings are recorded, measured, and mounted on glass substrates and then sealed with a glass cover plate. The test samples are then mounted on a photovoltaic panel to simulate realistic temperature conditions and placed at an outdoor test facility in Tucson, Arizona. A duplicate set of holograms and 3M filter material is stored as a control group and periodically compared over the test period.
222

Three junction holographic micro-scale PV system

Wu, Yuechen, Vorndran, Shelby, Ayala Pelaez, Silvana, Kostuk, Raymond K. 23 September 2016 (has links)
In this work a spectrum splitting micro-scale concentrating PV system is evaluated to increase the conversion efficiency of flat panel PV systems. In this approach, the dispersed spectrum splitting concentration systems is scaled down to a small size and structured in an array. The spectrum splitting configuration allows the use of separate single bandgap PV cells that increase spectral overlap with the incident solar spectrum. This results in an overall increase in the spectral conversion efficiency of the resulting system. In addition other benefits of the micro-scale PV system are retained such reduced PV cell material requirements, more versatile interconnect configurations, and lower heat rejection requirements that can lead to a lower cost system. The system proposed in this work consists of two cascaded off-axis holograms in combination with a micro lens array, and three types of PV cells. An aspherical lens design is made to minimize the dispersion so that higher concentration ratios can be achieved for a three-junction system. An analysis methodology is also developed to determine the optical efficiency of the resulting system, the characteristics of the dispersed spectrum, and the overall system conversion efficiency for a combination of three types of PV cells.
223

A Hybrid Technique of Energy Harvesting from Mechanical Vibration and Ambient Illumination

Rahman, M Shafiqur 10 August 2016 (has links)
Hybrid energy harvesting is a concept applied for improving the performance of the conventional stand-alone energy harvesters. The thesis presents the analytical formulations and characterization of a hybrid energy harvester that incorporates photovoltaic, piezoelectric, electromagnetic, and electrostatic mechanisms. The initial voltage required for electrostatic mechanism is obtained by the photovoltaic technique. Other mechanisms are embedded into a bimorph piezoelectric cantilever beam having a tip magnet and two sets of comb electrodes on two sides of its substructure. All the segments are interconnected by an electric circuit to generate combined output when subjected to vibration and solar illumination. Results for power output have been obtained at resonance frequency using an optimum load resistance. As the power transduced by each of the mechanisms is combined, more power is generated than those obtained by stand-alone mechanisms. The synergistic feature of this research is further promoted by adding fatigue analysis using finite element method.
224

Etude et intégration de matériaux avancés pour la passivation face arrière de cellules photovoltaïques minces / Investigation and integration of advanced materials for back passivation of thin solar cells

Bounaas, Lotfi 30 June 2014 (has links)
L'objectif d'amélioration des performances de cellules solaires sur des substrats de silicium cristallin de plus en plus en minces (< 200 µm) est indispensable à la réduction des coûts du module et donc à l'essor du photovoltaïque à l'échelle mondiale. Cette thèse se propose de répondre à la problématique d'amincissement des plaquettes sur substrats monocristallins (Cz) de type p de grande surface (239 cm2 - 180 µm) par le développement d'une structure en face arrière capable de générer un rendement de conversion élevé tout en limitant le degré de complexité du procédé de fabrication de la cellule. La solution explorée est celle des cellules à face arrière passivée et contacts localisés et les schémas de passivation étudiés s'appuient sur l'utilisation d'empilements diélectriques à base d'oxydes de silicium (SiO2) et d'aluminium (Al2O3) couplés au nitrure de silicium (SiNx). Ces travaux ont pour objectif d'optimiser les propriétés de passivation des couches diélectriques tout autant que les briques technologiques nécessaires à leur intégration dans la structure de cellule finale (conditionnement de surface, ablation laser sélective, métallisation par sérigraphie). Le procédé de fabrication résultant a permis d'obtenir des cellules avec un rendement de conversion de 19.1% pour l'empilement SiO2/SiNx. Il est cependant démontré que les limitations des performances de cette structure peuvent être partiellement compensées en introduisant une couche d'alumine, permettant d'atteindre un rendement remarquable de 19.5% (+0.4% par rapport à une structure standard). / Improving the solar cell efficiency on thin wafers (< 200 µm) has become a must in the industry in order to reduce the module cost and enhance the photovoltaics field growth worldwide. This work addresses the issues regarding the thickness reduction of large monocrystalline p-type wafers (239 cm2 - 180 µm) by developing a back side architecture capable of increasing the efficiency while limiting the cell fabrication level of complexity. Thus back passivated and local contacts, also known as PERC-type, solar cells are investigated. Those include passivation schemes relying on the use of dielectric stacks based on silicon oxide (SiO2), aluminum oxide (Al2O3) both coupled with silicon nitride layers (SiNx). This PhD study attempts to carry out an optimization of the passivation properties as well as of the technological steps required for a proper integration in the final cell structure (surface preparation, selective laser ablation, screen-printing metallization). The resulting optimized process led to the fabrication of solar cells displaying an 19.1% conversion efficiency by using SiO2/SiNx layers. Nevertheless it was shown evidence that the limited electrical performances can be overcome by introducing an Al2O3 layer, eventually reaching a remarkable 19.5% efficiency. This represents an absolute gain efficiency of +0.4% compared to the standard full-area Al-BSF solar cell architecture.
225

Etude des propriétés de nanoparticules semiconductrices pour les cellules solaires hybrides / Study of semiconductor nanoparticles properties for hybrid solar cells

Thierry, François 14 December 2015 (has links)
Cette thèse, réalisée dans l'équipe OPTO-PV du laboratoire IM2NP, porte sur l'étude des propriétés particulières des nanostructures de petites dimensions pour des application optoélectroniques. Pour le solaire photovoltaïque, leur utilisation permet d'augmenter l'efficacité et de réduire les coûts. Après avoir étudié les différentes technologies et phénomènes photovoltaïques, nous avons choisi les cellules hybrides organiques - nanosphères semiconductrices comme structures d'étude. Nous avons alors développé une approche numérique de détermination des propriétés intrinsèques des boîtes quantiques. Notre méthode est rapide et nécessite peu de paramètres pour une utilisation à la fois prédictive et explicative. Nous déterminons les propriétés électronique avec l'approximation de la masse effective en la modifiant pour tenir compte de la non-parabolicité des bandes électroniques. Nous utilisons ces résultats pour évaluer les propriétés optiques, particulièrement l'absorption qui joue un rôle important dans le processus photovoltaïque. Nous prenons en compte des effets de couplages diélectriques sur ces propriétés ainsi que des aspects thermodynamiques. Ces outils nous permettent d'étudier l'effet du confinement quantique des charges sur le comportement optoélectroniques de nanostructures de différents types: multipuits couplés, fils de section circulaire et boîtes sphériques. La réalisation et la caractérisation de couches minces de PMMA incorporant des nanosphères homogènes et (cœur)coquille composées de différents semiconducteurs valident notre approche et posent les bases de l'étude de couches actives hybrides pour la réalisation de cellules solaires performantes. / This thesis was conducted in the OPTO-PV team of the IM2NP laboratory. Its aim is to study the peculiar properties of low-dimensional nanostructures for use in optoelectronic applications. For photovoltaics in particular, they can be used for the realization of innovative devices with theoretical hight efficiencies at low costs. After we evaluated the various technologies and phenomena that can be used in nanostructured photovoltaics, we decided to choose an hybrid organic polymer - inorganic quantum dots solar cell as study structure. We then developed a numerical approach to determine the intrinsic properties of quantum dots. Our method is fast and requires few parameters so that we can conduct predictive and explicative studies. We start with the evaluation of the electronic properties under the effective mass approximation that we modify to take into account the non-parabolicity of the energy bands. We use the results to derive the optical properties with emphasis on absorption that plays an important role in the photovoltaic process. We take dielectric coupling effects and also thermodynamic effects into account. Those tools allow the study of the effect of quantum confinement on the optoelectronic behavior of various nanostructures: coupled quantum wells, circular cross-section quantum wires and spherical dots. The fabrication and characterization of PMMA thin-films containing homogeneous and (core)shell quantum dots of different semiconductors, validate our approach and constitute the first step towards the study of hybrid active layers for efficient solar cells.
226

PHOTOVOLTAIC SYSTEM YIELD EVALUATION IN SWEDEN : A performance review of PV systems in Sweden 2017-2018

Schelin, Eric January 2019 (has links)
The goal of this study is to evaluate Swedish photovoltaic systems regarding energy production from two different years and compare the gathered data with results from a model simulating optimal conditions. This is done to investigate how the energy production differs between each year, why there are differences, and also to evaluate the simulation tools compared to the real production data. A good way to measure performance is to calculate the specific yield, that is the energy produced per unit of installed power (kWh/kWp). In order to complete this study, a literature study was made to investigate reasons for potential variations in PV system yield. Besides that, the production data from 2373 PV systems in Sweden were collected from different databases, and the data were sorted and compiled in order to calculate specific yield (kWh/kWp). The total number of PV systems after sorting was 828 for the 2017-2018 data and 1380 systems for the 2018 data. Data from real PV system production was compared with calculations performed in two simulation tools, PVGIS and PVsyst. Differences in calculation methods were investigated for performance evaluations between the two programs, and also for comparison with the real plant data. The results showed that the average specific yield for Sweden as a whole, to be 798 kWh/kWp for 2017. For 2018 with the results where 890 kWh/kWp when looking at the exact same plants as for 2017. This is an increase of 11,5%. For the simulation tools the results where 974 kWh/kWp for PVGIS, and 978 for PVsyst for an optimized system. Larger variations in specific yield occurs between every of the 21 counties in Sweden. The solar irradiations show significant correlations to the variations of the 2017 and 2018 specific yield data. Differences between the production data from the two years and the simulation tools wereinvestigated further. Reasons for this was discussed to be because of orientations of the panels and shading of the panels. Real PV systemsdiffer in orientation and the amount of shadowing from the simulated calculations.
227

Photo-microbial fuel cells

Schneider, Kenneth January 2014 (has links)
Fundamental studies for the improvement of photo-microbial fuel cells (pMFCs) within this work comprised investigations into ceramic electrodes, toxicity of metal-organic frameworks (MOFs) and hot-pressing of air-cathode materials. A novel type of macroporous electrode was fabricated from the conductive ceramic Ti2AlC. Reticulated electrode shapes were achieved by employing the replica ceramic processing method on polyurethane foam templates. Cyclic voltammetry of these ceramics indicated that the application of potentials larger than 0.5 V with regard to a Ag/AgCl reference electrode results in the surface passivation of the electrode. Ti2AlC remained conductive and sensitive to redox processes even after electrochemical maximisation of the surface passivation, which was shown electrochemically and with four terminal sensing. Application of macroporous Ti2AlC ceramic electrodes in pMFCs with green algae and cyanobacteria resulted in higher power densities than achieved with conventional pMFC electrode materials, despite the larger surface area of the Ti2AlC ceramic. The effect of electrode surface roughness and hydrophobicity on pMFC power generation and on cell adhesion was examined using atomic force and confocal microscopy, contact angle measurements and long-term pMFC experiments. The high surface roughness and fractured structure of Ti2AlC ceramic was beneficial for cell adhesion and resulted in higher pMFC power densities than achieved with materials such as reticulated vitrified carbon foam, fluorine doped tin oxide coated glass or indium tin oxide coated plastic. Toxicity of the MOF MIL101 and its amine-modified version MIL-101(Cr)-NH2 on green algae and cyanobacteria was assessed on the basis of both growth in liquid culture and by exclusion zones of agar colonies around MOF pellets. MOF MIL101 was found harmless in concentrations up to 480 mg L-1 and MIL-101(Cr)-NH2 did not exhibit toxic effects at a concentration of 167 mg L-1. Air-cathodes were produced from a range of carbon materials and ion-exchange membranes. Hot-pressing of Zorflex Activated Carbon Cloth FM10 with the proton-selective Nafion® 115 membrane provided the best bonding quality and pMFC performance.
228

An investigation of tin chalcogenide precursors and thin film materials for applications in energy harvesting devices

Ahmet, Ibrahim January 2017 (has links)
This thesis ‘’An Investigation of Tin Chalcogenide Precursors and Thin Film Materials for Applications in Energy Harvesting Devices’’ encompasses a range of research areas. The report can be divided into two categories: The first is the design of novel heavy tin chalcogenide complexes and compounds that demonstrate the recent advances in main group chemistry and act as potential precursor candidates for CVD processes. The second category follows on from the previous, and focuses on materials deposited and their successive development, characterisation and optimisation for device applications. Subsequently, an array of metal chalcogenide thin films have been deposited and characterised within this project. By designing of a number of the tin chalcogenide precursors and precursor solutions it has been possible to selectively deposit thin films of Sn, α-SnS and cubic-SnS polymorphs, SnS2, SnSe, and SnTe via a low-cost deposition route known as aerosol assisted chemical vapour deposition (AA-CVD). It is proposed that the processes developed in this PhD can be adapted to deposit a wider spectrum of metal chalcogenide materials using cost effective techniques. Even though there is a wide scope of the possible applications for the aforementioned materials, the study has only been extended towards the characterisation of the optoelectronic properties of phase pure α-SnS and cubic-SnS samples, and SnS2 thin films deposited onto FTO, Mo and graphene substrates. The optimum deposition parameters for the application of these materials has been defined. In collaboration with a research group at the Institut de Recerca de Energia de Catalunya (iREC), Barcelona, Spain, an extended study of the photovoltaic properties of the α-SnS and Cubic-SnS samples is also presented, from which a series of SnS based thin film photovoltaic devices have been fabricated and characterised. This study present some of the few reports explicitly comparing the PV properties of the two α-SnS and Cubic-SnS polymorphs.
229

Geração distribuída com sistemas fotovoltaicos e a qualificação profissional: uma proposta de curso pós-técnico e potencial de aplicação nas ETECS / Generation distributed with photovoltaic systems and professional qualification: a post-technical course proposal and application potential in ETECS.

Silva, Cristiano Crisostomo da 20 September 2017 (has links)
O crescimento e o desenvolvimento do Brasil demandam novas fontes de energia, dentre as quais destaca-se a energia solar fotovoltaica, mas para que esse acréscimo aconteça de forma organizada e segura, faz-se necessária a criação de cursos para a formação e qualificação técnica para as boas práticas de manuseio, instalação e manutenção dos sistemas. O ensino profissionalizante é um dos mais importantes vetores de desenvolvimento e aplicação das áreas tecnológicas e deve acompanhar, de maneira contínua, a evolução da tecnologia do trabalho. Este trabalho apresenta uma análise para uma proposta de criação de curso de especialização pós-técnica de nível médio, para preparar os profissionais, de forma que eles possam atuar no mercado com a segurança, confiabilidade e qualidade necessárias para que a geração de eletricidade a partir da conversão fotovoltaica atenda aos anseios da sociedade brasileira. As Escolas Técnicas Estaduais (Etec) do Governo do Estado de São Paulo são avaliadas para receber o curso proposto nesta dissertação. / The growth and development of Brazil demands new sources of energy, among which we highlight the photovoltaic solar energy. But for this increase happens in an organized and safe manner, it is necessary to create courses for training and technical qualification to good handling practices, installation and maintenance of systems. This work presents an analysis for a proposal for mid-level post- technical specialization course to prepare the way professionals that they can act in the market with the necessary security, reliability and quality so that generation of electricity from the photovoltaic conversion fulfill the yearnings of Brazilian society. Public technical school (Etec) of Sao Paulo\'s State Government are evaluated to offer that proposed course at this dissertation.
230

Computational studies of sulphide-based semiconductor materials for inorganic thin-film photovoltaics

Dufton, Jesse T. R. January 2013 (has links)
New thin-film solar cell materials and a greater understanding of their properties are needed to meet the urgent demand for sustainable, lower-cost and scalable photovoltaics. Computational techniques have been used to investigate Cu2ZnSnS4, CuSbS2 and CuBiS2 , which are potential absorber layer materials in thin-film photovoltaics. Their low cost, low toxicity and their constituent’s relative abundance make them suitable replacements for current thin-film absorbers, which are CdTe or Cu(In, Ga)(S, Se)2 based systems. Firstly, we have used hybrid Density Functional Theory (DFT) calculations to study CuSbS2 and CuBiS2. We calculate band gaps of 1.69 eV and 1.55 eV respectively, placing CuBiS2 within the optimal range for a viable absorber material. The density of states for both these materials indicate that formation of electron hole charge carriers will occur in the Cu d10 band. Consequently, photoexcitation leads to the oxidation of Cu(I). Secondly, we have derived interatomic potentials which describe the complex structure of Cu2ZnSnS4 accurately. We find that the Cu/Zn antisite defect represents the lowest energy form of intrinsic defect disorder. For these antisite defects, we find a preference for small neutral defect clusters, which suggests a degree of self-passivation exists. Investigations of Cu-ion transport find VCu migration is possible via a vacancy hopping mechanism. There are pathways which can be connected to give 3D long-range diffusion. Investigations of the Cu/Zn site disorder in Cu2ZnSnS4 find that configurations which are kesterite-like will dominate synthetic samples. However, perfectly ordered kesterite will not be formed due to entropic effects. The simulations indicate the stannite and stannite-like polymorphs are less favourable, and can only account for ≈2.5% of a sample. Investigations of the surfaces of Cu2ZnSnS4, suggest that the vast majority of the low index surfaces are dipolar and that only the (1 1 2), (0 1 0) and (1 0 1) surfaces have low surface energies.

Page generated in 0.0331 seconds