• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 414
  • 178
  • 47
  • 40
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • 7
  • 7
  • Tagged with
  • 868
  • 158
  • 156
  • 125
  • 118
  • 113
  • 80
  • 65
  • 63
  • 54
  • 53
  • 48
  • 47
  • 46
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
851

On some damage processes in risk and epidemic theories

Gathy, Maude 14 September 2010 (has links)
Cette thèse traite de processus de détérioration en théorie du risque et en biomathématique.<p><p>En théorie du risque, le processus de détérioration étudié est celui des sinistres supportés par une compagnie d'assurance.<p><p>Le premier chapitre examine la distribution de Markov-Polya comme loi possible pour modéliser le nombre de sinistres et établit certains liens avec la famille de lois de Katz/Panjer. Nous construisons la loi de Markov-Polya sur base d'un modèle de survenance des sinistres et nous montrons qu'elle satisfait une récurrence élégante. Celle-ci permet notamment de déduire un algorithme efficace pour la loi composée correspondante. Nous déduisons la famille de Katz/Panjer comme famille limite de la loi de Markov-Polya.<p><p>Le second chapitre traite de la famille dite "Lagrangian Katz" qui étend celle de Katz/Panjer. Nous motivons par un problème de premier passage son utilisation comme loi du nombre de sinistres. Nous caractérisons toutes les lois qui en font partie et nous déduisons un algorithme efficace pour la loi composée. Nous examinons également son indice de dispersion ainsi que son comportement asymptotique. <p><p>Dans le troisième chapitre, nous étudions la probabilité de ruine sur horizon fini dans un modèle discret avec taux d'intérêt positifs. Nous déterminons un algorithme ainsi que différentes bornes pour cette probabilité. Une borne particulière nous permet de construire deux mesures de risque. Nous examinons également la possibilité de faire appel à de la réassurance proportionelle avec des niveaux de rétention égaux ou différents sur les périodes successives.<p><p>Dans le cadre de processus épidémiques, la détérioration étudiée consiste en la propagation d'une maladie de type SIE (susceptible - infecté - éliminé). La manière dont un infecté contamine les susceptibles est décrite par des distributions de survie particulières. Nous en déduisons la distribution du nombre total de personnes infectées à la fin de l'épidémie. Nous examinons en détails les épidémies dites de type Markov-Polya et hypergéométrique. Nous approximons ensuite cette loi par un processus de branchement. Nous étudions également un processus de détérioration similaire en théorie de la fiabilité où le processus de détérioration consiste en la propagation de pannes en cascade dans un système de composantes interconnectées. <p><p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
852

Approximations polynomiales de densités de probabilité et applications en assurance / Polynomial approximtions of probabilitty density function with applications to insurance

Goffard, Pierre-Olivier 29 June 2015 (has links)
Cette thèse a pour objet d'étude les méthodes numériques d'approximation de la densité de probabilité associée à des variables aléatoires admettant des distributions composées. Ces variables aléatoires sont couramment utilisées en actuariat pour modéliser le risque supporté par un portefeuille de contrats. En théorie de la ruine, la probabilité de ruine ultime dans le modèle de Poisson composé est égale à la fonction de survie d'une distribution géométrique composée. La méthode numérique proposée consiste en une projection orthogonale de la densité sur une base de polynômes orthogonaux. Ces polynômes sont orthogonaux par rapport à une mesure de probabilité de référence appartenant aux Familles Exponentielles Naturelles Quadratiques. La méthode d'approximation polynomiale est comparée à d'autres méthodes d'approximation de la densité basées sur les moments et la transformée de Laplace de la distribution. L'extension de la méthode en dimension supérieure à $1$ est présentée, ainsi que l'obtention d'un estimateur de la densité à partir de la formule d'approximation. Cette thèse comprend aussi la description d'une méthode d'agrégation adaptée aux portefeuilles de contrats d'assurance vie de type épargne individuelle. La procédure d'agrégation conduit à la construction de model points pour permettre l'évaluation des provisions best estimate dans des temps raisonnables et conformément à la directive européenne Solvabilité II. / This PhD thesis studies numerical methods to approximate the probability density function of random variables governed by compound distributions. These random variables are useful in actuarial science to model the risk of a portfolio of contracts. In ruin theory, the probability of ultimate ruin within the compound Poisson ruin model is the survival function of a geometric compound distribution. The proposed method consists in a projection of the probability density function onto an orthogonal polynomial system. These polynomials are orthogonal with respect to a probability measure that belongs to Natural Exponential Families with Quadratic Variance Function. The polynomiam approximation is compared to other numerical methods that recover the probability density function from the knowledge of the moments or the Laplace transform of the distribution. The polynomial method is then extended in a multidimensional setting, along with the probability density estimator derived from the approximation formula. An aggregation procedure adapted to life insurance portfolios is also described. The method aims at building a portfolio of model points in order to compute the best estimate liabilities in a timely manner and in a way that is compliant with the European directive Solvency II.
853

Formalisations en Coq pour la décision de problèmes en géométrie algébrique réelle / Coq formalisations for deciding problems in real algebraic geometry

Djalal, Boris 03 December 2018 (has links)
Un problème de géométrie algébrique réelle s'exprime sous forme d’un système d’équations et d’inéquations polynomiales, dont l’ensemble des solutions est un ensemble semi-algébrique. L'objectif de cette thèse est de montrer comment les algorithmes de ce domaine peuvent être décrits formellement dans le langage du système de preuve Coq.Un premier résultat est la définition formelle et la certification de l’algorithme de transformation de Newton présentée dans la thèse d'A. Bostan. Ce travail fait intervenir non seulement des polynômes, mais également des séries formelles tronquées. Un deuxième résultat est la description d'un type de donnée représentant les ensembles semi-algébriques. Un ensemble semialgébrique est représenté par une formule logique du premier ordre basée sur des comparaisons entre expressions polynomiales multivariées. Pour ce type de données, nous montrons comment obtenir les différentes opérations ensemblistes et allons jusqu'à décrire les fonctions semi-algébriques. Pour toutes ces étapes, nous fournissons des preuves formelles vérifiées à l'aide de Coq. Enfin, nous montrons également comment la continuité des fonctions semi-algébrique peut être décrite, mais sans en fournir une preuve formelle complète. / A real algebraic geometry problem is expressed as a system of polynomial equations and inequalities, and the set of solutions are semi-algebraic sets. The objective of this thesis is to show how the algorithms of this domain can be formally described in the language of the Coq proof system. A first result is the formal definition and certification of the Newton transformation algorithm presented in A. Bostan's thesis. This work involves not only polynomials, but also truncated formal series. A second result is the description of a data type representing semi-algebraic sets. A semi-algebraic set is represented by a first-order logical formula based on comparisons between multivariate polynomial expressions. For this type of data, we show how to obtain the different set operations all the way to describing semialgebraic functions. For all these steps, we provide formal proofs verified with Coq. Finally, we also show how the continuity of semi-algebraic functions can be described, but without providing a fully formalized proof.
854

Optimalizace homogenity základního magnetického pole v MR tomografii / Optimization of Basic Magnetic Field Homogeneity in MR Tomography

Hadinec, Michal January 2010 (has links)
This thesis is concerned with problems of measuring and mapping of magnetic field in MR tomograph, for purpose of magnetic flux density homogeneity optimization. Attention is paid to mapping techniques on rotary symmetric volume and to ways of magnetic fields optimization with utilization of passive and active correction systems. Theoretical analysis of magnetic field decomposition with utilization of spherical harmonics and numerical decomposition is made. Mapping and approximation techniques of basic magnetic field are verified by experiments in the laboratory at the Institute of Scientific Instruments AS CR in Brno.
855

Approximation of Terrain Data Utilizing Splines / Approximation of Terrain Data Utilizing Splines

Tomek, Peter January 2012 (has links)
Pro optimalizaci letových trajektorií ve velmi malé nadmorské výšce, terenní vlastnosti musí být zahrnuty velice přesne. Proto rychlá a efektivní evaluace terenních dat je velice důležitá vzhledem nato, že čas potrebný pro optimalizaci musí být co nejkratší. Navyše, na optimalizaci letové trajektorie se využívájí metody založené na výpočtu gradientu. Proto musí být aproximační funkce terenních dat spojitá do určitého stupne derivace. Velice nádejná metoda na aproximaci terenních dat je aplikace víceroměrných simplex polynomů. Cílem této práce je implementovat funkci, která vyhodnotí dané terenní data na určitých bodech spolu s gradientem pomocí vícerozměrných splajnů. Program by měl vyčíslit více bodů najednou a měl by pracovat v $n$-dimensionálním prostoru.
856

Modelování LTI SISO systémů zlomkového řádu s využitím zobecněných Laguerrových funkcí / Fractional order LTI SISO systems modelling using generalized Laguerre functions

Kárský, Vilém January 2017 (has links)
This paper concentrates on the description of fractional order LTI SISO systems using generalized Laguerre functions. There are properties of generalized Laguerre functions described in the paper, and an orthogonal base of these functions is shown. Next the concept of fractional derivatives is explained. The last part of this paper deals with the representation of fractional order LTI SISO systems using generalized Laguerre functions. Several examples were solved to demonstrate the benefits of using these functions for the representation of LTI SISO systems.
857

Escape Motions: Rozšíření editoru Flame Painter / Escape Motions: Flame Painter Extensions

Piovarči, Rastislav January 2013 (has links)
Main goal of this master´s thesis is to propose and implement improvements to an original purely raster version of Flame Painter editor. An enhancement of the undo/redo system with emphasise to its functionality and memory requirements has been implemented. Moreover, the editor was extended by adding an ability to edit brush strokes using vector primitives which effectively assist the user in future stroke editing. This project was created in cooperation with employees of the Escape Motions Company.
858

Inégalités de Landau-Kolmogorov dans des espaces de Sobolev / Landau-Kolmogorov inequalities in Sobolev spaces

Abbas, Lamia 18 February 2012 (has links)
Ce travail est dédié à l’étude des inégalités de type Landau-Kolmogorov en normes L2. Les mesures utilisées sont celles d’Hermite, de Laguerre-Sonin et de Jacobi. Ces inégalités sont obtenues en utilisant une méthode variationnelle. Elles font intervenir la norme d’un polynômes p et celles de ces dérivées. Dans un premier temps, on s'intéresse aux inégalités en une variable réelle qui font intervenir un nombre quelconque de normes. Les constantes correspondantes sont prises dans le domaine où une certaine forme bilinéaire est définie positive. Ensuite, on généralise ces résultats aux polynômes à plusieurs variables réelles en utilisant le produit tensoriel dans L2 et en faisant intervenir au plus les dérivées partielles secondes. Pour les mesures d'Hermite et de Laguerre-Sonin, ces inégalités sont étendues à toutes les fonctions d'un espace de Sobolev. Pour la mesure de Jacobi on donne des inégalités uniquement pour les polynômes d'un degré fixé par rapport à chaque variable. / This thesis is devoted to Landau-Kolmogorov type inequalities in L2 norm. The measures which are used, are the Hermite, the Laguerre-Sonin and the Jacobi ones. These inequalities are obtained by using a variational method and the involved the square norms of a polynomial p and some of its derivatives. Initially, we focused on inequalities in one real variable that involve any number of norms. The corresponding constants are taken in the domain where a certain biblinear form is positive definite. Then we generalize these results to polynomials in several real variables using the tensor product in L2 and involving at most the second partial derivatives. For the Hermite and Laguerrre-Sonin cases, these inequalities are extended to all functions of a Sobolev space. For the Jacobi case inequalities are given only for polynomials of degree fixed with respect to each variable.
859

Lösungsoperatoren für Delaysysteme und Nutzung zur Stabilitätsanalyse

Gehre, Nico 06 April 2018 (has links)
In diese Dissertation werden lineare retardierte Differentialgleichungen (DDEs) und deren Lösungsoperatoren untersucht. Wir stellen eine neue Methode vor, mit der die Lösungsoperatoren für autonome und nicht-autonome DDEs bestimmt werden. Die neue Methode basiert auf dem Pfadintegralformalismus, der aus der Quantenmechanik und von der Analyse stochastischer Differentialgleichungen bekannt ist. Es zeigt sich, dass die Lösung eines Delaysystems zum Zeitpunkt t durch die Integration aller möglicher Pfade von der Anfangsbedingung bis zur Zeit t gebildet werden kann. Die Pfade bestehen dabei aus verschiedenen Schritten unterschiedlicher Längen und Gewichte. Für skalare autonome DDEs können analytische Ausdrücke des Lösungsoperators in der Literatur gefunden werden, allerdings existieren keine für nicht-autonome oder höherdimensionale DDEs. Mithilfe der neuen Methode werden wir die Lösungsoperatoren der genannten DDEs aufstellen und zusätzlich auf Delaysysteme mit mehreren Delaytermen erweitern. Dabei bestätigen wir unsere Ergebnisse sowohl analytisch wie auch numerisch. Die gewonnenen Lösungsoperatoren verwenden wir anschließend zur Stabilitätsanalyse periodischer Delaysysteme. Es werden zwei neue Verfahren präsentiert, die mithilfe des Lösungsoperators den transformierten Monodromieoperator des Delaysystems nähern und daraus die Stabilität bestimmen können. Beide neue Verfahren sind spektrale Methoden für autonome sowie nicht-autonome Delaysysteme und haben keine Einschränkungen wie bei der bekannten Chebyshev-Kollokationsmethode oder der Chebyshev-Polynomentwicklung. Die beiden bisherigen Verfahren beschränken sich auf Delaysysteme mit rationalem Verhältnis zwischen Periode und Delay. Außerdem werden wir eine bereits bekannte Methode erweitern und zu einer spektralen Methode für periodische nicht-autonome Delaysysteme entwickeln. Wir bestätigen alle drei neue Verfahren numerisch. Damit werden in dieser Dissertation drei neue spektrale Verfahren zur Stabilitätsanalyse periodischer Delaysysteme vorgestellt. / In this thesis linear delay differential equations (DDEs) and its solutions operators are studied. We present a new method to calculate the solution operators for autonomous and non-autonomous DDEs. The new method is related to the path integral formalism, which is known from quantum mechanics and the analysis of stochastic differential equations. It will be shown that the solution of a time delay system at time t can be constructed by integrating over all paths from the initial condition to time t. The paths consist of several steps with different lengths and weights. Analytic expressions for the solution operator for scalar autonomous DDEs can be found in the literature but no results exist for non-autonomous or high dimensional DDEs. With the help of the new method we can calculate the solution operators for such DDEs and for time delay systems with several delay terms. We verify our results analytically and numerically. We use the obtained solution operators for the stability analysis of periodic time delay systems. Two new methods will be presented to approximate the transformed monodromy operator with the help of the solution operator and to get the stability. Both new methods are spectral methods for autonomous and non-autonomous delay systems and have no limitations like the known Chebyshev collocation method or Chebyshev polynomial expansion. Both previously known methods are limited to time delay systems with a rational relation between period and delay. Furthermore we will extend a known method to a spectral method for non-autonomous time delay systems. We verify all three new methods numerically. Hence, in this thesis three new spectral methods for the stability analysis of periodic time delay systems are presented.
860

Nouvelles perspectives sur les algèbres de type Askey–Wilson

Gaboriaud, Julien 08 1900 (has links)
Cette thèse se divise en trois parties qui peuvent être toutes regroupées autour d'une même bannière : l'étude de structures algébriques reliées aux algèbres de type Askey–Wilson. Alors que dans la première partie on s'efforce d'obtenir des interprétations duales (au sens de Howe) de ces algèbres, dans les autres parties on étudie des généralisations de ces algèbres. Des dégénérations de l'algèbre de Sklyanin, générées par des blocs plus fondamentaux que ceux générant les algèbres de type Askey–Wilson, sont étudiées dans la deuxième partie et des généralisations de plus haut rang des algèbres de type Askey–Wilson sont étudiées dans la troisième partie. Dans la première partie, en invoquant la dualité de Howe, deux interprétations duales sont obtenues pour les algèbres de Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Hahn et dual \(-1\) Hahn. La façon dont la dualité de Howe opère est rendue explicite par l'examen de processus de réduction dimensionnelle. Un modèle superintégrable 2D de mécanique quantique superconforme dont l'algèbre de symétrie est celle de type dual \(-1\) Hahn est également introduit et solutionné. Dans la deuxième partie, des algèbres générées par des opérateurs de contiguïté et d'échelle encodant des propriétés de familles de polynômes sont étudiées. Ces opérateurs appartiennent à la classe des opérateurs de Sklyanin–Heun, qui peuvent être définis sur plusieurs grilles diverses. On découvre qu'ils génèrent des dégénérations de l'algèbre de Sklyanin. On démontre que les représentations irréductibles de dimension finie de ces algèbres ont pour base des familles de para-polynômes. Les grilles linéaires, quadratiques, exponentielles et d'Askey–Wilson sont étudiées et mènent respectivement aux polynômes orthogonaux des familles de para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk et \(q\)-para-Racah. Enfin, la façon dont les polynômes de para-Krawtchouk et d'autres familles de polynômes orthogonaux sont reliées aux représentations tridiagonales du plan de Jordan déformé est présentée. Dans la dernière partie, on explore des généralisations à plus haut rang pour les algèbres de Racah et Askey–Wilson. Pour ce faire, on étudie les réalisations de ces algèbres en termes de Casimirs intermédiaires. Le rôle de la matrice \(R\) tressée est élucidé : celle-ci permet de relier divers Casimirs intermédiaires entre eux par conjugaison. Un isomorphisme entre l'algèbre de skein du crochet de Kauffman de la sphère à 4 trous et l'algèbre engendrée par les Casimir intermédiaires dans \(U_q(\mathfrak{sl}_2)^{\otimes 3}\) est présenté et permet d'interpréter de façon diagrammatique la conjugaison par la matrice \(R\) tressée mentionnée ci-haut. Finalement, une présentation du centralisateur \(Z_n(\mathfrak{sl}_2)\) de \(U(\mathfrak{sl}_2)\) dans \(U(\mathfrak{sl}_2)^{\otimes n}\) par générateurs et relations est obtenue et on montre que ce centralisateur est isomorphe à un quotient (obtenu explicitement) de l'algèbre de Racah de plus haut rang \(R(n)\). / This thesis is divided in three parts which all orbit around the same theme: the study of algebraic structures related to the algebras of Askey–Wilson type. In the first part we obtain two interpretations that are dual in the sense of Howe for the algebras of Askey–Wilson type. Meanwhile, the other two parts are concerned with generalizations of these algebras. In the second part, we study degenerations of the Sklyanin algebra, which are built out of generators that are more fundamental than those of the Askey–Wilson algebra. In the last part, generalizations of the Askey–Wilson type algebras to higher rank are studied. In the first part, dual interpretations are obtained for the Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Higgs and dual \(-1\) Hahn algebras by invoking Howe duality. The way that this Howe duality operates is made explicit through the examination of a dimensional reduction procedure. A 2D superintegrable superconformal quantum mechanics model, whose symmetry algebra is the one of dual \(-1\) Hahn type, is also introduced and solved. In the second part, we study algebras that are generated by contiguity and ladder operators that encode properties of families of orthogonal polynomials. We show that these operators belong to the Sklyanin–Heun class of operators, which can be defined for various grids. We also show how their algebraic relations correspond to those of degenerations of the Sklyanin algebra. Then, we show how various families of para-polynomials support finite-dimensional irreducible representations of these degenerate algebras. From the linear, quadratic, exponential and Askey–Wilson grids, we are respectively led to the para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk and \(q\)-para-Racah polynomials. Later, we connect the para-Krawtchouk polynomials (and other families of orthogonal polynomials) to tridiagonal representations of the deformed Jordan plane. In the final part, we explore higher rank generalizations of the Racah and Askey–Wilson algebras. To that end, their realizations in terms of intermediate Casimir elements are studied. The role of the braided \(R\)-matrix is understood as follows: it connects various intermediate Casimir elements through conjugation. We obtain an isomorphism between the Kauffman bracket skein algebra of the four-punctured sphere and the algebra generated by the intermediate Casimir elements in \(U_q(\mathfrak{sl}_2)^{\otimes3}\). This leads to a diagrammatic interpretation of the conjugation by the braided \(R\)-matrix mentioned in the above. Lastly, a presentation of the centralizer \(Z_n(\mathfrak{sl}_2)\) of \(U(\mathfrak{sl}_2)\) in \(U(\mathfrak{sl}_2)^{\otimes n}\) by generators and relations is obtained and we show that this centralizer is isomorphic to a quotient (which we provide explicitly) of the higher rank Racah algebra \(R(n)\).

Page generated in 0.0262 seconds