• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 2
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 25
  • 21
  • 21
  • 16
  • 12
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelagem farmacocinética-farmacodinâmica de antifúngicos azólicos em animais infectados por Cryptococcus neoformans / Pharmacokinetic-pharmacodynamic modeling of azoles antifungals in Cryptococcus neoformans infected animals

Alves, Izabel Almeida January 2017 (has links)
O objetivo desta tese foi desenvolver um modelo farmacocinético-farmacodinâmico (PK-PD) aplicável a avaliação de esquemas posológicos de antifúngicos sistêmicos no tratamento de infecções cerebrais associadas ao Cryptococcus neorformans. Inicialmente um modelo de infecção cerebral em ratos Wistar machos imunocompetentes foi estabelecido. Os animais foram inoculados a partir da administração iv de 1.106 UFC/mL na veia lateral caudal, de uma cepa de Cryptococcus neoformans var neoformans (ATCC 28957). A presença da levedura em cérebro, pulmão, fígado, rins e coração foi avaliada após 7, 10 e 14 dias. Paralelamente foram investigados os parâmetros bioquímicos (contagem de leucócitos, TGO, TGP, uréia, creatinina, albumina e CK) e a permeabilidade vascular cerebral com azul de Evans. Após 10 dias de inoculação foi produzida uma infecção com características semelhantes a doença em humanos. C. neoformans esteve presente em todos os tecidos investigados pelas análises histológicas e microbiológicas e diferenças nos níveis de albumina, ureia, TGP e CK, alteração no número de leucócitos (monócitos e neutrófilos) e elevação da permeabilidade cerebral ao azul de Evans foram observadas nos animais infectados. Após estabelecida e caracterizada a infecção, foi avaliada a farmacocinética plasmática e tecidual cerebral através da técnica de microdiálise, do fluconazol (FLU) (20 mg/kg, i.v. bolus) e do voriconazol (VRC) (5 mg/kg, i.v. bolus) em ratos Wistar sadios (n = 13) e infectados (n = 13). De posse dos dados das concentrações plasmáticas e teciduais vs tempo dos grupos sadios e infectados construiu-se um modelo farmacocinético populacional (PopPK) para cada fármaco investigado. A penetração cerebral do VRC demonstrou-se elevada nos animais infectados (fTsadios = 0,85 vs fTinfectados = 1,86). O modelo PopPK de dois compartimentos e eliminação por Michaelis Menten descreveu o perfil de concentrações versus tempo de VRC em plasma e tecido, simultaneamente. A covariável infecção foi incluída em V2 e VM. Observou-se o grande potencial do VRC para tratar meningite associada a C. neoformans, pois os níveis alcançados em tecidos infectados foram superiores aos valores descritos para CIM de VRC contra C. neoformans (0,03 - 0,5 μg/mL). A farmacocinética do FLC foi descrita através de um modelo PopPK de dois compartimentos com eliminação linear incluindo dados de concentrações plasmáticas e livres cerebrais para ambos os grupos investigados. Nesse modelo a covariável infecção foi atribuída ao parâmetro k21 e covariável peso foi atribuída aos parâmetros V1 e V2. De posse desse modelo popPK, foram investigados os desfechos farmacodinâmicos considerando o nível de exposição cerebral nas doses de 125 e 250 mg/kg para ratos e 400-2000 mg para humanos observado em tecido sadio e infectado através da probabilidade de atingir o alvo terapêutico (PTA - fASC/CIM = 389) do FLC usando simulações de Monte Carlo. Essas simulações demonstraram um uso limitado de fluconazol em monoterapia para o tratamento de meningite por C. neoformans. Após a etapa farmacocinética procederam-se os estudos farmacodinâmicos através da metologia de curvas de morte em função do tempo do fluconazol e voriconazol frente a C. neoformans. Os dados da curva de morte foram modelados adequadamente com o modelo PK-PD de Emax modificado incluindo um termo de atraso de crescimento. A CIM foi determinada para ambos os fármacos por microdiluição e os valores foram de 0,03 μg/mL para voriconazol e 0,5 μg/mL para fluconazol, indicando que esta cepa ATCC 28957 é sensível a ambos os fármacos. Os valores de k, EC50 e kmax foram determinados para vários múltiplos das CIM de cada fármaco (0,03×, 0,06×, 0,25×, 0,5×, 1× 4×, 16×, 32× e 64×). O valor médio de k foi de 0,38 h-1, EC50 foi de 1,26 ± 0,18 μg/mL e 0,32 ± 0,06 μg/mL e kmax foi de 0,95 ± 0,21 h-1 e 0,64 ± 0,12 h-1 para FLC e VRC, respectivamente. Por fim, de posse dos parâmetros calculados através do modelo PK-PD foram realizadas simulações dos desfechos de tratamento para meningite criptocócica no cenário clínico para ambos os fármacos após administração das doses 200 e 400 mg de voriconazol e 800 e 2000 mg de fluconazol por dez semanas. Através das simulações conclui-se que para fluconazol há 25% de insucesso na dose de 800 mg e 10% na dose de 2000 mg com um tempo médio de 3 semanas para erradicação da levedura. Para o voriconazol, o EC50 teve pouco impacto sobre a erradicação do fungo e, em todos os cenários foi observada uma erradicação completa do fungo em curto espaço de tempo (1 - 2 semanas). Os resultados incentivam o uso de voriconazol nos pacientes com meningite criptocócica e uma reavaliação do uso de fluconazol. / The aim of this thesis was to develop a pharmacokinetic-pharmacodynamic (PK-PD) model for the evaluation of systemic antifungal dosing regimens for the treatment of brain infections associated with Cryptococcus neorformans. Firstly a model of brain infection in immunocompetent male Wistar rats was established. The animals were inoculated by intravenously administration of 1. 106 CFU/mL of Cryptococcus neoformans var neoformans (ATCC 28957) into the tail lateral vein. The presence of yeasts in the brain, lung, the liver, kidneys and the heart was evaluated after 7, 10 and 14 days. The biochemical parameters (leucocytes counting, GOT, GPT, urea, creatinine, albumin and CK) and cerebral vascular permeability with Evans blue were investigated. After 10 days post inoculation an infection with characteristics similar in humans was produced. C. neoformans was present in all tissues investigated by histological and microbiological analyzes and differences in albumin, urea, GPT and CK levels, alterations in the number of leukocytes (monocytes and neutrophils), and elevation of cerebral permeability to Evans blue were observed in infected animals. After establishing and characterizing the infection, the plasma and cerebral tissue pharmacokinetics were evaluated by microdialysis after administration of fluconazole (FLU) (20 mg/kg, iv bolus) and voriconazole (VRC) (5 mg/kg, iv bolus) in healthy (n = 13) and infected Wistar rats (n = 13). A population pharmacokinetic model (PopPK) was build for each drug, based on data from plasma and tissue concentrations vs. time of healthy and infected groups. The brain penetration of voriconazole was shown to be high in infected animals (fThealthy = 0.85 vs fTinfected = 1.86) than in healthy ones. The two-compartment model with Michaelis Menten elimination best described the concentration of VRC in plasma and tissue. The covariate infection was included in V2 and VM. The great potential of voriconazole to treat meningitis associated with C. neoformans was observed, as the levels reached in infected tissues were higher than the values described for MIC against C. neoformans (0.03 - 0.5 μg/mL). The pharmacokinetics of FLC was described using a two-compartment model with linear elimination including data from plasma and brain free concentrations for both groups investigated. In this model the covariate infection was attributed to parameter k21 and covariate weight was assigned to parameters V1 and V2. With this popPK model, the pharmacodynamic outcomes were investigated considering the level of brain exposure at doses of 125 and 250 mg/kg for rats and 400 - 2000 mg for humans observed in healthy and infected tissue through the probability of attaining the target (PTA - fAUC/MIC = 389) of fluconazole using Monte Carlo simulations. These simulations demonstrated limited use of fluconazole in monotherapy for the treatment of C. neoformans meningitis. After the pharmacokinetics modeling, the pharmacodynamic studies were carried out using the methodology of time-kill curves of fluconazole and voriconazole versus C. neoformans. The kill curves data were suitably modeled with the modified Emax PK-PD model including a growth delay term. MIC was determined for both drugs by microdilution and values were 0.03 μg.mL-1 for voriconazole and 0.5 μg.mL-1 for fluconazole, indicating that this ATCC 28957 strain is sensitive to both drugs. The values of k, EC50 and kmax were determined for several MIC multiples of each drug (0.03 ×, 0.06 ×, 0.25 ×, 0,5×, 1 × 4 ×, 16 ×, 32 × and 64 ×). The mean value of k was 0.38 h-1, EC50 was 1.26 ± 0.18 μg.mL-1 and 0.32 ± 0.06 μg.mL-1 and kmax was 0.95 ± 0.21 h -1 and 0.64 ± 0.12 h-1 for FLC and VRC, respectively. Finally, the parameters obtained using the PK-PD model were used to simulate treatment outcomes for cryptococcal meningitis in the clinical setting for both drugs after administration of 200 and 400 mg of voriconazole and 800 and 2000 mg of fluconazole for 10 weeks. By the simulations it is concluded that for fluconazole there is a 25% rate of failure at the dose of 800 mg and 10% at the dose of 2000 mg with an average time of 3 weeks for eradication of the yeast. For voriconazole, the EC50 had little impact on fungus eradication and, in all scenarios complete eradication of the fungus was observed in a short time (1 - 2 weeks). The results encourage the use of voriconazole in patients with cryptococcal meningitis and a reassessment of fluconazole use.
12

Modelagem farmacocinética-farmacodinâmica do antifúngico voriconazol

Araújo, Bibiana Verlindo de January 2008 (has links)
Objetivos: O objetivo deste trabalho foi o desenvolvimento de um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito antifúngico voriconazol (VRC) contra espécies de Candida. Método: Para alcançar este objetivo as seguintes etapas foram realizadas: i) foi adaptado e padronizado modelo de candidíase disseminada em ratos Wistar imunocompetentes e imunocomprometidos com Candida sp.; ii) foram validados métodos analíticos de LC-MS/MS e LC-UV para o doseamento do VRC em amostras de plasma e microdialisado de tecido; iii) foram estabelecidas as condições para microdiálise do VRC e as taxas de recuperação in vitro, por perda e ganho, e em tecido renal in vivo, por retrodiálise, foram determinadas; iv) foi avaliada a PK não-linear do VRC após administração i.v. bolus das doses de 2,5, 5 e 10 mg/kg e a biodisponibilidade oral foi determinada em roedores; v) a penetração renal do VRC após administração oral das doses de 40 e 60 mg/kg foi determinada em ratos Wistar sadios e infectados com C. albicans ou C. krusei; e (vi) o perfil fungistático do VRC contra C. albicans e C. krusei foi determinado utilizando modelo de infecção experimental in vitro onde foram simuladas as concentrações livres renais do VRC esperadas em humanos após administração oral e i.v. de diferentes posologias. Os dados de cinética e dinâmica obtidos foram modelados com equação de Emax modificada, com auxílio do Scientist®. Resultados e Conclusões: i) O modelo de candidíase disseminada foi adaptado com sucesso para ratos Wistar. C. albicans apresentou maior virulência com Log UFC/g de tecido renal de 5,51 ± 0,56 e 7,29 ± 0,26, após 2 e 7 dias de infecção em animais imunocompetentes, respectivamente. Em animais imunocomprometidos a contagem foi de 6,43 ± 0,59 Log UFC/g após 2 dias de infecção, com morte de todo o grupo dentro de 4 dias. As espécies não-albicans (C. krusei e C. glabrata) apresentaram um perfil de infecção semelhante em animais imunocompetentes (Log UFC/g = 2,98 ± 0,27 para C. krusei e 2,48 ± 0,46 para C. glabrata). Entretanto, nos animais imunocomprometidos, C. krusei promoveu morte de todo o grupo em até 7 dias, enquanto C. glabrata causou apenas um aumento no grau de infecção (Log UFC/g = 6,98 ± 0,48). ii) Os métodos analíticos por LC-UV e LCMS/ MS para quantificação do VRC foram validados. As curvas de calibração foram lineares na faixa de 50 a 2500 ng/mL (r > 0,98) para ambos os métodos. Os ensaios de precisão intra e inter-dia foram > 94,9 e 95,8 %, para microdialisado por HPLC-UV e > 87,5 e 92,3 % para LC-MS/MS em plasma, respectivamente. A exatidão foi > 89,1 % para HPLC-UV e > 88,4 % para LC-MS/MS. iii) A avaliação do VRC por microdiálise mostrou que a recuperação é concentração independente (0,1–2,0 μg/mL). O VRC entretanto, devido a sua moderada lipofilia, liga-se às tubulações do sistema de microdiálise, gerando diferenças entre a recuperação determinada pelo método de perda (retrodiálise) e de ganho (diálise) in vitro, as quais puderam ser corrigidas após o cálculo do coeficiente de ligação do fármaco ao sistema. A recuperação in vivo após correção da ligação ao sistema foi de 24,5 ± 2,8 % iv) A análise dos perfis de plasmáticos do VRC obtidos em ratos Wistar após administração oral mostrou comportamento não-linear, compatível com saturação de eliminação. A avaliação compartimental dos perfis i.v. de diferentes doses, utilizando modelo de três compartimentos com eliminação de Michaelis-Menten, permitiu a determinação da constante de Michaelis (KM) de 0,58 μg/mL e da velocidade máxima da eliminação (VM) de 2,63 μg/h, em média. A modelagem simultânea dos dados plasmáticos (40 mg/kg) e i.v. (10 mg/kg) permitiu a determinação da biodisponibilidade oral do VRC em ratos, que foi de 82,8%. v) A fração de penetração renal do VRC, determinada por microdiálise em ratos sadios e infectados, foi de 0,34 ± 0,01, similar a fração livre do fármaco no plasma (0,34), indicando que as concentrações livres renais de VRC são semelhantes às concentrações livres plasmáticas e que as mesmas não se modificam devido a infecções causadas por Candida sp. vi) Os parâmetros da modelagem PK/PD do efeito do VRC contra espécies de Candida em modelo de infecção experimental in vitro obtidos foram: CE50 de 2,96 μg/mL e Kmax = 0,26 h-1 para C. albicans e CE50 de 3,47 μg/mL e Kmax = 0,51 h-1 para C. krusei. Houve diferença estatística apenas no Kmax para as duas espécies (α = 0,05) indicando uma maior suscetibilidade da C. krusei ao VRC. O modelo PK/PD de Emax modificado utilizado foi capaz de descrever adequadamente os perfis de inibição do crescimento de Candida sp em função do tempo, para todos os regimes terapêuticos do VRC avaliados, podendo ser usado para otimização da terapia com esse fármaco. / Objectives: The aim of this work was the development of a pharmacokineticpharmacodynamic model (PK/PD) to describe the fungistatic effect of voriconazole (VRC) against Candida species. Method: To reach this objective, the following steps were done: i) a disseminated candidiasis model to immunocompetent and immunocompromised Wistar rats with Candida sp was adapted and standardized; ii) analytical methods of LC-MS/MS and LC-UV for measurement of VRC in plasma and microdialysate tissue samples were validated; iii) microdialysis conditions of VRC and the recoveries rate in vitro, by loss and gain, in renal tissue in vivo, by retrodialysis, were determined; iv) the non-linear PK of VRC after i.v. bolus administration of 2.5, 5 e 10 mg/kg doses were evaluated and the oral bioavailability in rodents was estimated; v) tissue penetration of VRC after oral administration of 40 and 60 mg/kg was determined in healthy and infected by C. albicans or C. krusei Wistar male rats; vi) the fungistatic profile of VRC against C. albicans and C. krusei was determined using a experimental infection model in vitro, where the free renal concentrations of VRC expected in humans after oral and iv administration of different dosing regimens were simulated. The kinetic and dynamic data obtained were modeled using an Emax modified model, with aid of Scientist®. Results and Conclusions: i) The disseminated candidiasis model was successfully adapted to Wistar rats. C. albicans showing high virulence with Log CFU/g of renal tissue of 5.51 ± 0.56 and 7.29 ± 0.26, after 2 and 7 days of infection in immunocompetent animals, respectively. In immunocompromised animals, the counting was 6.43 ± 0.59 Log CFU/g after 2 days of infection, with whole group death within 4 days. Non-albicans especies (C. krusei e C. glabrata) showed a similar infection profile in immunocompetent and immunocompromised animals (Log CFU/g = 2.98 ± 0.27 to C. krusei e 2.48 ± 0.46 to C. glabrata). However, in immunocompromised animals, C. krusei causes death in the whole group up to 7 days, instead, C. glabrata causes only a low increase in the infection degree (Log CFU/g = 6.98 ± 0.48). ii) The analytical methods of HPLC-UV and LC-MS/MS to VRC quantification were validated. Linearity was between 50 - 2500 range ng/mL (r > 0.98) for both methods. The intra and inter-day precision assays were > 94.9 e 95.8 %, for microdialysate using LC-UV and > 87.5 e 92.3 % using LCxx MS/MS for plasma, respectively. The accuracy was > 89.1 % for HPLC-UV and > 88.4 % for LC-MS/MS. iii) The evaluation of VRC by microdialysis showed that recovery is concentration independent (0.1–2 μg/mL). VRC, however, due to its moderate lipophilic characteristic, binds to the microdialysis system tubing’s, generating differences between recoveries determined by loss (retrodialysis) and gain (dialysis) in vitro methods, which could be corrected after determination of drug’s binding coefficient to the system. The in vivo recovery determined after correction of system binding was 24.5 ± 2.8 %. iv) VRC plasma profiles analysis obtained from Wistar rats after oral administration showed a nonlinear behavior, compatible with saturable elimination. The compartmental evaluation of i.v. profiles in different doses, employing the a compartment model with Michaelis-Menten elimination, allowed to determine the Michaelis-Menten constant (KM) of 0.58 μg/mL and the maximum velocity (VM) of 2.63 μg/h, in average. The simultaneous modeling of oral (40 mg/kg) and iv (10 mg/kg) plasma data allowed the determination of the oral bioavailability of VRC in rats, equal to 82.8%. v) The VRC renal penetration fraction, determined by microdialysis in healthy and infected rats, was 0.34 ± 0.01, similar to the free unbound fraction in plasma (0.34), showing that VRC free renal concentration levels are similar to the unbound plasma concentrations and that did not change due the infection associated to Candida sp. vi) The parameters of PK-PD modeling of VRC effect against Candida species in the in vitro experimental infection model obtained were: EC50 de 2.97 μg/mL and Kmax = 0.203 h−1 to C. albicans and EC50 of 3.47 μg/mL and Kmax = 0.51 h−1 to C. krusei. There is a statistical difference only in Kmax value for the two species (α = 0.05), showing a higher susceptibility of C. krusei to VRC. The PK/PD Emax modified model employed was able to describe adequately the growth inhibition profiles of Candida sp in function of time, for all VRC dosing regimens evaluated, and can be used for therapy optimization with this drug.
13

Modelagem farmacocinética-farmacodinâmica da piperacilina em ratos imunodeprimidos infectados com Escherichia coli

Araújo, Bibiana Verlindo de January 2002 (has links)
Objetivos: Avaliar a adequabilidade do modelo farmacocinético-farmacodinâmico (PK-PD) (NOLTING et al., 1996b) para modelar o efeito bactericida da piperacilina (PIP) em ratos Wistar infectados experimentalmente com Escherichia coli ATCC 25922. Metodologia: Experimentos de Farmacocinética: Determinou-se as concentrações plasmáticas totais e livres teciduais de PIP, através de microdiálise (MD), após administração de 240 mg/kg i.v. bolus a ratos Wistar granulocitopênicos (ciclofosfamida) infectados no músculo esquelético (105 UFC/mL) com E. coli. As amostras de plasma e de MD foram analisadas por CLAE. As sondas de MD foram calibradas por retrodiálise. Experimentos de Farmacodinâmica: Os animais imunodeprimidos e infectados foram tratados com PIP nas doses de 120 ou 240 mg/kg, em intervalos de 4/4, 6/6 e 8/8 horas por 24 h. Em tempos pré-determinados, os animais foram sacrificados (n = 3/tempo), o músculo infectado foi retirado, homogeneizado e o número de UFC/mL foi determinado em placas de ágar-sangue, após diluições sucessivas. Um grupo não tratado foi utilizado como controle. Modelagem PK-PD: A partir dos dados farmacocinéticos e farmacodinâmicos obtidos, avaliou-se efeito de morte bacteriana em função do tempo com o auxílio do programa de regressão não-linear SCIENTIST® v.2.0. Resultados e Discussão: Os parâmetros farmacocinéticos após a administração de PIP (240 mg/kg) foram t½ de 40 ± 8 min; CL de 0,46 ± 0,021 (L/h/kg) e um Vdss de 0,30 ± 0,06 L/kg. O perfil de PIP livre tecidual foi previsto a partir dos parâmetros plasmáticos utilizando ajuste simultâneo dos dados de plasma e tecido e um fator de proporcionalidade de 0,342 ± 0,101. Os parâmetros do modelo PK-PD obtidos foram: EC50 de 1,31 ± 0,27 μg/mL e kmax 1,39 ± 0,20 h-1. Os valores dos parâmetros da modelagem PK-PD obtidos in vivo diferiram dos descritos na literatura para o mesmo antibiótico e bactéria quando simulados in vitro. Conclusões: O modelo Emax-modificado descreveu os perfis de crescimento e morte bacteriana em função do tempo obtidos nas diferentes posologias testadas sendo adequado para modelagem PK-PD da piperacilina nas condições experimentais investigadas. / Purpose: The objective of this study was to model the killing effect of a β-lactam antibiotic, piperacillin (PIP), in neutropenic and E. coli ATCC 25922 infected rats after different dosing regimens using a modified Emax PK-PD model. Methodology: Pharmacokinetic studies: Total plasma and free tissue concentrations of PIP, determined by microdialysis, were investigated after i.v. bolus of 240 mg/kg of the drug to immunecompromised (cyclophosphamide) and E. coli infected (107 CFU) Wistar rats. Microdialysis probes recoveries were determined by retrodialysis. Plasma and tissue samples were analyzed by HPLC. Pharmacodynamic studies: The infected rats were treated with iv bolus PIP 120 mg/kg or 240 mg/kg q8h, q6h, q4h. Three animals were sacrificed at predetermined times up to 24 hours. The infected muscle was removed, homogenized and the number of CFU/mL was determined by plate counting after 24 hours of incubation at 37ºC. A control group without treatment was used. PK-PD modeling: PIP killing effect as a function of time was fitted using the Emax-modified model with the aid of a non-linear regression computer program SCIENTIST® v.2.0. Results and Discussion: The pharmacokinetic parameters determined for PIP 240 mg/kg iv bolus were: t½ of 40 ± 8 min; CL of 0.46 ± 0.021 (L/h/kg) and Vdss of 0.30 ± 0.06 L/kg. Piperacillin free tissue levels were predicted using plasma data ina a simultaneous fitting with a proportionality factor of 0.342 ± 0.101. The parameters derived from PK-PD modeling were: bacterial killing rate (kmax) of 1.39 ± 0.20 h-1 concentration to produce 50% of de maximum effect (EC50) of 1.31 ± 0.27 μg/mL. The PK-PD parameters determined in vivo were different from those reported for the same bacteria and drug in vitro. Conclusions: The Emax model adequately described PIP antibacterial effect in animals for the different dosing regimens investigated.
14

Variabilité pharmacocinétique des anti-cancéreux : Application à la vinorelbine et au lapatinib / Pharmacokinetic variability of anticancer drugs : application with vinorelbine and lapatinib

Rezai Gharahbolagh, Keyvan 23 January 2012 (has links)
La mise en évidence de la variabilité pharmacocinétique et/ou pharmacodynamique permet l’optimisation de l’utilisation des cytotoxiques. L’association des thérapies ciblées à la chimiothérapie conventionnelle peut apporter des avantages supplémentaires en termes de bénéfice thérapeutique, mais aussi peut provoquer des interactions médicamenteuses et augmenter les variabilités interindividuelles. Les interactions médicamenteuses sont maintenant connues pour avoir un impact significatif sur l'élimination des médicaments.Le premier volet de ces travaux consiste à mesurer les concentrations sanguines de deux molécules (le lapatinib et la vinorelbine) chez les patientes et à les utiliser pour la modélisation pharmacocinétique. Cette modélisation a clairement montré l’influence du poids et du nombre des plaquettes sur la pharmacocinétique de la vinorelbine permettant ainsi de diminuer les variabilités pharmacocinétiques. Elle a également mis en évidence l’influence du lapatinib sur la pharmacocinétique de la vinorelbine. Cependant, compte tenu de l’absence de groupe témoin, nous n’avons pas réussi à obtenir une significativité statistique pour ces résultats. En parallèle, aucune influence de la vinorelbine sur le comportement pharmacocinétique du lapatinib n’a été mise en évidence.Le second volet concerne la modélisation de la réponse et de la tolérance des patientes pour cette association médicamenteuse (modélisation pharmacodynamique). La neutropénie est la toxicité dose-limitante et comme le lapatinib n’est pas connu pour être myélotoxique, nous avons modélisé cette toxicité par rapport au comportement pharmacocinétique de la vinorelbine. Là encore, nous avons observé une très forte tendance quant à l’influence du lapatinib sur la myélotoxicité de la vinorelbine. Concernant l’efficacité de cette association, la modélisation de l’évolution de la croissance tumorale a mis en évidence une synergie d’action entre ces deux molécules. A notre connaissance c’est la première fois qu’une telle modélisation tant du point de vue de la tolérance que de celui de la réponse, est réalisée lors d’une association de chimiothérapie classique et d’une thérapeutique ciblée.La modélisation PK-PD de population des médicaments anticancéreux peut apporter une aide précieuse aux cliniciens dans ce domaine. Elle peut également être essentielle dans la prise de décision clinique précoce. / The identification of sources of pharmacokinetic and / or pharmacodynamic variabilities, optimizes the use of cytotoxic agents. The combination of targeted therapies with conventional drugs may provide additional benefits in terms of therapeutic benefit, but also can cause drug interactions and increased variability. Drug interactions are known to have a significant impact on drug disposition.The first part of this work is to measure blood concentrations of two molecules (lapatinib and vinorelbine) in patients and to perform pharmacokinetic modeling. This modeling clearly showed the influence of weight and the platelet number on the pharmacokinetics of vinorelbine reducing thereby the pharmacokinetic variabilities. It also highlighted the influence of lapatinib on the pharmacokinetics of vinorelbine. However, due to the lack of control group, we failed to obtain statistical significance for these results. In parallel, no effect of vinorelbine on the pharmacokinetics of lapatinib has been detected.The second part concerns the modeling of the response and tolerance of patients for this drug combination (pharmacodynamic modeling). Neutropenia was detected as the dose-limiting toxicity of the combination and the fact that lapatinib is not known to be myelotoxic, we performed toxicity modeling based on the pharmacokinetics of vinorelbine. Again, we observed a strong tendency on the influence of lapatinib on the myelotoxicity of vinorelbine. Regarding the efficacy of this combination, tumor growth modeling showed a synergistic action between the two molecules. To our knowledge this is the first time that such a model, both in terms of tolerance and response, is implemented in a combination of conventional chemotherapy and targeted therapy.Population PK-PD modeling of cancer drugs can provide valuable assistance to clinicians in this field. It can also be essential in the early clinical decision making.
15

Abordagem farmacocinética e farmacodinâmica no monitoramento terapêutico de antimicrobianos em pacientes queimados da unidade de terapia intensiva / Pharmacokinetic and pharmacodynamic approach for antimicrobial therapeutic monitoring in burn patients from the intensive care unit

Giraud, Cristina Sanches 01 March 2011 (has links)
Introdução: A sepse é a maior causa de morbidade e mortalidade em pacientes queimados, uma vez que profundas alterações ocorrem na farmacocinética de agentes antimicrobianos prescritos para o controle das infecções. Além disso, pacientes queimados podem apresentar quadro de infecção por germes da comunidade, numa fase precoce de internação na UTI, e devem receber antimicrobianos que diferem daqueles indicados na sepse. Na vigência de infecção fúngica, o quadro se torna ainda mais grave para os pacientes queimados de prolongada internação e imunocomprometidos. Objetivo: Realizar o monitoramento plasmático de oito antimicrobianos largamente prescritos na UTI, a investigação da farmacocinética e a modelagem PK-PD para o ajuste do regime de dose e controle das infecções em pacientes queimados. Casuística: Investigaram-se 32 pacientes queimados internados na UTI/Unidade de Queimados - Divisão de Cirurgia Plástica do HC FMUSP, portadores de infecção recebendo pela via sistêmica sete antimicrobianos e um antifúngico. Métodos- Etapa Clinica: Os pacientes receberam os antimicrobianos geralmente em associação para o controle das infecções seguindo as recomendações da CCIH do hospital relativas ao regime de dose empírica inicial do controle de infecção na UTI de Queimados, na fase precoce e tardia da internação. Realizou-se o monitoramento plasmático do fluconazol, para a infecção fúngica, e dos sete antimicrobianos mais prescritos na UTI para os germes da comunidade e hospitalares (cefepime, ciprofloxacino, imipenem, oxacilina, piperacilina, sulfametoxazol e vancomicina) através das coletas de amostras sanguíneas de pico (termino da infusão) e vale (imediatamente antes da dose subseqüente). Complementarmente, a critério Clínico, foram colhidas amostras seriadas de sangue (pico, 1ª, 2ª, 4ª, 6ª e vale), totalizando seis coletas, para investigação da farmacocinética do agente que requereu ajuste de dose e individualização de terapia no paciente queimado. As coletas de sangue foram realizadas através de cateter venoso (2mL/coleta em tubos contendo EDTA sódico) pelo médico intensivista de plantão na UTI; o plasma foi obtido pela centrifugação para análise do fármaco de interesse ou então armazenado no congelador (-80o C) até o ensaio. Métodos - Etapa Analítica: Previamente à realização da Etapa Clínica, foi realizado no Laboratório o desenvolvimento, validação e otimização de método bioanalítico para quantificação dos oito antimicrobianos no plasma. Preferencialmente, as análises foram realizadas no dia da coleta de sangue do paciente, e o \"Laudo de Exame\" contendo os resultados foi expedido no mesmo dia ou na manhã do dia subseqüente possibilitando a intervenção precoce da Equipe Clínica e se necessária a substituição do regime empírico pela terapia individualizada dose ajustada. Métodos- Etapa estatística: A estatística propriamente dita foi realizada pelo tratamento estatístico com utilização do software GraphPad Instat 4.0., GraphPad Prism 4.0, pela utilização de testes paramétricos e não paramétricos. A modelagem farmacocinética foi realizada através da aplicação do software NonCompartmental Analysis, PK Solutions 2.0, aos pares de dados (C vs T) para cada antimicrobiano. Adicionalmente, aplicou-se o software GraphPad Prism 4.0 para a modelagem PK-PD, ferramenta importante na tomada de decisão relativa à alteração do regime empírico dos antimicrobianos. Resultados: Os pacientes queimados incluídos no protocolo eram adultos de ambos os sexos 23F/9M, 39,6 anos, 69,5 kg, 33,9% SCQ, e os agentes da queimadura foram para 27 pacientes/ térmico-fogo e para três pacientes/trauma elétrico; a lesão inalatória foi registrada em 11/32 pacientes. Foram realizados 303 seguimentos farmacoterapêuticos com a emissão de laudos de exame para os antimicrobianos prescritos aos pacientes nas fases precoce e tardia da internação. O ajuste de dose foi requerido para a vancomicina em 88% das solicitações de exame, cefepime (65%), sulfametozaxol (52%), fluconazol (74%) e imipenem (19%). Registrou-se alta variabilidade na farmacocinética para todos os antimicrobianos investigados. Adicionalmente, registrou-se alteração significativa dos parâmetros farmacocinéticos do imipenem, fluconazol, sulfametoxazol e vancomicina nos seguimentos de pacientes queimados com disfunção renal dialítica relativamente aqueles em que se registrou função renal preservada. A modelagem PK-PD para os diversos antimicrobianos se baseou nos parâmetros de predição de eficácia recomendados tais como o intervalo de tempo em que a concentração plasmática permaneceu acima da concentração inibitória mínima (%Δ T> CIM) para o cefepime, imipenem, oxacilina e piperacilina, ASCss0-24/CIM + Cssmax/CIM para o ciprofloxacino, ASCss0-24/CIM para o fluconazol e para a vancomicina e ASCss0-24/CIM +%Δ T> CIM para a sulfametoxazol. Conclusões: Registrou-se alta variabilidade na farmacocinética dos agentes investigados e a modelagem PK-PD justificou plenamente a substituição da terapia empírica inicial pela dose ajustada para a cobertura dos germes sensíveis, daqueles apresentando sensibilidade dose dependente ao antimicrobiano, além daqueles com alto CIM, pouco sensíveis as doses usuais. Finalmente, a modelagem PK-PD mostrou-se definitiva e ferramenta indispensável na manutenção desses agentes no arsenal terapêutico, garantindo terapia eficaz ao paciente queimado, evitando a emergência bacteriana e o desenvolvimento de resistência. / Introduction: Sepsis is a main cause of morbidity and mortality in burn patients, once pharmacokinetics of antimicrobials prescribed for the control of infections are significantly altered in those patients. In addition, burn patients in the ICU, initially can present infections by community microbial and must receive different antimicrobials than those prescribed for sepsis. On the other hand, burn immunocompromized patients with prolonged staying in the ICU, re-incidence of sepsis and fungal infection requires an effective antifungal agent that must be associated to the antimicrobials prescription. Objective: Therapeutic plasma monitoring of eight antimicrobials largely prescribed to burn patients from the ICU, Pharmacokinetic and PK-PD modeling for dose adjustment and for the control of infections. Study design: Thirty two burn inpatients with infections from the ICU Burns- Division of Plastic Surgery of Clinics Hospital Medical School University of Sao Paulo received systemically antimicrobials/ antifungal agents. Methods - Clinical Procedures: In general burn patients received several antimicrobial agents as recommended by the Control of Hospital Infection Committee as empirical dose at the beginning of therapy and also afterwards in the ICU. The control of infections by community microbials or yet by hospital microbials, and also for fungal infection, was performed by drug plasma monitoring of cefepime, ciprofloxacin, imipenem, oxacillin, piperacillin, sulphamethoxazole, vancomycin and fluconazole after blood sample collection at the peak and at the trough. Complementary, usually by clinical criteria, six blood sample collections were performed at time dose interval (end of drug infusion, 1st, 2nd, 4th, 6th and at the trough) for pharmacokinetic purposes, dose adjustment and individualization of drug therapy for burn patients. Blood sample collection was done by the physician from the ICU by venous catheter (2mL/each into blood collection tubes sodium EDTA); plasma obtained by centrifugation of blood tubes were analyzed in the same day or in a deep freezer to storage (-80o C) until assay. Methods - Analytical Procedures: Previously to the clinical study, in the Laboratory School of Pharmaceutical Sciences was performed the development, validation and optimization of bioanalytical methods for drug plasma monitoring of eight antimicrobial/antifungal agents by HPLC-UV. Drug measurements were performed on the day of blood collection and data were preferentially informed to the physician at the same day or at the early morning of the following day to facilitate the therapeutic intervention and changes on the morning prescription to guarantee drug efficacy. Methods Statistics Procedures: Descriptive statistics was performed by applying the software GraphPad Instat v 4.0., GraphPad Prism v.4.0 by parametric and non parametric tests. Pharmacokinetics was estimated by applying the software NonCompartmental Analysis, PK Solutions 2.0, to data (C vs T) for each antimicrobial agent. Additionally, the software GraphPad Prism v 4.0 was applied to PK-PD modeling, an important tool related to dilemma decision about changes on empirical dose of an antimicrobial agent and obviously helps the physician in the rationalization of drug therapy in severe burns. Results: Burn patients included in the protocol were of both genders 23F/9M, 39.6 yrs, 69.5 kg, 33.9% TBSA; agents of the accident were fire/ alcohol for 27 patients and electrical trauma for three patients; inhalation injury were described for 11/32 patients. Approximately 1500 drug plasma measurements for all antimicrobials prescribed to burn patients for the control of infection in the ICU were performed totalizing 303 follow up for pharmacokinetic purposes during the period in the ICU for 32 burn patients. Dose adjustment was required in 88% of vancomycin prescription, 65% for cefepime, 52% for sulphamethoxazole, 74% for fluconazole e 19% for imipenem. High pharmacokinetic variability was registered for all agents investigated. In addition, significant changes on pharmacokinetic parameters were described for imipenem, fluconazole, sulphamethoxazole and vancomycin for burn patients with dialytic renal dysfunction compared to those with renal function preserved. PK-PD modeling applied to antimicrobials investigated in the present study was based on predictive parameters recommended like time interval to maintain drug plasma concentration higher than the minimum effective concentration (%Δ T> MIC) for cefepime and also for imipenem, oxacillin and piperacillin; AUCss0-24/MIC plus Cssmax/MIC for ciprofloxacin, AUCss0-24/MIC for fluconazole and vancomycin, and finally, AUCss0-24/MIC plus %Δ T> MIC for sulphamethoxazole. Conclusions: High pharmacokinetic variability was obtained for all investigated agents. PK-PD modeling applied could justify definitively the antimicrobial therapy dose adjustment instead the empirical dose regimen. Then, drug efficacy was guaranteed against susceptible microbial, spreading to susceptible to antimicrobial dose dependent and also those presenting high value for MIC related to microbial resistance to empiric dose regimen. In conclusion, it was demonstrated that PK-PD modeling of antimicrobials with basis on predictive drug efficacy parameter is definitively an important tool to preserve and safeguard these agents for the control of severe infection in burn patients, to avoid the bacterial emergency and microbial resistance.
16

Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa / Pharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection

Torres, Bruna Gaelzer Silva January 2016 (has links)
Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes. / Biofilms are complex bacterial communities enclosed in self-produced polymeric matrices that can develop in inert surfaces or living tissues. Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. Due to this high resistance to antibiotics, it is difficult to establish an efficacious strategy for treatment of infections with biofilm formation leading to failure in infection eradication. In this context, the goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the antimicrobial effect of ciprofloxacin (CIP) in the presence of biofilms of Pseudomonas aeruginosa (ATCC 27853), since PK/PD modeling for antibacterial agents can be a useful tool to choose dosing regimens and to achieve the maximum bactericidal effect, minimizing the development of resistance. To reach this goal, firstly an analytical method based on HPLC/fluorescence was developed in order to quantify CIP in plasma and lung microdialysate. The developed method was simple, fast and with enough sensibility to proper characterize CIP plasma and lung pharmacokinetics. Secondly, an animal model of chronic lung infection was adapted from literature and standardized, allowing the analysis of CIP lung distribution in infected and healthy Wistar rats. Bacteria were immobilized in alginate beads prior to inoculation to Wistar rats in order to sustain the pneumonia for 14 days, maintaining a bacterial load superior to 108 CFU/lung. A microdialysis study was then conducted to evaluate free CIP concentrations after an intravenous administration of 20 mg/kg. Non-compartimental analysis (NCA) and populational PK modeling (PopPK) of the data were performed in Phoenix® and NONMEM®, respectively. Statistical differences were observed in the plasma clearance (1.59 ± 0.41 L/h/kg and 0.89 ± 0.44 L/h/kg) and elimination rate constant (0.23 ± 0.04 h-1and 0.14 ± 0.08 h-1) for healthy and infected rats, respectively, resulting in a significantly higher CIP plasma exposure in infected rats (AUC0-∞ = 27.3 ± 12.1 μg·h/mL) compare to healthy animals (AUC0-∞ = 13.3 ± 3.5 μg·h/mL) ( = 0.05). Besides the plasma exposure, a four times lower pulmonary penetration was observed in infected rat’s lungs (fT = 0.44) in comparison to healthy animals (fT = 1.69), with no significant differences in the lung elimination rate constant. Plasma and lung data were simultaneously fitted using a PopPK model consisting of an arterial and a venous compartment, two compartments representing different regions of the lungs and two peripheral distribution compartments, representing tissues other than lungs. A lung clearance was added to the model for infected animals (CLlung = 0.643 L/h/kg) to explain the lower tissue exposure. The model successfully described the plasma and microdialysis data from both, healthy and infected rats and allowed to correctly describe the changes in CIP plasma and lung disposition in biofilm infections. For the pharmacodynamic studies, CIP bactericidal effect against Pseudomonas aeruginosa biofilms and planktonic shedding cells were simultaneously evaluated using the time-kill curves approach. For the time-kill curves construction, P. aeruginosa biofilms were formed in acrylic blocks, which was confirmed by the crystal violet assay and scanning electron microscopy. The blocks were placed in flasks containing Mueller-Hinton growth medium and exposed to constant CIP concentrations (ranging from 0.0625 to 10 μg/mL). At pre-determined time points, biofilm and planktonic cells were sampled for bacterial counting. A mechanism-based model which incorporates a sigmoidal Emax model was used to describe the CIP effect against P.aeruginosa in both llifestyles, biofilm and planktonic. The presence of a pre-existing resistant subpopulation was included in the model and also modeled with a sigmoidal Emax model to describe CIP effect in this subpopulation. Comparison of the parameter estimates showed that the in vitro effect of CIP is higher for planktonic cells (EC50 = 0.259 mg/L and 0.123 mg/L and Emax = 2.25 h-1 and 5.59 h-1 for biofilm and planktonic cells, respectively). CIP potency was much lower for the resistant subpopulation, for both bacteria lifestyles (EC50 = 2.71 mg/L and 1.15 mg/L for biofilm and planktonic, respectively). The developed models can be used to simulate untested scenarios and serve as a tool to guide dosing regimen selection, contributing for the therapeutic success of treatments of biofilm-associated infections.
17

Modelagem farmacocinética-farmacodînâmica das fluorquinolonas levofloxacino e gatifloxacino / Pharmacokinetic-Pharmacodynamic modeling of the fluoroquinolones levofloxacin and gatifloxacin

Tasso, Leandro January 2008 (has links)
Objetivo: O objetivo geral deste trabalho foi estabelecer modelo farmacocinéticofarmacodinâmico (modelo PK/PD) para descrever o perfil temporal do efeito bactericida do levofloxacino e do gatifloxacino contra Streptococcus pneumoniae. Método: Para alcançar este objetivo as seguintes etapas foram realizadas: i) foram validadas metodologias analíticas de SPE-HPLC para o gatifloxacino e HPLC para o levofloxacino e o gatifloxacino para quantificação destes em amostras de plasma, microdialisado tecidual e caldo de cultura; ii) foi avaliada a farmacocinética do gatifloxacino em roedores nas doses de 6 e 12 mg/kg via oral e 6 mg/kg via intravenosa (i.v.) e a biodisponibilidade oral foi determinada; iii) foram estabelecidas as condições ideais para microdiálise do gatifloxacino e as taxas de recuperação in vitro, por diálise (EE), retrodiálise (RD) e fluxo líquido zero (NNF) e in vivo, em tecido pulmonar e muscular, por retrodiálise e fluxo líquido zero. Essas recuperações foram utilizadas para determinar a penetração pulmonar do gatifloxacino após a administração i.v. bolus de 6 mg/kg a ratos Wistar sadios; iv) foram simuladas as concentrações livres pulmonares esperadas para humanos após tratamento com diferentes regimes de dosagem para o levofloxacino e o gatifloxacino em modelo de infecção in vitro frente a Streptococcus pneumoniae ATCC® 49619. Simulações de concentrações constantes múltiplas do MIC de cada fármaco também foram realizadas. As curvas de morte bacteriana por tempo obtidas foram modeladas com modelo PK/PD de Emax modificado, com auxílio do programa Scientist® v 2.01. Resultados e Conclusões: i) Os métodos analíticos por SPE-HPLC e HPLC para quantificação do gatifloxacino e do levofloxacino foram validados. As curvas foram lineares na faixa de 20 a 600 ng/mL para plasma e microdialisado tecidual de gatifloxacino e na faixa de 250 a 6000 ng/mL para caldo de cultura para ambos os fármacos, com r > 0,99, independente do método desenvolvido. Em plasma e microdialisado, a exatidão foi ≥ 94,3 %. A recuperação do gatifloxacino dos cartuchos de extração em fase sólida variou entre 95,6 e 99,7 %. A precisão não excedeu 5,8 % do CV. Em caldo de cultura, a exatidão foi ≥ 92,0 % e 93,4 % para o gatifloxacino e o levofloxacino, respectivamente. A precisão não excedeu 3,2 % e 4,2 % do CV para o levofloxacino e o gatifloxacino, respectivamente; ii) A avaliação farmacocinética demonstrou que os modelos abertos de dois compartimentos e de um compartimento com absorção de primeira ordem descreveram adequadamente os perfis plasmáticos após administração do gatifloxacino pelas vias i.v. e oral nas doses de 6 e 12 mg/kg, com CL de 0,9 ± 0,2 e 1,0 ± 0,3 L/h/kg, t½ de 3,3 ± 0,8 e 3,7 ± 0,3 h e Vd de 2,8 ± 0,4 e 3,1 ± 1,0 L/kg, respectivamente. Os parâmetros determinados por abordagem compartimental e não compartimental não diferiram significativamente para as duas vias investigadas (α = 0,05). A ASC0-∞ foi de 4,1 ± 1,6 e 6,6 ± 1,3 μg.h/mL após administração oral e i.v. das doses de 12 e 6 mg/kg, respectivamente, levando a uma biodisponibilidade de 31%. A constante de velocidade de absorção foi alta (5,0 ± 1,8 h-1) e a farmacocinética mostrou-se linear na faixa de doses investigada; iii) A recuperação das sondas de microdiálise in vitro por EE e RD para 80, 160 e 400 ng/mL de gatifloxacino foi de 33,5 ± 1,3%, 33,1 ± 1,2%, 31,8 ± 2,7% e 31,4 ± 2,6%, 33,1 ± 2,2%, 30,6 ± 3,3%, respectivamente. In vivo a recuperação por RD no músculo esquelético e pulmão de ratos Wistar foi de 29,1 ± 1,0% e 30,7 ± 1,4%, respectivamente. A recuperação por NNF in vitro e in vivo foi de 30,9 ± 2,9% e 29,0 ± 0,8%, respectivamente. Desse modo, concluiu-se que a recuperação foi constante e independente do método ou meio utilizado. Os perfis de concentração livre no músculo, pulmão e plasma de ratos Wistar foram virtualmente superpostos após dose de 6 mg/kg i.v., resultando em ASC similares de 3888 ± 734 ng.h/mL, 4138 ± 1071 ng.h/mL e 3805 ± 577 ng.h/mL, respectivamente (α = 0,05). O fator de distribuição tecidual foi de 1,02 e 1,08 para músculo e pulmão, respectivamente; iv) O modelo PK/PD empregado foi capaz de descrever o efeito do levofloxacino e do gatifloxacino contra o Streptococcus pneumoniae in vitro para todas as simulações investigadas. O EC50 médio para o levofloxacino (3,57 ± 2,16 mg/L) foi significativamente maior que o do gatifloxacino (0,95 ± 0,56 mg/L) quando regimes de doses múltiplas foram simulados. O mesmo foi observado para concentrações constantes, sendo o EC50,levofloxacino = 2,75 ± 0,45 mg/L e EC50,gatifloxacino = 1,03 ± 0,52 mg/L. O kmax foi estatisticamente semelhante para ambos os fármacos independente se foram simuladas concentrações flutuantes (kmax,levofloxacino = 0,40 ± 0,19 h-1; kmax,gatifloxacino = 0,48 ± 0,15 h-1) ou concentrações constantes (kmax,levofloxacino = 0,34 ± 0,06 h-1; kmax,gatifloxacino = 0,39 ± 0,23 h-1). Nenhum dos índices PK/PD foi capaz de prever o desfecho da infecção para todas as situações investigadas. O modelo PK/PD desenvolvido permitiu a comparação entre as duas fluorquinolonas e de diferentes posologias para cada fármaco, podendo ser utilizado para simular o efeito temporal de regimes de dosagem alternativos bem como para otimização da posologia desses fármacos para o tratamento da pneumonia adquirida na comunidade. / Objective: The aim of this work was to establish a pharmacokinetic-pharmacodynamic model (PK/PD model) to describe the profile of bactericidal effect over time of levofloxacin and gatifloxacin against Streptococcus pneumoniae. Method: To achieve this goal the following steps were carried out: i) an analytical method of SPE-HPLC to quantify gatifloxacin in plasma and tissue microdialysates, and an HPLC method for measuring levofloxacin and gatifloxacin in culture broth samples were developed and validated; ii) the pharmacokinetics of gatifloxacin in rodents after intravenous (6 mg/kg) and oral (6 and 12 mg/kg) administration was assessed as well as the oral bioavailability of the drug was determined; iii) microdialysis conditions for gatifloxacin were established and the recovery rates in vitro by dialysis (EE), retrodialysis (RD) and no-net-flux (NNF), and in vivo in lung and skeletal muscle tissue by RD and NNF were determined. Gatifloxacin tissue penetration in lung after intravenous administration (6 mg/kg) to healthy Wistar rats was determined; iv) levofloxacin and gatifloxacin free lung concentrations expected in humans following different dosing regimens of the drugs were simulated using Streptococcus pneumoniae ATCC® 49619 in vitro model of infection. The effect of constant concentrations multiples of MIC were also investigated. The time-kill curves obtained were modeled using an Emax modified model using Scientist® v. 2.01 software. Results and Conclusions: i) The analytical methods by SPE-HPLC and HPLC for quantifying gatifloxacin and levofloxacin were validated. Calibration curves were linear between 20-600 ng/mL for gatifloxacin in plasma and tissue microdialysate samples and between 250-6000 ng/mL for broth media for both drugs, with r > 0.99 independently of the method considered. The accuracy was ≥ 94.3 % for plasma and microdialysate. Gatifloxacin recovery from the solid phase extraction cartridges ranged from 95.6 to 99.7%. The precision did not exceed 5.8% of the CV. In broth media the accuracy was ≥ 92.0% and 94.3% for gatifloxacin and levofloxacin, respectively. The precision did not exceed 3.2% and 4.2% of the CV for levofloxacin and gatifloxacin, respectively; ii) Gatifloxacin experimental plasma profiles in rats were adequately fitted to a two-compartment model after intravenous and to a one compartment model with first order absorption after oral dosing. The total clearance (0.9 ± 0.2 and 1.0 ± 0.3 L/h/kg), the terminal half-life (3.3 ± 0.8 and 3.7 ± 0.3 h) and the apparent volume of distribution (2.8 ± 0.4 and 3.1 ± 1.0 L/kg) were statistically similar (α = 0.05) after i.v. and oral administration, by both model independent and compartmental approaches. The area under the curve was reduced after oral dosing (4.1 ± 1.6 μg.h/mL) in comparison to i.v. dosing (6.6 ± 1.3 μg.h/mL) leading to an oral bioavailability of 31%. The absorption was fast, with a constant rate of 5.0 ± 1.8 h-1. The results evidenced the linear pharmacokinetics of gatifloxacin in rodents in the dose range investigated; iii) Microdialysis recoveries determined in vitro by EE and RD at 80, 160 and 400 ng/mL resulted in 33.5 ± 1.3%, 33.1 ± 1.2%, 31.8 ± 2.7% and 31.4 ± 2.6%, 33.1 ± 2.2%, 30.6 ± 3.3%, respectively. In vivo recovery by RD in Wistar rat’s skeletal muscle and lung were 29.1 ± 1.0% and 30.7 ± 1.4%, respectively. Recoveries by no-net-flux in vitro and in vivo resulted in recoveries of 30.9 ± 2.9% and 29.0 ± 0.8%, respectively. In this way, it was shown that gatifloxacin recovery was constant and independent of the method or media used. Free skeletal muscle, lung and plasma profiles were virtually superimposed after i.v. administration of gatifloxacin 6 mg/kg dose resulting in similar area under the curve of 3888 ± 734 ng.h/mL, 4138 ± 1071 ng.h/mL and 3805 ± 577 ng.h/mL, respectively (α = 0.05). The tissue distribution factors were determined to be 1.02 and 1.08 for muscle and lung, respectively; iv) The PK/PD model used was able to describe the effect of levofloxacin and gatifloxacin against Streptococcus pneumoniae in vitro for all the regimens investigated. Levofloxacin EC50 (3.57 ± 2.16 mg/L) was higher than gatifloxacin (0.95 ± 0.56 mg/L) when multiple dosing regimens where simulated. Using constant concentrations, levofloxacin EC50 was also higher than gatifloxacin (EC50,levofloxacin = 2.75 ± 0.45 mg/L; EC50,gatifloxacin = 1.03 ± 0.52 mg/L). The kmax was statistically similar for both drugs independent of whether fluctuating (kmax,levofloxacin = 0.40 ± 0.19 h-1; kmax,gatifloxacin = 0.48 ± 0.15 h-1) or constant concentrations (kmax,levofloxacin = 0.34 ± 0.06 h-1; kmax,gatifloxacin = 0.39 ± 0.23 h-1) were simulated. None of the PK/PD indices was capable of predicting the infection outcome for all the situations investigated. The PK/PD model developed allowed not only the comparison between the fluoroquinolones effect but also the comparison of different dosing regimes for the same drug and can be used for simulating alternative regimens and optimizing therapy of these drugs to treat community-acquired pneumonia.
18

Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa / Pharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection

Torres, Bruna Gaelzer Silva January 2016 (has links)
Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes. / Biofilms are complex bacterial communities enclosed in self-produced polymeric matrices that can develop in inert surfaces or living tissues. Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. Due to this high resistance to antibiotics, it is difficult to establish an efficacious strategy for treatment of infections with biofilm formation leading to failure in infection eradication. In this context, the goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the antimicrobial effect of ciprofloxacin (CIP) in the presence of biofilms of Pseudomonas aeruginosa (ATCC 27853), since PK/PD modeling for antibacterial agents can be a useful tool to choose dosing regimens and to achieve the maximum bactericidal effect, minimizing the development of resistance. To reach this goal, firstly an analytical method based on HPLC/fluorescence was developed in order to quantify CIP in plasma and lung microdialysate. The developed method was simple, fast and with enough sensibility to proper characterize CIP plasma and lung pharmacokinetics. Secondly, an animal model of chronic lung infection was adapted from literature and standardized, allowing the analysis of CIP lung distribution in infected and healthy Wistar rats. Bacteria were immobilized in alginate beads prior to inoculation to Wistar rats in order to sustain the pneumonia for 14 days, maintaining a bacterial load superior to 108 CFU/lung. A microdialysis study was then conducted to evaluate free CIP concentrations after an intravenous administration of 20 mg/kg. Non-compartimental analysis (NCA) and populational PK modeling (PopPK) of the data were performed in Phoenix® and NONMEM®, respectively. Statistical differences were observed in the plasma clearance (1.59 ± 0.41 L/h/kg and 0.89 ± 0.44 L/h/kg) and elimination rate constant (0.23 ± 0.04 h-1and 0.14 ± 0.08 h-1) for healthy and infected rats, respectively, resulting in a significantly higher CIP plasma exposure in infected rats (AUC0-∞ = 27.3 ± 12.1 μg·h/mL) compare to healthy animals (AUC0-∞ = 13.3 ± 3.5 μg·h/mL) ( = 0.05). Besides the plasma exposure, a four times lower pulmonary penetration was observed in infected rat’s lungs (fT = 0.44) in comparison to healthy animals (fT = 1.69), with no significant differences in the lung elimination rate constant. Plasma and lung data were simultaneously fitted using a PopPK model consisting of an arterial and a venous compartment, two compartments representing different regions of the lungs and two peripheral distribution compartments, representing tissues other than lungs. A lung clearance was added to the model for infected animals (CLlung = 0.643 L/h/kg) to explain the lower tissue exposure. The model successfully described the plasma and microdialysis data from both, healthy and infected rats and allowed to correctly describe the changes in CIP plasma and lung disposition in biofilm infections. For the pharmacodynamic studies, CIP bactericidal effect against Pseudomonas aeruginosa biofilms and planktonic shedding cells were simultaneously evaluated using the time-kill curves approach. For the time-kill curves construction, P. aeruginosa biofilms were formed in acrylic blocks, which was confirmed by the crystal violet assay and scanning electron microscopy. The blocks were placed in flasks containing Mueller-Hinton growth medium and exposed to constant CIP concentrations (ranging from 0.0625 to 10 μg/mL). At pre-determined time points, biofilm and planktonic cells were sampled for bacterial counting. A mechanism-based model which incorporates a sigmoidal Emax model was used to describe the CIP effect against P.aeruginosa in both llifestyles, biofilm and planktonic. The presence of a pre-existing resistant subpopulation was included in the model and also modeled with a sigmoidal Emax model to describe CIP effect in this subpopulation. Comparison of the parameter estimates showed that the in vitro effect of CIP is higher for planktonic cells (EC50 = 0.259 mg/L and 0.123 mg/L and Emax = 2.25 h-1 and 5.59 h-1 for biofilm and planktonic cells, respectively). CIP potency was much lower for the resistant subpopulation, for both bacteria lifestyles (EC50 = 2.71 mg/L and 1.15 mg/L for biofilm and planktonic, respectively). The developed models can be used to simulate untested scenarios and serve as a tool to guide dosing regimen selection, contributing for the therapeutic success of treatments of biofilm-associated infections.
19

Modelagem pk/pd das fluoroquinolonas levofloxacino e moxifloxacino visando o tratamento da prostatite / PK/PD modeling of the fluoroquinolones levofloxacin and moxifloxacin aiming at the treatment of prostatitis

Hurtado, Felipe Kellermann January 2014 (has links)
Objetivo: O objetivo geral deste trabalho foi desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito bactericida in vitro das fluoroquinolonas levofloxacino (LEV) e moxifloxacino (MXF)contra Escherichia coli, baseando-se em dados in vivo de concentração livre prostática. Métodos: Ratos Wistar machos foram utilizados nos experimentos in vivo para determinação da farmacocinética plasmática e prostática do LEV (7 mg/kg) e MXF (6 e 12 mg/kg) após dose i.v. bolus. As concentrações livres prostáticas foram determinadas por microdiálise. A coleta das amostras de plasma e dialisado de tecido foi realizada simultaneamente nos animais previamente anestesiados com uretano para determinação do fator de distribuição tecidual (fT). Para a quantificação do LEV e MXF nas amostras de plasma e dialisado, métodos analíticos foram validados. Análise farmacocinética não-compartimental e modelagem compartimental dos dados foram realizadas utilizando o WinNonlin® e NONMEM® v. 6, respectivamente. Os experimentos de farmacodinâmica in vitro foram executados utilizando sistema composto de caldo de cultura Mueller-Hinton no qual a bactéria teste (Escherichia coli ATCC 25922) foi exposta a concentrações constantes e flutuantes dos antimicrobianos. O número de colônias bacterianas viáveis (CFU/mL) foi determinado em função do tempo e utilizado como parâmetro farmacodinâmico para construção das curvas de morte bacteriana (time-kill curves). Nos experimentos de time-kill curves estáticos, concentrações baseadas em múltiplos da MIC na faixa de 0.008–2 mg/L foram utilizadas, enquanto que no dinâmico a meia-vida de eliminação do LEV em humanos foi simulada no sistema in vitro através de diluição constante do caldo de cultura. Resultados e Discussão: Um método analítico por HPLC-fluorescência foi desenvolvido e validado para a quantificação do MXF nas amostras biológicas. Método analítico também foi validado para quantificação do LEV nas amostras. Os perfis plasmáticos e teciduais das duas fluoroquinolonas foram modelados simultaneamente utilizando modelo de três compartimentos considerando transporte linear (difusão passiva) e saturável (cinética de Michaelis-Menten). O modelo, que foi o mais adequado para descrever os dados experimentais, sugere a presença de transportadores de efluxo na próstata. A penetração prostática média do MXF foi significativamente maior que a do LEV (fT = 1.24 vs. 0.78) e foi independente da dose. Em ratos, não foi observada diferença na meia-vida plasmática média entre LEV (5.0 h) e MXF (4.9 h), embora a meia-vida tecidual foi ligeiramente maior para o MXF (3.3 vs. 2.3 h). Usando a abordagem populacional de modelagem PK/PD, modelo de Emax sigmoidal foi utilizado para descrever o efeito das duas quinolonas frente a E. coli tanto nos experimentos de concentração estática quanto dinâmica. A comparação dos parâmetros PK/PD estimados mostrou que o MXF apresenta potência superior ao LEV contra a cepa através da comparação dos valores de EC50, embora ambos tenham apresentado eficácia comparável (Emax de 1.85 e 1.83 h-1 para MXF e LEV, respectivamente). Para o LEV, os esquemas posológicos de 500 mg q12 h e 1000 mg q24 h apresentaram maior eficácia no período de 24 h, pois promoveram a inibição completa do recrescimento bacteriano observado nos outros dois regimes de dose testados. Conclusões: A correlação dos dados de farmacocinéticain vivo com os experimentos de farmacodinâmica in vitro, seguida da construção do modelo PK/PD de efeito máximo, possibilitou explorar a relação do efeito antimicrobiano em função do tempo baseada em concentrações livres esperadas na prostatite. / Objective: The aim of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the in vitro bactericidal effect of the fluoroquinolones levofloxacin (LEV) and moxifloxacin (MXF) against Escherichia coli based on free concentrations in prostate tissue measured in vivo. Methods: Pharmacokinetic experiments were conducted in male Wistar rats for the determination of plasma and free prostate concentrations of LEV (7 mg/kg) and MXF (6 and 12 mg/kg) after i.v. bolus administration. Blood and tissue dialysate samples were collected simultaneously in the group of rats previously anesthetized with urethane to determine the tissue distribution factor (fT). To quantify MXF and LEV in plasma and dialysate samples obtained after administration of the quinolones, analytical methods based on HPLC-fluorescence were developed and validated accordingly. Non-compartmental analysis and compartmental PK modeling of the data was performed in WinNonlin® and NONMEM® v. 6, respectively. The in vitro pharmacodynamic experiments were executed by using a system composed of Mueller-Hinton growth medium in which the test bacterial strain (Escherichia coli ATCC 25922) was exposed to constant and fluctuating antimicrobial concentrations. The number of viable colony-forming units (CFU/mL) was determined as a function of time and used as the pharmacodynamic parameter for construction of bacterial time-kill curves. In the static time-kill curves, concentrations in the range of 0.008-2 mg/L were tested based on multiples of the MIC, whereas in the dynamic time-kill curves the half-life of LEV in humans was simulated in the in vitro system by stepwise dilution of the growth medium. Results and Discussion: An HPLC-fluorescence method was developed and fully validated to quantify MXF in biological fluids. A method was also validated to determine LEV in the samples. Plasma and prostate concentrations of both drugs were simultaneously fitted using a three-compartment model considering linear (passive diffusion) and saturable transport (Michaelis-Menten kinetics), suggesting the presence of efflux transporters in the prostate. The average tissue penetration of MXF in the prostate was significantly higher than that of LEV (fT = 1.24 vs. 0.78) and was independent of the dose. In rats, differences in average plasma half-life between plasma LEV (5.0 h) and MXF (4.9 h) were not observed, even though the tissue half-life was slightly longer for MXF (3.3 vs. 2.3 h). Using a population PK/PD modeling approach, a sigmoidal Emax model was used to describe the effect of the two quinolones against E. coli both in the static as well as in the dynamic time-kill curves. Comparison of the PK/PD parameter estimates showed that the in vitro potency of MXF is higher than LEV against the strain tested as shown by EC50 values, but both presented equivalent efficacy (Emax of 1.85 and 1.83 h-1 for MXF and LEV, respectively). For LEV, the dosing regimens of 500 mg q12 h and 1,000 mg q24 h showed overall greater efficacy over the 24 h period as they resulted in complete inhibition of bacterial regrowth observed in the other two dosing regimens tested. Conclusions: The correlation of in vivo pharmacokinetic data with in vitro pharmacodynamic experiments, followed by the development of an Emax PK/PD model, allowed determining the relationship between the bactericidal effect as a function of time based on free tissue concentrations expected in the site of infection.
20

Modelagem farmacocinética-farmacodînâmica das fluorquinolonas levofloxacino e gatifloxacino / Pharmacokinetic-Pharmacodynamic modeling of the fluoroquinolones levofloxacin and gatifloxacin

Tasso, Leandro January 2008 (has links)
Objetivo: O objetivo geral deste trabalho foi estabelecer modelo farmacocinéticofarmacodinâmico (modelo PK/PD) para descrever o perfil temporal do efeito bactericida do levofloxacino e do gatifloxacino contra Streptococcus pneumoniae. Método: Para alcançar este objetivo as seguintes etapas foram realizadas: i) foram validadas metodologias analíticas de SPE-HPLC para o gatifloxacino e HPLC para o levofloxacino e o gatifloxacino para quantificação destes em amostras de plasma, microdialisado tecidual e caldo de cultura; ii) foi avaliada a farmacocinética do gatifloxacino em roedores nas doses de 6 e 12 mg/kg via oral e 6 mg/kg via intravenosa (i.v.) e a biodisponibilidade oral foi determinada; iii) foram estabelecidas as condições ideais para microdiálise do gatifloxacino e as taxas de recuperação in vitro, por diálise (EE), retrodiálise (RD) e fluxo líquido zero (NNF) e in vivo, em tecido pulmonar e muscular, por retrodiálise e fluxo líquido zero. Essas recuperações foram utilizadas para determinar a penetração pulmonar do gatifloxacino após a administração i.v. bolus de 6 mg/kg a ratos Wistar sadios; iv) foram simuladas as concentrações livres pulmonares esperadas para humanos após tratamento com diferentes regimes de dosagem para o levofloxacino e o gatifloxacino em modelo de infecção in vitro frente a Streptococcus pneumoniae ATCC® 49619. Simulações de concentrações constantes múltiplas do MIC de cada fármaco também foram realizadas. As curvas de morte bacteriana por tempo obtidas foram modeladas com modelo PK/PD de Emax modificado, com auxílio do programa Scientist® v 2.01. Resultados e Conclusões: i) Os métodos analíticos por SPE-HPLC e HPLC para quantificação do gatifloxacino e do levofloxacino foram validados. As curvas foram lineares na faixa de 20 a 600 ng/mL para plasma e microdialisado tecidual de gatifloxacino e na faixa de 250 a 6000 ng/mL para caldo de cultura para ambos os fármacos, com r > 0,99, independente do método desenvolvido. Em plasma e microdialisado, a exatidão foi ≥ 94,3 %. A recuperação do gatifloxacino dos cartuchos de extração em fase sólida variou entre 95,6 e 99,7 %. A precisão não excedeu 5,8 % do CV. Em caldo de cultura, a exatidão foi ≥ 92,0 % e 93,4 % para o gatifloxacino e o levofloxacino, respectivamente. A precisão não excedeu 3,2 % e 4,2 % do CV para o levofloxacino e o gatifloxacino, respectivamente; ii) A avaliação farmacocinética demonstrou que os modelos abertos de dois compartimentos e de um compartimento com absorção de primeira ordem descreveram adequadamente os perfis plasmáticos após administração do gatifloxacino pelas vias i.v. e oral nas doses de 6 e 12 mg/kg, com CL de 0,9 ± 0,2 e 1,0 ± 0,3 L/h/kg, t½ de 3,3 ± 0,8 e 3,7 ± 0,3 h e Vd de 2,8 ± 0,4 e 3,1 ± 1,0 L/kg, respectivamente. Os parâmetros determinados por abordagem compartimental e não compartimental não diferiram significativamente para as duas vias investigadas (α = 0,05). A ASC0-∞ foi de 4,1 ± 1,6 e 6,6 ± 1,3 μg.h/mL após administração oral e i.v. das doses de 12 e 6 mg/kg, respectivamente, levando a uma biodisponibilidade de 31%. A constante de velocidade de absorção foi alta (5,0 ± 1,8 h-1) e a farmacocinética mostrou-se linear na faixa de doses investigada; iii) A recuperação das sondas de microdiálise in vitro por EE e RD para 80, 160 e 400 ng/mL de gatifloxacino foi de 33,5 ± 1,3%, 33,1 ± 1,2%, 31,8 ± 2,7% e 31,4 ± 2,6%, 33,1 ± 2,2%, 30,6 ± 3,3%, respectivamente. In vivo a recuperação por RD no músculo esquelético e pulmão de ratos Wistar foi de 29,1 ± 1,0% e 30,7 ± 1,4%, respectivamente. A recuperação por NNF in vitro e in vivo foi de 30,9 ± 2,9% e 29,0 ± 0,8%, respectivamente. Desse modo, concluiu-se que a recuperação foi constante e independente do método ou meio utilizado. Os perfis de concentração livre no músculo, pulmão e plasma de ratos Wistar foram virtualmente superpostos após dose de 6 mg/kg i.v., resultando em ASC similares de 3888 ± 734 ng.h/mL, 4138 ± 1071 ng.h/mL e 3805 ± 577 ng.h/mL, respectivamente (α = 0,05). O fator de distribuição tecidual foi de 1,02 e 1,08 para músculo e pulmão, respectivamente; iv) O modelo PK/PD empregado foi capaz de descrever o efeito do levofloxacino e do gatifloxacino contra o Streptococcus pneumoniae in vitro para todas as simulações investigadas. O EC50 médio para o levofloxacino (3,57 ± 2,16 mg/L) foi significativamente maior que o do gatifloxacino (0,95 ± 0,56 mg/L) quando regimes de doses múltiplas foram simulados. O mesmo foi observado para concentrações constantes, sendo o EC50,levofloxacino = 2,75 ± 0,45 mg/L e EC50,gatifloxacino = 1,03 ± 0,52 mg/L. O kmax foi estatisticamente semelhante para ambos os fármacos independente se foram simuladas concentrações flutuantes (kmax,levofloxacino = 0,40 ± 0,19 h-1; kmax,gatifloxacino = 0,48 ± 0,15 h-1) ou concentrações constantes (kmax,levofloxacino = 0,34 ± 0,06 h-1; kmax,gatifloxacino = 0,39 ± 0,23 h-1). Nenhum dos índices PK/PD foi capaz de prever o desfecho da infecção para todas as situações investigadas. O modelo PK/PD desenvolvido permitiu a comparação entre as duas fluorquinolonas e de diferentes posologias para cada fármaco, podendo ser utilizado para simular o efeito temporal de regimes de dosagem alternativos bem como para otimização da posologia desses fármacos para o tratamento da pneumonia adquirida na comunidade. / Objective: The aim of this work was to establish a pharmacokinetic-pharmacodynamic model (PK/PD model) to describe the profile of bactericidal effect over time of levofloxacin and gatifloxacin against Streptococcus pneumoniae. Method: To achieve this goal the following steps were carried out: i) an analytical method of SPE-HPLC to quantify gatifloxacin in plasma and tissue microdialysates, and an HPLC method for measuring levofloxacin and gatifloxacin in culture broth samples were developed and validated; ii) the pharmacokinetics of gatifloxacin in rodents after intravenous (6 mg/kg) and oral (6 and 12 mg/kg) administration was assessed as well as the oral bioavailability of the drug was determined; iii) microdialysis conditions for gatifloxacin were established and the recovery rates in vitro by dialysis (EE), retrodialysis (RD) and no-net-flux (NNF), and in vivo in lung and skeletal muscle tissue by RD and NNF were determined. Gatifloxacin tissue penetration in lung after intravenous administration (6 mg/kg) to healthy Wistar rats was determined; iv) levofloxacin and gatifloxacin free lung concentrations expected in humans following different dosing regimens of the drugs were simulated using Streptococcus pneumoniae ATCC® 49619 in vitro model of infection. The effect of constant concentrations multiples of MIC were also investigated. The time-kill curves obtained were modeled using an Emax modified model using Scientist® v. 2.01 software. Results and Conclusions: i) The analytical methods by SPE-HPLC and HPLC for quantifying gatifloxacin and levofloxacin were validated. Calibration curves were linear between 20-600 ng/mL for gatifloxacin in plasma and tissue microdialysate samples and between 250-6000 ng/mL for broth media for both drugs, with r > 0.99 independently of the method considered. The accuracy was ≥ 94.3 % for plasma and microdialysate. Gatifloxacin recovery from the solid phase extraction cartridges ranged from 95.6 to 99.7%. The precision did not exceed 5.8% of the CV. In broth media the accuracy was ≥ 92.0% and 94.3% for gatifloxacin and levofloxacin, respectively. The precision did not exceed 3.2% and 4.2% of the CV for levofloxacin and gatifloxacin, respectively; ii) Gatifloxacin experimental plasma profiles in rats were adequately fitted to a two-compartment model after intravenous and to a one compartment model with first order absorption after oral dosing. The total clearance (0.9 ± 0.2 and 1.0 ± 0.3 L/h/kg), the terminal half-life (3.3 ± 0.8 and 3.7 ± 0.3 h) and the apparent volume of distribution (2.8 ± 0.4 and 3.1 ± 1.0 L/kg) were statistically similar (α = 0.05) after i.v. and oral administration, by both model independent and compartmental approaches. The area under the curve was reduced after oral dosing (4.1 ± 1.6 μg.h/mL) in comparison to i.v. dosing (6.6 ± 1.3 μg.h/mL) leading to an oral bioavailability of 31%. The absorption was fast, with a constant rate of 5.0 ± 1.8 h-1. The results evidenced the linear pharmacokinetics of gatifloxacin in rodents in the dose range investigated; iii) Microdialysis recoveries determined in vitro by EE and RD at 80, 160 and 400 ng/mL resulted in 33.5 ± 1.3%, 33.1 ± 1.2%, 31.8 ± 2.7% and 31.4 ± 2.6%, 33.1 ± 2.2%, 30.6 ± 3.3%, respectively. In vivo recovery by RD in Wistar rat’s skeletal muscle and lung were 29.1 ± 1.0% and 30.7 ± 1.4%, respectively. Recoveries by no-net-flux in vitro and in vivo resulted in recoveries of 30.9 ± 2.9% and 29.0 ± 0.8%, respectively. In this way, it was shown that gatifloxacin recovery was constant and independent of the method or media used. Free skeletal muscle, lung and plasma profiles were virtually superimposed after i.v. administration of gatifloxacin 6 mg/kg dose resulting in similar area under the curve of 3888 ± 734 ng.h/mL, 4138 ± 1071 ng.h/mL and 3805 ± 577 ng.h/mL, respectively (α = 0.05). The tissue distribution factors were determined to be 1.02 and 1.08 for muscle and lung, respectively; iv) The PK/PD model used was able to describe the effect of levofloxacin and gatifloxacin against Streptococcus pneumoniae in vitro for all the regimens investigated. Levofloxacin EC50 (3.57 ± 2.16 mg/L) was higher than gatifloxacin (0.95 ± 0.56 mg/L) when multiple dosing regimens where simulated. Using constant concentrations, levofloxacin EC50 was also higher than gatifloxacin (EC50,levofloxacin = 2.75 ± 0.45 mg/L; EC50,gatifloxacin = 1.03 ± 0.52 mg/L). The kmax was statistically similar for both drugs independent of whether fluctuating (kmax,levofloxacin = 0.40 ± 0.19 h-1; kmax,gatifloxacin = 0.48 ± 0.15 h-1) or constant concentrations (kmax,levofloxacin = 0.34 ± 0.06 h-1; kmax,gatifloxacin = 0.39 ± 0.23 h-1) were simulated. None of the PK/PD indices was capable of predicting the infection outcome for all the situations investigated. The PK/PD model developed allowed not only the comparison between the fluoroquinolones effect but also the comparison of different dosing regimes for the same drug and can be used for simulating alternative regimens and optimizing therapy of these drugs to treat community-acquired pneumonia.

Page generated in 0.0609 seconds