• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 381
  • 65
  • 46
  • 45
  • 23
  • 15
  • 13
  • 11
  • 10
  • 7
  • 3
  • Tagged with
  • 754
  • 314
  • 225
  • 155
  • 143
  • 139
  • 103
  • 78
  • 77
  • 75
  • 73
  • 70
  • 68
  • 68
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Synthèse et caractérisation de matériaux semi-conducteurs pour la conversion photovoltaïque / Synthesis and characterization of organic semiconductors for voltaic applications

Bulut, Ibrahim 03 June 2015 (has links)
L’objectif de cette thèse consiste à développer des matériaux semi-conducteurs organiques efficaces pour le photovoltaïque organique. Le travail est focalisé sur l’optimisation de matériaux à caractère donneur d’électrons pour la préparation de dispositifs à hétérojonction volumique, en association avec un dérivé de fullerène comme matériau à caractère accepteur d’électrons. Plus particulièrement, il s’agit de réaliser une étude d’optimisation systématique de deux familles de référence (respectivement macromoléculaire et moléculaire) issus du laboratoire, qui ont déjà conduit à des performances photovoltaïques intéressantes. Pour cela, nous avons suivi une démarche rigoureuse et systématique en ciblant les paramètres chimiques les plus pertinents à faire varier. Afin de déterminer les propriétés des nouveaux matériaux ainsi synthétisés, des caractérisations spectroscopiques, électrochimiques, structurales, de transport de charge et photovoltaïque ont systématiquement été effectué. / The aim of this thesis is to develop efficient semi-conducting organic materials for organic photovoltaics. This work is focuses on the optimization of electron-donor organic semiconductors for the preparation of bulk heterojunction devices, in blend with a fullerene derivative used as electron-acceptor material. More specifically, it is to perform a systematic optimization study of two reference families (macromolecular and molecular respectively) from the laboratory, which have already led to interesting photovoltaic performances. For this, we followed a structured and systematic approach targeting the most relevant chemical parameters to be varied. To determine the properties of new materials synthesized, spectroscopic, electrochemical, structural, charge transport and photovoltaic characterizations were systematically made.
572

Ultrafast energy conversion processes in photosensitive proteins and organic nanostructures for photovoltaic applications / Processus de conversion d'énergie ultra-rapide dans des protéines photosensibles et nanostructures organiques à visée photovoltaïque

Cheminal, Alexandre 17 April 2015 (has links)
Les techniques de spectroscopie femtoseconde permettent d’étudier les processus de conversion d’énergie dans les système organiques. Elles permettent d’étudier les populations photo-générées et leur évolution à l’échelle de ces photoréactions. Elles permettent de comprendre les transferts d’énergie et de charge intra- et inter-moléculaires à l’origine du fonctionnement de ces systèmes.La protéine de rétinal Anabaena sensroy Rhodopsin est un photocommutateur naturel, qui est étudié afin de comprendre les paramètres à l’origine de l’efficacité quantique d’isomérisation. Nous avons pu déterminer cette efficacité quantique pour les deux formes stables du rétinal ainsi que leur dynamique d’isomérisation dans les mêmes conditions expérimentales.La génération de charge dans des couches actives pour le photovoltaique organique est étudiée dans un système composé d’un mélange de PCBM et d’un donneur organique dérivé du colorant BODIPY. L’influence de la nanostructuration de la couche active sur la génération de charge est étudiée. La génération de charge est limitée dans ce système par la recombinaison des charges générées et par la diffusion des excition aux interfaces donneur-accepteur. Ces observations indiquent que l’amélioration de la nanostructuration de la couche active peut permettre d’augmenter les rendements de photo-génération de charge. / Femtosecond transient spectroscopies are used to investigate photonic energy conversion inorganic systems. These techniques allow to observe the ground and excited states of themolecules at the timescale of the photoreactions. It is used to understand the inter- andintramolecular energy and charge transfers leading to the desired photochemical process.The natural photoswiching retinal protein Anabaena sensory Rhodopsin is studied to understand the key parameters ruling the isomerisation quantum yield. We could determine the isomerisation quantum yield of both stable forms and their dynamics in the very same experimental conditions.Charge generation is investigated in small molecule bulk heterojunction active layers for organic solar cells made of PCBM and a BODIPY dye-derivative donor. The influence of the active layer morphology on charge generation is studied. The charge generation is limited by charge recombination but also by exciton diffusion to the donor-acceptor interface. The active layer morphology has to be improved to achieve more efficient organic solar cells with these materials.
573

Modulateurs de lumière à commande optique composés d'une couche photovoltaïque organique / Optically addressed light modulators using an organic photovoltaic layer

Regrettier, Thomas 08 December 2017 (has links)
Les performances des modulateurs de lumières à commande optique (OASLMs) à base de cristaux liquides (CLs) dépendent fortement des propriétés de la couche photosensible. Afin de concilier transparence, résolution latérale et production à bas coûts, les semi-conducteurs organiques apparaissent comme des candidats idéaux. Nous avons choisi d'utiliser un mélange P3HT:PCBM comme couche photosensible. Nos résultats ont montré que les cristaux liquides se réorientaient en fonction de l'intensité lumineuse seule et sans tension appliquée. Des mesures complémentaires indiquent que l'effet photovoltaïque est à l'origine de ce phénomène. Ce type de dispositif nous permet de moduler spatialement l'orientation des CLs et démontre son potentiel dans des applications liées à l'holographie. Un second type de dispositif intégrant des couches d'interfaces de PEIE et de PEDOT:PSS nous permet de contrôler l'orientation des CLs et donne de nouvelles pistes permettant de fabriquer des OASLMs autonomes. / The performances of liquid crystals (LCs) based optically addressed Spatial Light Modulators (OASLMs) strongly depends on the photosensitive layer properties. To accommodate device transparency, lateral resolution and low cost production, organic semiconductors appear as the ideal candidates. We chose to use a P3HT: PCBM blend as the photosensitive layer. Our results showed that the liquid crystals reorient according to the luminous intensity alone and without external power supply. Additional measurements indicate that the photovoltaic effect is at the origin of this phenomenon. This type of device allowed spatial modulation of the LCs orientation and demonstrates its potential in holographic applications. A second type of device integrating interfacial layers of PEIE and PEDOT: PSS allowed us to control the orientation of the LCs and gives promising routes towards the design of self-sustainable OASLMs.
574

TiO2 nanotube based dye- sensitised solar cells

Cummings, Franscious Riccardo January 2012 (has links)
Philosophiae Doctor - PhD / This work investigated the synthesis of Al2O3-coated TiO2 nanotubes via the anodisation technique for application in DSCs. TiO2 nanotube arrays with an average length of 15 μm, diameter of 50 nm and wall thickness of 15 nm were synthesised via anodisation using an organic neutral electrolyte consisting of 2 M H2O + 0.15 M NH4F + ethylene glycol (EG) at an applied voltage of 60 V for 6 hours. In addition, scanning electron microscope (SEM) micrographs showed that anodisation at these conditions yields nanotubes with smooth walls and hexagonally shaped, closed bottoms. X-ray diffraction (XRD) patterns revealed that the as-anodised nanotubes were amorphous and as such were annealed at 450 °C for 2 hours in air at atmospheric pressure, which yielded crystalline anatase TiO2 nanotubes. Highresolution transmission electron microscope (TEM) images revealed that the nanotube walls comprised of individual nano-sized TiO2 crystallites. Photoluminescence (PL) spectroscopy showed that the optical properties, especially the bandgap of the TiO2 nanotubes are dependent on the crystallinity, which in turn was dependent on the structural characteristics, such as the wall thickness, diameter and length. The PL measurements were supplemented by Raman spectra, which revealed an increased in the quantum confinement of the optical phonon modes of the nanotubes synthesised at low anodisation voltages, consequently yielding a larger bandgap The annealed nanotubes were then coated with a thin layer of alumina (Al2O3) using a simple sol-gel dip coating method, effectively used to coat films of nanoparticles. Atomic force microscopy (AFM) showed that the average nanotube diameter increased post sol-gel deposition, which suggests that the nanotubes are coated with a layer of Al2O3. This was confirmed with HR-TEM, in conjunction with selected area electron diffraction (SAED) and XRD analyses, which showed the coating of the nanotube walls with a thin layer of amorphous Al2O3 with a thickness between 4 and 7 nm. Ultraviolet-visible (UVvis) absorbance spectra showed that the dye-adsorption ability of the nanotubes are enhanced by the Al2O3 coating and hence is a viable material for solar cell application. Upon application in the DSC, it was found by means of photo-current density – voltage (I – V) measurements that a DSC fabricated with a 15 μm thick layer of bare TiO2 nanotubes has a photon-to-light conversion efficiency of 4.56%, which increased to 4.88% after coating the nanotubes with a layer of alumina. However, these devices had poorer conversion efficiencies than bare and Al2O3-coated TiO2 nanoparticle based DSCs, which boasted with efficiencies of 6.54 and 7.26%, respectively. The low efficiencies of the TiO2 nanotube based DSCs are ascribed to the low surface area of the layer of nanotubes, which yielded low photocurrent densities. Electrochemical impedance spectroscopy (EIS) showed that the electron lifetime in the alumina coated nanotubes are almost 20 times greater than in a bare layer of nanoparticles. In addition, it was also found that the charge transfer resistance at the interface of the TiO2/dye/electrolyte is the lowest for an Al2O3-coated TiO2 layer.
575

Materials Chemistry in Search of Energy Materials : Photovoltaics and Photoluminescence

Das, Shyamashis January 2016 (has links) (PDF)
One third of world’s total energy is used in production of electricity and one fifth of the total electricity produced in the world is used in lighting. Hence, the materials that have high potential in the field of photovoltaic’s and photoluminescence have recently drawn special attention to meet the ever increasing energy demands. In this thesis, we have studied a few materials that hold tremendous promises in fabricating photovoltaics and photoluminescent devices. Any ferroelectric material is an efficient solar energy converter as it contains an the intrinsic dipolar field which can effectively separate the photo excited electron and hole. We have developed a few materials which possess inherent polarization efficiently absorb over a wide portion of the solar spectrum and hence can find application in the field of photovoltaics. Secondly, we also dealt with semiconductor nonmaterial’s which are technologically very important owing to their improved photoluminescence properties. We tried to improve their light emitting efficiency by engineering crystal structure in nanometer length scales. The thesis deals with such advanced energy materials and is divided in seven chapters. Chapter 1 provides a brief introduction to the fundamental concepts that are relevant in the subsequent chapters. The chapter is started with a brief scenario of current status of energy production and its usage. Next, we have discussed the prospects of ferroelectric materials in photovoltaic devices. This is followed by a brief background on ferroelectricity and related properties which we have studied subsequently. At the end of this chapter a brief overview of photoluminescence properties in semiconductor nonmaterial’s is presented. In this section we have addressed the particular issues that need to be taken care of in order to improve their light emission properties. Chapter 2 describes different experimental and theoretical methods that have been employed to carry out different studies presented in the thesis. Chapter 3 addresses the possibility of employing BaTiO3 (BTO) based composite perovskite oxides as a potent photovoltaic material. It is known that BTO can produce photocurrent upon excitation with suitable light source. However, inability of BTO to absorb sufficient sunlight owing to its near UV band gap prevents to make use of this material in photovoltaic devices. In order to reduce the band gap we have tried to tune the electronic structure at the band edge by doping non-d0 transition metal ions at Ti site. As it is known in the literature an isovalent substitution of Ti4+ stabilizes non-polar phase of BTO we employed a co-doping strategy to substitute tetravalent Ti with equal percentage of a trivalent and a pentavalent metal ion. Keeping in mind off-centering of Ti4+ is primary reason behind the large ferroelectric polarization of BTO, a judicious choice of co-dopant was necessary to minimize reduction of polarization due to replacement of Ti. We have found at least two pairs of co-dopants, namely Mn3+-Nb5+ and Fe3+-Nb5+ which at low doping concentration ( < 10%) effectively reduces the band gap of BTO without affecting its polarization to a large extent. We systematically increase the doping concentration of both the pair of dopants and found Mn3+-Nb5+ pair is more efficient over Fe3+-Nb5+ both in terms of reducing band gap and retaining the polarization of BTO. We have characterized the ferroelectric nature of all the doped compositions with the help of dielectric, polarization and pyroelectric measurements. We have also performed first principle density functional theory (DFT) calculations for an equivalent doped composition and addressed the nature of modulations of electronic structure at the band edges which is responsible for such large reduction of band gap. Chapter 4 deals with composite perovskite materials which posses large tetragonal distortions with reduced optical band gaps. Here we have exploited Cu-Nb and Cu-Ta pair which upon complete substitution of Ti of BTO leads to composite perovskites with enhanced tetragonal distortion of the perovskite lattice. For two resultant compositions, namely BaCu1/3Nb2/3O3 and BaCu 1/3Ta2/3O3 we have characterized the optical and ferroelectric properties. We found though these material possess small band gap (∼ 2 eV), these are not ferroelectric in nature. Results of second harmonic generation measurements and refinement of powder X-ray diffraction both establish Centro symmetric nature of these materials. We infer from these results that presence of large tetragonal distortion is a result of symmetric Jahn-Teller type distortion of Cu2+ and not due to off-centering of any of the metal ions in their MO6 octahedral geometries. In Chapter 5, we have considered the material SrTiO3 (STO) which is stable in cubic paraelectric phase at room temperature. But at the same time this material is considered as an incipient ferroelectric due to presence of an active polar vibrational mode which does not become completely soft even at temperature close to 0 K. While this polar vibrational mode can easily be frozen by making substitution at Sr site, a similar attempt by making substitution at Ti site failed earlier. Keeping in mind Ti is easier to substitute than Sr we employed same co-doping strategy that we have considered in Chapter 3. We found Mn- Nb and Mn-Ta co-dopants at low doping concentration are extremely useful in transforming incipient ferroelectric STO into a dipolar glass. We have characterized the glassy dipolar property of doped STO with the help of tem-perature dependent dielectric response of these material. At the same time we found these co-doped STO possess enhanced static dielectric constant at room temperature with favourable dielectric loss values in comparison to pure STO. We have also ad-dressed the origin of a glassy dipolar state with the help of DFT calculation performed on equivalent doped composition that we have considered for our experiments. In Chapter 6, we have considered another incipient ferroelectric material TiO2 in rutile phase which also possess polar vibrational mode at temperature close to 0 K. A lattice strain along the polar vibrational mode make symmetric non-polar structure unstable with respect to the distorted polar structure. In this context, we found two particular compositions FeTiTaO6 and CrTiTaO6 that are also stable in rutile phases at room temperature but possess similar strain due to presence of larger Fe or Cr and Ta in rutile lattice. Considering the fact these two composite rutile oxides are relaxer ferroelectric in nature, we critically evaluated the effect of the particular kind of strain that these materials introduce in rutile lattice. We also characterized relaxor ferroelectric property and optical band gap of these materials and commented on the potential of these materials in exploiting them in photovoltaic devices. Chapter 7 presents a unique strategy of making use of crystal defects in improving photoluminescent properties of semiconductor nanocrystals. We have shown defects when introduced in nanocrystals in a controlled protected manner efficiently overcome the problem of self absorption which is known to reduce quantum efficiency of emit-ted light. Controlling synthesis conditions we separately prepared CdS nanocrystals with and without intergrowth defects. We characterized the presence of the intergrowth defect with the help of high resolution transmission electron microscope (HRTEM) image. We have also characterized Stokes’ shifted PL emission and ultrafast charge carrier dynamics of these NCs with intergrowth defects. To support these experimental findings we have computed the electronic structures of model nanoclusters possessing similar intergrowth defects that has been observed in HRTEM images. We find that the presence of defects in a nanocluster particularly affect the position of the band edge. However our joint density of state calculation shows that contribution of these defect states to an absorption spectra is negligible. Thus presence of defect states at band edge ensures a Stokes’ shifted emission without affecting the position of absorption. In a separate section of this chapter we have shown apart from intergrowth defects presence of twin boundary also provide similar mid-gap states that can alter its’ optical proper-ties to large extent. In summary, we have studied a few bulk and nano-materials which can show improved photovoltaic and photoluminescence property. We investigated effect of external dopant ions on a classical ferroelectric material BaTiO3 and two incipient ferroelectric materials SrTiO3 and rutile TiO2. We have also shown that efficient defect engineering could be extremely useful in improving photoluminescent property of CdS nanocrystals which is a prototype of II-VI semiconductor nanomaterials. In a separate Appendix Chapter, we have shown an easy and efficient way to suppress coffee ring effect which takes place universally when a drop of colloidal suspension is dried on a solid substrate. We have shown temporary modification of hydropho-bicity of a glass substrate not only can suppress the coffee ring effect but also leaves the particle in a highly ordered self-assembled phase after completion of drying process
576

Cost-effective Communication and Control Architectures for Active Low Voltage Grids

Armendáriz, Mikel January 2017 (has links)
The monitoring and control of low voltage distribution grids has historically been disregarded due to the unidirectional flow of power. However, nowadays the massive integration of distributed energy resources into distribution grids, such as solar photovoltaics, distributed storage, electric vehicles and demand response programs, presents some challenges. For instance, the unidirectional top-down power flow is being replaced by power flows in any direction: top-down and bottom-up. This paradigm shift adds extra regulatory, economic, and technical complexity for the Distribution System Operators (DSO). Thus to overcome the possible operational constraints, thermal limits, or voltage problems in the grid, an update of the existing electricity infrastructures is required. In response to this new situation, this thesis investigates the cost-effective communication and control architectures that are required for active low voltage grid monitoring and control applications, considering the regulatory constraints and the efficient utilization of the assets from a DSO’s perspective. The solutions include: i) optimal sensor placement configuration to perform low voltage state estimation, ii) optimal metering infrastructure designs for active low voltage monitoring applications, iii) coordinated control strategies to allow the integration of microgrid-like structures into the distribution grids, iv) optimal placement of actuators for operating the control strategies, v) a multiagent-based control solution for self-healing and feeder reconfiguration applications, and vi) a framework model and simulations to assess the reliability of the ICT infrastructure that enables the monitoring and control applications. As concluding remark, since the deployment of technology at low voltage grids is restricted to assets owned by the DSO, the operability of the grid is limited. This condition makes it so that the required communication and control enhancement solutions shall prioritize cost-effectiveness over comprehensiveness and complexity. Thus, the results from the presented studies show that it is essential to perform thorough cost-benefit analyses of the potential improvement solutions for each grid, because this will allow deploying the right technology only at the necessary locations. / <p>QC 20171106</p><p></p>
577

Characterization Techniques and Optimization Principles for Multi-Junction Solar Cells and Maximum Long Term Performance of CPV Systems

Yandt, Mark January 2017 (has links)
Two related bodies of work are presented, both of which aim to further the rapid development of next generation concentrating photovoltaic systems using high efficiency multi junction solar cells. They are complementary since the characterization of commercial devices and the systematic application of design principles for future designs must progress in parallel in order to accelerate iterative improvements. First addressed, is the field characterization of state of the art concentrating photovoltaic systems. Performance modeling and root cause analysis of deviations from the modeling results are critical for bringing reliable high value products to the market. Two complementary tools are presented that facilitate acceleration of the development cycle. The “Dynamic real-time I V Curve Measurement System…” provides a live picture of the current-voltage characteristics of a CPV module. This provides the user with an intuitive understanding of how module performance responds under perturbation. The “Shutter technique for noninvasive individual cell characterization in sealed concentrating photovoltaic modules,” allows the user to probe individual cell characteristics within a sealed module. This facilitates non-invasive characterization of modules that are in situ. Together, these tools were used to diagnose the wide spread failure of epoxy connections between the carrier and the emitter of bypass diodes installed in sealed commercial modules. Next, the optimization principals that are used to choose energy yield maximizing bandgap combinations for multi-junction solar cells are investigated. It is well understood that, due to differences in the solar resource in different geographical locations, this is fundamentally a local optimization problem. However, until now, a robust methodology for determining the influences of geography and atmospheric content on the ideal design point has not been developed. This analysis is presented and the influence of changing environment on the representative spectra that are used to optimize bandgap combinations is demonstrated. Calculations are confirmed with ground measurements in Ottawa, Canada and the global trends are refined for this particular location. Further, as cell designers begin to take advantage of more flexible manufacturing processes, it is critical to know if and how optimization criteria must change for solar cells with more junctions. This analysis is expanded to account for the differences between cells with up to 8 subcell bandgaps. A number of software tools were also developed for the Sunlab during this work. A multi-junction solar cell model calibration tool was developed to determine the parameters that describe each subcell. The tool fits a two diode model to temperature dependent measurements of each subcell and provides the fitting parameters so that the performance of multi-junction solar cells composed of those subcells can be modeled for real world conditions before they are put on-sun. A multi-junction bandgap optimization tool was developed to more quickly and robustly determine the ideal bandgap combinations for a set of input spectra. The optimization process outputs the current results during iteration so that they may be visualized. Finally, software tools that compute annual energy yield for input multi-junction cell parameters were developed. Both a brute force tool that computes energy harvested at each time step, and an accelerated tool that first bins time steps into discrete bins were developed. These tools will continue to be used by members of the Sunlab.
578

Synthèse et monocouches auto-assemblées de molécules "Push-Pull" / Synthesis and self-assembled monolayers of "Push-Pull" molecules

Malytskyi, Volodymyr 03 April 2015 (has links)
Au cours des dernières décennies, les chromophores organiques “push-pull” ont vu leur intérêt grandir en raison de leurs applications potentielles dans les domaines des transistors à effet de champ, de l'optique non linéaire, des OLEDs, et du photovoltaïque. Dans le cadre de la conception de cellules photovoltaïques, ces structures moléculaires correctement organisées sur une surface devraient permettre d’améliorer l’interface donneur/accepteur, l’absorption optique, et d’augmenter le volume de la couche active. Nous avons développé une synthèse en plusieurs étapes de nouvelles molécules “push-pull” comportant une tête réactive thiol autorisant la formation de monocouches moléculaires auto-assemblées (SAM) sur surfaces d’or ou d’ITO. En variant les groupements donneur, accepteur, et l’espaceur il a été possible de moduler les propriétés optiques et électroniques.Les produits obtenus possèdent une forte absorption de lumière et peuvent donc être efficaces pour le photovoltaïque. Les monocouches moléculaires finales des chromophores avec ou sans nanoparticules d’or ont été étudiées principalement par angles de contact, techniques de spectroscopie IR, UV-Vis, XPS, et par microscopie à sonde locale (STM, AFM). Les matériaux ainsi obtenus à base de SAMs de chromophores “push-pull” et de nanoparticules de métaux nobles ont ensuite caractérisés électriquement et optiquement pour évaluer leur utilisation potentielle pour la conversion de l’énergie photovoltaïque. / During the past decades, the synthesis of organic donor-acceptor (D/A) “push-pull” chromophores has been of considerable interest because of their potential use in nonlinear optics, LEDs, field effect transistors, and photovoltaics (PV). As a part of the design of the PV cells, these molecular structures correctly arranged on a surface should improve the donor/acceptor interface, the optical absorption, and increase the volume of the active layer. We have developed a multi-step synthesis of new “push-pull” molecules bearing a thiol reactive group enabling to form self-assembled monolayers (SAM) on gold or ITO surfaces. Combining various donor, acceptor, and spacer moieties we could tune the “push-pull” optical and electronic properties. The obtained “push-pull” products exhibit a high light absorption and can thus be effective in PV applications. Final SAMs with and without nanoparticles were studied mainly by contact angles, UV-vis, IR and XPS spectroscopy, ellipsometry and near-field microscopy (STM and AFM). As-obtained organic layers were then electrically and optically characterized to assess their potential use in the field of PV energy conversion.
579

Détachement des substrats ultra-minces des matériaux semi-conducteurs par implantation d’hydrogène à hautes énergies pour les applications photovoltaïques et électroniques / Detachment of ultra-thin substrates of semiconductor materials by high energy hydrogen implantation for photovoltaic and electronic applications

Pokam Kuisseu, Pauline Sylvia 09 December 2016 (has links)
Cette thèse a été motivée par l’étude d’un procédé innovant de production de substrats ultra-minces (d’épaisseur variant de 15 μm à 70 μm), basé sur l’implantation d’hydrogène à haute énergie, dans notre cas comprise entre 1MeV et 2.5MeV. Une telle implantation suivie d’un traitement thermique approprié, conduit au détachement d’un film mince autoporté, appelé « substrat ultra-mince ». L’intérêt de ce procédé de détachement est purement économique, car il ne génère presque aucune perte de matière première. Nous l’avons particulièrement utilisé pour produire des substrats ultra-minces de silicium (100), pour la production des cellules PV bas-coûts. Dans le but d’élargir les champs d’applications du procédé, le détachement de substrats ultra-minces de deux autres matériaux (le Ge et le SiC) très utilisés en électronique a aussi été étudié. Ainsi, dans cette étude, les paramètres optimaux d’implantation (énergie et fluence) et de recuits conduisant au détachement de grandes surfaces de Si(100) ont tout d’abord été investigués. Ensuite, l’application technologique du procédé proposé a été validée par la réalisation des cellules solaires au moyen des substrats ultrafins de Si détachés (50 μm et 70 μm d’épaisseur). Les performances PV obtenues ont été assez proches de celles obtenues avec une cellule référence réalisée sur un substrat standard. Par la suite, une étude détaillée faite par TEM et par FTIR sur les défauts étendus à différents stades de recuits a permis de mettre en lumière la nature et la distribution spatiale des défauts précurseurs de la fracture dans le Si après implantation à haute énergie. Enfin, des essais de détachements réalisés avec le Ge et le SiC, lesquels ont été comparés au cas du Si, ont permis d’en savoir plus sur les critères de détachement. En effet, plus le matériau sera rigide, i.e. plus il aura un module d’Young élevé, plus la fluence et la température de recuit nécessaires pour le détachement seront élevées. / The motivation of this thesis was the study of an innovative process for the production of ultra-thin substrates (with thicknesses between 15 μm and 70 μm), based on the high energy hydrogen implantation, in our case in the range of 1 MeV to 2.5 MeV. Such an implantation followed by an appropriate thermal annealing, lead to the delamination of a freestanding thin layer, that we call “ultra-thin substrate”. The benefit of this delamination process is purely economic, since almost no raw material is lost. We have particularly used this process to produce ultra-thin (100) Si substrates, for the production of low-cost PV solar cells. In order to extend the process application fields, the delamination of ultra-thin substrates of two other materials (Ge and SiC) widely used in electronics has been also studied. In our work, the optimal implantation parameters (energy and fluence) and thermal annealing, leading to the delamination of large areas of Si (100) were first investigated. Subsequently, in order to validate the technological application of our process, solar cells have been performed with ultra-thin silicon substrates delaminated, with thicknesses of 50 μm and 70 μm. Results of PV performances obtained were quite close to those obtained with a reference solar cell achieved on a standard substrate. After that, in order to highlight the nature and the spatial distribution of fracture precursor defects after high energy hydrogen implantation in silicon, which had not yet done so far the subject of specific studies, characterizations have been carried out at different annealing stages, by means of TEM and FTIR. Finally, delamination results obtained with Ge and SiC, which were compared to the case of Si, helped us to learn more about delamination criteria. Indeed, we observed that, as the material rigidity increase, i.e. as the Young modulus is higher, the fluence and temperature require for the delamination will be also high.
580

Synthèse et caractérisations physico-chimiques de couches minces de sulfure d'étain en vue de leur utilisation dans des dispositifs photovoltaïques / Synthesis and physico-chemical characterisation on tin sulfur thin films for photovoltaic devices

Akkari, Anis 01 June 2011 (has links)
Le présent travail porte sur l'élaboration de couches minces du matériau binaire SnS avec des propriétés physico-chimiques répondant le mieux possible aux exigences d'une bonne alternative au composé ternaire CuInS2, dans les cellules solaires. Nous avons utilisé la technique de dépôt chimique en solution (ou Chemical Bath Deposition CBD) qui est une technique peu coûteuse, non toxique et facile à manipuler. Les couches fabriquées sont testées sur le plan cristallographique, chimique, morphologique et optique à différentes échelles, en utilisant les techniques de diffraction des rayons X, de profilométrie, de microscopie électronique à balayage associée à la dispersion en énergie des photons X, de microscopie à force atomique ou électrostatique, et de mesures par spectrophotométrie. Des recuits à différentes températures et des dopages à différentes concentrations sont effectués. Un calcul de l'épaisseur des films minces de SnS, basé sur la méthode des enveloppes des franges d'interférences dans les spectres de transmission optique calculés et expérimentaux, a été effectué à l'aide d'une modélisation utilisant les théories de Manifacier et de Heavens. / The present work deals with the fabrication of SnS thin films as a potential substitute to CuInS2 absorber material in thin film solar cells. The Chemical Bath Deposition method (CBD) is applied to this binary material, as it is non toxic and relatively inexpensive. Structural, chemical, morphological and optical properties of the fabricated layers are investigated by X-Ray diffraction, profilometry, scanning electron microscopy associated with energy dispersive spectrometry, atomic force microscopy, and visible to infrared spectrophotometry. Annealing and doping of the SnS thin layer is also investigated. Theoretical modelling of the thin film thickness is obtained from optical transmission and reflexion spectra based on the envelope of interference fringes.

Page generated in 0.034 seconds