• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 48
  • 40
  • 27
  • 14
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 237
  • 75
  • 62
  • 47
  • 36
  • 31
  • 28
  • 28
  • 27
  • 27
  • 26
  • 26
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Propriedades termo-mecânicas de filmes finos de a-SiC:H e SiOxNy e desenvolvimento de MEMS. / Thermo-mechanical properties of a-SiC:H and SiOxNy thin films and development of MEMS.

Rehder, Gustavo Pamplona 12 November 2008 (has links)
O presente trabalho, realizado junto ao Grupo de Novos Materiais e Dispositivos (GNMD), no Laboratório de Microeletrônica do Departamento de Sistemas Eletrônicos da Escola Politécnica da USP, visou determinar algumas das propriedades termo-mecânicas de materiais depositados pela técnica de plasma enhanced chemical vapor deposition (PECVD) que são importantes para o desenvolvimento de sistemas microeletromecânicos (MEMS). O módulo de elasticidade, a tensão mecânica residual, o coeficiente de expansão térmica e a condutividade térmica de filmes finos de carbeto de silício amorfo hidrogenado (a-SiC:H) e de oxinitreto de silício (SiOxNy) foram estudados. Medidas de nanoindentação e ressonância de cantilevers foram utilizadas para a obtenção do módulo de elasticidade e os resultados obtidos foram similares (75 e 91 GPa) pelos dois métodos e compatíveis com valores encontrados na literatura. Além disso, obteve-se o módulo de elasticidade de filmes de cromo (285 GPa). A tensão mecânica residual dos filmes utilizados neste trabalho foi medida através da curvatura do substrato induzida pela deposição dos filmes e pela deformação de cantilevers. O valor médio da tensão mecânica, obtido pela curvatura do substrato, variou de -69 MPa até -1750 MPa, mostrando grande dependência das condições de deposição dos filmes. O método que utiliza a deformação de cantilevers possibilitou a obtenção do gradiente de tensão mecânica, que também mostrou uma dependência das condições de deposição, sendo sempre o a-SiC:H quase estequiométrico o menos tensionado. O coeficiente de expansão térmica foi medido utilizando a técnica do gradiente de temperatura e o valor obtido foi similar a valores reportados na literatura para o carbeto de silício cristalino. Para um a-SiC:H quase estequiométrico foi obtido um coeficiente de expansão térmica de 3,41 m/oC, enquanto para um a-SiC:H rico em carbono o valor foi de 4,36 m/oC. Também foi verificado que a variação da resistência do cromo em função da temperatura é pequena, não permitindo sua utilização como sensor de temperatura e inviabilizando a obtenção da condutividade térmica dos filmes estudados. Além disso, foram apresentados trabalhos promissores, mostrando o potencial dos materiais estudados para o desenvolvimento de MEMS. Nesses trabalhos, demonstrou-se a viabilidade de integrar microestruturas atuadas termicamente e guias de onda ópticos, utilizando os materiais estudados neste trabalho. Foram fabricados chaves ópticas, portas lógicas ópticas, fontes de luz integradas e acoplamento das fontes de luz com guias de onda. / This work, realized at the New Materials and Devices Group (GNMD) at the Microelectronics Laboratory of the Department of Electronic Systems of the Polytechnic School of the University of São Paulo, focused at the determination of thermo-mechanical properties of materials deposited by plasma enhanced chemical vapor deposition (PECVD) that are important for the development of microelectromechanical systems (MEMS). The Youngs modulus, the residual stress, the coefficient of thermal expansion and the thermal conductivity of amorphous hydrogenated silicon carbide (a-SiC:H) and silicon oxynitride (SiOxNy) thin films were studied. Nanoindentation and the resonance of cantilevers were used to obtain the Youngs modulus. The results were similar (75 and 91 GPa) with both methods and compatible with literature values. Further, the Youngs modulus of chromium films was also obtained (285 GPa). The residual stress of thin films was obtained through the substrate curvature induced by the film deposition and through the deformation of cantilever beams. The residual stress, obtained through the substrate curvature, varied between -69 MPa and -1750 MPa, showing great dependence on the deposition conditions of these materials. The deformation of cantilevers allowed the determination of the stress gradient and it was also affected by the deposition conditions. In all stress measurements the near stoichiometry a-SiC:H film was less stressed. The coefficient of thermal expansion was measured using the temperature gradient technique and the obtain values were similar to those reported in the literature for crystalline silicon carbide. For a near stoichiometry a-SiC:H film, a value of 3.41 m/oC was obtained, while a carbon rich film showed a thermal expansion coefficient of 4.36 m/oC. It was also verified that the variation of the chromium resistance as a function of temperature is small. This did not allow the utilization of chromium as a temperature sensor, which prevented the obtention of the thermal conductivity of the studied films. Also, some promising works were presented, showing potential applications of the studied materials for the development of MEMS. In these works, the viability of integration of thermal actuated microstructures and optical waveguides was demonstrated. In these works, optical switches, optical logic gates, integrated light sources and coupling of integrated light sources with optical waveguides were presented.
192

Estudo dos parâmetros de deposição de filmes finos de carbono amorfo hidrogenado obtidos pelo processo PECVD em embalagens de PET pós-consumo reciclado

Oliveira, Eder Costa January 2010 (has links)
Orientadora: Sandra Andrea Cruz. / Dissertação (mestrado) - Universidade Federal do ABC. Programa de Pós Graduação em Nanociências e Materiais Avançados, 2010.
193

Improved Single Molecule Detection Platform Using a Buried ARROW Design

Wall, Thomas Allen 01 September 2017 (has links)
As the microelectronics industry pushes microfabrication processes further, the lab-on-a-chip field has continued to piggy-back off the industry's fabrication capabilities with the goal of producing total chemical and biological systems on small chip-size platforms. One important function of such systems is the ability to perform single molecule detection. There are currently many methods being researched for performing single molecule detection, both macro and micro in scale. This dissertation focuses on an optofluidic, lab-on-a-chip platform called the ARROW biosensor, which possesses several advantages over macro-scale single molecule detection platforms. These advantages include an amplification-free detection scheme, cheap parallel fabrication techniques, rapid single molecule detection results, and extremely low volume sample probing, which leads to ultra-sensitive detection. The ARROW biosensor was conceived in the early 2000s; however, since then it has undergone many design changes to improve and add new functionality to the lab-on-a-chip; however, water absorption in the plasma enhanced chemical vapor deposited silicon dioxide has been a problem that has plagued the biosensor platform for some time. Moisture uptake in the oxide layer of the ARROWs leads to loss of waveguiding confinement and drastically decreases the overall sensitivity of the ARROW biosensors. New ARROW designs were investigated to alleviate the negative water absorption effects in the ARROWs. The new waveguide designs were tested for resiliency to water absorption and the buried ARROW (bARROW) design was determined to be the most successful at preventing negative water absorption effects from occurring in the PECVD oxide waveguides. The bARROWs were integrated into the full biosensor platforms and used to demonstrate high sensitivity single molecule detection without any signs of water absorption affecting the bARROWs' waveguiding capabilities. The bARROW biosensors are not only water resistant, they also proved to be the most sensitive biosensors yet fabricated with average signal-to-noise ratios around 80% higher than any previously fabricated ARROW biosensors.
194

Élaboration et caractérisation de matériaux à très faible constante diélectrique de type a-SiOCH élaborés par PECVD : application aux interconnexions des circuits intégrés

Gourhant, Olivier 10 December 2008 (has links) (PDF)
L'amélioration des performances des circuits intégrés nécessite le développement de nouveaux matériaux comme, par exemple, les diélectriques à très faible permittivité, appelés Ultra Low-K (K<=2,5). Cette étude se focalise sur les matériaux a-SiOCH poreux déposés en couche mince par PECVD suivant une approche dite « porogène ». Cette approche consiste en le dépôt d'une matrice de type a-SiOCH contenant des inclusions organiques qui sont dégradées dans un second temps, grâce à l'utilisation d'un post-traitement, afin de créer la porosité. La première partie de cette étude montre que l'extension de l'approche porogène a permis d'élaborer des matériaux ayant des constantes diélectriques pouvant atteindre 2,25 en utilisant un procédé industriel avec, comme type de post-traitement, un recuit thermique assisté par rayonnement UV. Certains matériaux ont été intégrés dans des démonstrateurs. Puis, dans un second temps, l'impact du procédé d'élaboration sur la structure chimique du matériau a été analysé afin de mieux comprendre son comportement mécanique. Enfin, la mise en place d'une technique de caractérisation a permis la mesure des différentes contributions de la constante diélectrique (électronique, ionique et dipolaire). L'évolution de ces composantes en fonction des paramètres d'élaboration a ainsi pu être étudiée.
195

Contribution à l'étude microstructurale des couches minces supportées a-SiOXCY:H et autres membranes poreuses

Rouessac, Vincent 16 January 2007 (has links) (PDF)
Les travaux présentés dans ce mémoire d'Habilitation à Diriger des Recherches sont divisés en deux parties.<br />Le premier chapitre est consacré à l'élaboration de films par CVD assistée par plasma (PECVD) de type a-SiOXCY:H à partir de différents précurseurs organosiliciés et conditions expérimentales, leur caractérisation physicochimique et microstructurale ainsi que leur utilisation en tant que membranes pour la séparation de gaz. Cette étude amène à la conclusion qu'une meilleure connaissance du réseau amorphe est nécessaire pour comprendre l'immobilisation et le transfert d'espèces à travers ces matériaux.<br />Le second chapitre présente une famille de méthodes de caractérisation couplant l'absorption et l'adsorption de molécules sondes avec des méthodes de caractérisation dédiées à l'analyse de couches minces supportées : l'ellipsométrie, la réflectométrie des rayons X aux bas angles, la gravimétrie par microbalance à quartz, toutes les trois couplées chacune avec un dispositif permettant la sorption et la désorption contrôlées de différents gaz et différentes vapeurs. Elles s'appliquent donc aux films minces PECVD mais aussi à tout matériau en couche mince supportée de type polymère ou céramique. Ces techniques de caractérisation in situ, tout à fait intéressantes dans le cadre de l'étude des membranes car elles permettent d'analyser les interactions pénétrant – matrice, sont en cours de développement et apporteront des informations pour la compréhension des mécanismes de transfert.<br /><br />Mots-clefs : PECVD, couches minces et membranes, nanoporosité, EP, QCM, RRX
196

Technology for photonic components in silica/silicon material structure

Wosinski, Lech January 2003 (has links)
The main objectives of this thesis were to develop a lowtemperature PECVD process suitable for optoelectronicintegration, and to optimize silica glass composition forUV-induced modifications of a refractive index in PECVDfabricated planar devices. The most important achievement isthe successful development of a low temperature silicadeposition, which for the first time makes it is possible tofabricate good quality low loss integrated components whilekeeping the temperature below 250oC during the entirefabrication process. Two strong absorption peaks thatappear at1.5 mm communication window due to N-H and Si-H bonds have beencompletely eliminated by process optimization. This openspossibilities for monolithic integration with other,temperature sensitive devices, such as semiconductor lasers anddetectors, or polymer-based structures on the common siliconplatform. PECVD technology for low loss amorphous silicon inapplication to SiO2/Si based photonic crystal structures hasbeen also optimized to remove hydrogen incorporated during thedeposition process, responsible for the porosity of thedeposited material and creation of similar to silica absorptionbands. Change of the refractive index of germanium doped silicaunder UV irradiation is commonly used for fabrication of UVinduced fiber Bragg gratings. Here we describe our achievementsin fabrication of fiber Bragg gratings and their application todistributed sensor systems. Recently we have built up a laserlab for UV treatment in application to planar technology. Wehave demonstrated the high photosensitivity of PECVD depositedGe-doped glasses (not thermally annealed) even without hydrogenloading, leading to a record transmission suppression of 47dBin a Bragg grating photoinduced in a straight buried channelwaveguide. We have also used a UV induced refractive indexchange to introduce other device modifications or functions,such as phase shift, wavelength trimming and control ofpolarization birefringence.The developed low temperature technology and the UVprocessing form a unique technology platform for development ofnovel integrated functional devices for optical communicationsystems. A substantial part of the thesis has been devoted tostudying different plasma deposition parameters and theirinfluence on the optical characteristics of fabricatedwaveguides to find the processing window giving the besttrade-off between the deposition rate,chamber temperatureduring the process, optical losses and presence of absorptionbands within the interesting wavelength range. The optimalconditions identified in this study are low pressure (300-400mTorr), high dilution of silane in nitrous oxide and high totalflow (2000 sccm), low frequency (380 KHz) RF source and high RFpower levels (800-1000 W). The thesis provides better understanding of the plasmareactions during the deposition process. RF Power is the keyparameter for increasing the rate of surface processes so as toaccommodate each atomic layer in the lowest energy statepossible. All the process conditions which favor a moreenergetic ion bombardment (i.e. low pressure, low frequency andhigh power) improve the quality of the material, making it moredense and similar to thermal oxide, but after a certain pointthe positive trend with increasing power saturates. As theenergy of the incoming ion increases, a competing effect setsin at the surface: ion induced damage and resputtering. Finally, the developed technologies were applied for thefabrication of some test and new concept devices for opticalcommunication systems including multimode interference (MMI)-based couplers/splitters, state-of-the-art arrayed waveguidegrating-based multi/ demultiplexers, the first Bragg gratingassisted MMI-based add-drop multiplexer, as well as moreresearch oriented devices such as a Mach-Zehnder switch basedon silica poling and a Photonic Crystal-based coupler. <b>Keywords:</b>silica-on-silicon technology, PECVD, plasmadeposition, photonic integrated circuits, planar waveguidedevices, UV Bragg gratings, photosensitivity, arrayed waveguidegratings, multimode interference couplers, add-dropmultiplexers.
197

Développement, caractérisation et modélisation d'interfaces pour cellules solaires à haut rendement à base d'hétérojonctions de silicium

Varache, Renaud 20 November 2012 (has links) (PDF)
L'interface entre le silicium amorphe (a-Si:H) et le silicium cristallin (c-Si) est un constituent clés de cellules solaires à haut rendement reposant sur des procédés à basse température. Trois propriétés de l'interface déterminent le rendement des cellules solaires à hétérojonction de silicium: les décalages de bandes entre a-Si:H et c-Si, les défauts d'interface et la courbure de bande dans c-Si. Ces trois aspects sont traités dans ces travaux de thèse.Dans un premier un temps, un calcul analytique de la courbure de bande dans c-Si est développé. Il repose sur l'approximation d'une densité d'état (DE) constante dans la bande interdite de a-Si:H. L'influence des principaux paramètres de la structure sur la courbure de bande est étudiée : décalage de bande, densité d'état dans a-Si:H, défaut d'interface, etc. La présence d'un effet de confinement quantique est discutée. Grâce à une comparaison entre ces calculs et des mesures de conductance planaire en fonction de la température sur des structures (p)a-Si:H/(n)c-Si et (n)a-Si:H/(p)c-Si, les décalages de bande de valence et de conduction ont pu être estimés à 0.36 eV et 0.15 eV respectivement. En outre, il est montré que le décalage de la bande de valence est indépendant de la température, alors que le décalage de la bande de conduction suit les évolutions des bandes interdites de c-Si et a-Si:H. Ces mesures tendent à prouver que le 'branch point' dans a-Si:H est indépendant du dopage.Ensuite, les calculs analytiques sont approfondis pour prendre en compte différents aspects de la structure complète incorporée dans les cellules : contact avec un oxyde transparent conducteur, présence d'une couche de a-Si:H non-dopée à l'interface. A l'aide de simulations numériques et à la lumière de mesures de conductance planaire conjuguées à des mesures de la qualité de passivation de l'interface, des pistes pour optimiser les cellules à hétérojonction sont commentées. En particulier, il est montré qu'un optimum doit être trouvé entre une bonne passivation et une courbure de bande suffisante. Ceci peut être accompli par un réglage fin des propriétés de la couche tampon (épaisseur, dopage), du contact (travail de sortie élevé) et de l'émetteur (p)a-Si:H (densité de défauts et épaisseur). En particulier, un émetteur avec une DE importante conduit paradoxalement à de meilleures performances.Enfin, un nouveau type d'interface a été développé. La surface de c-Si a été oxydée volontairement dans de l'eau pure dé-ionisée à 80 °C avant le dépôt de (p)a-Si:H afin d'obtenir une structure (p)a-Si:H/SiO2/(n)c-Si. A l'aide d'un modèle de courant par effet tunnel implémenté dans le logiciel de simulation numérique AFORS-HET, l'effet d'une couche à grande bande interdite (comme c'est le cas pour SiO2) sur les performances de cellules est étudié : le facteur de forme et le courant de court-circuit sont extrêmement réduits. En revanche, une couche de SiO2 n'a que peu d'impact sur les propriétés optiques de la structure. Expérimentalement, les échantillons réalisés montrent une qualité de passivation à mi-chemin entre le cas sans couche tampon et le cas avec (i)a-Si:H : ceci est expliqué par la présence d'une charge fixe négative dans l'oxyde. La courbure de bande dans c-Si est moins affectée par la présence d'une couche d'oxyde que d'une couche de (i)a-Si:H. Les cellules solaires réalisées démontrent que le concept a le potentiel d'aboutir à de hauts rendements : sur des structures non-optimisées, une tension de court-circuit supérieure à 650 mV a été démontrée, alors que l'oxyde ne semble pas limiter le transport de charge.
198

Organic Thin Film Transistor Integration

Li, Flora January 2008 (has links)
This thesis examines strategies to exploit existing materials and techniques to advance organic thin film transistor (OTFT) technology in device performance, device manufacture, and device integration. To enhance device performance, optimization of plasma enhanced chemical vapor deposited (PECVD) gate dielectric thin film and investigation of interface engineering methodologies are explored. To advance device manufacture, OTFT fabrication strategies are developed to enable organic circuit integration. Progress in device integration is achieved through demonstration of OTFT integration into functional circuits for applications such as active-matrix displays and radio frequency identification (RFID) tags. OTFT integration schemes featuring a tailored OTFT-compatible photolithography process and a hybrid photolithography-inkjet printing process are developed. They enable the fabrication of fully-patterned and fully-encapsulated OTFTs and circuits. Research on improving device performance of bottom-gate bottom-contact poly(3,3'''-dialkyl-quarter-thiophene) (PQT-12) OTFTs on PECVD silicon nitride (SiNx) gate dielectric leads to the following key conclusions: (a) increasing silicon content in SiNx gate dielectric leads to enhancement in field-effect mobility and on/off current ratio; (b) surface treatment of SiNx gate dielectric with a combination of O2 plasma and octyltrichlorosilane (OTS) self-assembled monolayer (SAM) delivers the best OTFT performance; (c) an optimal O2 plasma treatment duration exists for attaining highest field-effect mobility and is linked to a “turn-around” effect; and (d) surface treatment of the gold (Au) source/drain contacts by 1-octanethiol SAM limits mobility and should be omitted. There is a strong correlation between the electrical characteristics and the interfacial characteristics of OTFTs. In particular, the device mobility is influenced by the interplay of various interfacial mechanisms, including surface energy, surface roughness, and chemical composition. Finally, the collective knowledge from these investigations facilitates the integration of OTFTs into organic circuits, which is expected to contribute to the development of new generation of all-organic displays for communication devices and other pertinent applications. A major outcome of this work is that it provides an economical means for organic transistor and circuit integration, by enabling use of the well-established PECVD infrastructure, yet not compromising the performance of electronics.
199

Bottom-Gate TFTs With Channel Layer Deposited by Pulsed PECVD

Grant, David James January 2004 (has links)
Nanocrystalline silicon (nc-Si:H) is a promising material for Thin-Film Transistors (TFTs) offering potentially higher mobilities and improved stability over hydrogenated amorphous silicon (a-Si:H). The slow growth rate of nc-Si:H can be overcome by using pulsed Plasma-Enhanced Chemical Vapour Deposition (PECVD). Pulsed PECVD also reduces powder particle formation in the plasma and provides added degrees of freedom for process optimization. Unlike high frequency PECVD, pulsed PECVD can be scaled to deposit films over large areas with no reduction in performance. For this thesis, silicon thin films were deposited by the pulsed PECVD technique at a temperature of 150 °C and TFTs were made using this material. Radio Frequency (RF) power and silane (SiH<sub>4</sub>) flow rate were varied in order to study the effect of different levels of crystallinity on the film. Raman spectroscopy, Atomic Force Microscope (AFM), X-Ray Diffraction (XRD), electrical conductivity, Hall mobility, optical band gap, and stability under light-soaking were measured using films of two different thicknesses, 50 nm and 300 nm. From the Raman data we see that the 50 nm films deposited with high hydrogen dilution are mostly amorphous, indicating the presence of a thick incubation layer. The 300nm samples deposited with hydrogen dilution, on the other hand, showed very high crystallinity and conductivity, except for 300-2 which was surprisingly, mostly amorphous. AFM and XRD measurements were also performed to confirm the Raman data and get an estimate for the crystallite grain size in the 300 nm samples. The conductivity was measured for all films, and the Hall mobility and carrier concentration was measured for one of the 300 nm films. The thin samples which are mostly amorphous show low conductivity whereas the thick high crystallinity films show high conductivity, and n-type behaviour possibly due to oxygen doping. The optical gap was also measured using Ultra Violet (UV) light and results indicate the possible presence of small crystallites in the 50 nm films. The conductivity's stability under light-soaking was measured to observe the material's susceptibility to degradation, and the 300 nm with high crystallinity were much more stable than the a-Si:H films. All the results of these measurements varied depending on the film and these results are discussed. Bottom-gate TFTs were fabricated using a pulsed PECVD channel layer and an amorphous silicon nitride (a-SiN:H) gate dielectric. The extracted parameters of one of the best TFTs are <i>&mu;<sub>sat</sub></i> &le; 0. 38 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>, <i>V<sub>t,sat</sub></i> &ge; 7. 3 V, <i>I<sub>on/off</sub></i> > 10<sup>6</sup>, and <i>S</i> < 1 V/decade. These parameters were extracted semi-automatically from the basic Field-Effect Transistor (FET) model using a computer program. Extraction using a more complicated model yielded similar results for mobility and threshold voltage but also gave a large power parameter <i>&alpha;</i> of 2. 31 and conduction band tail slope of 30 meV. The TFT performance and material properties are presented and discussed. On this first attempt at fabricating TFTs using a nc-Si:H channel layer deposited by pulsed PECVD, results were obtained which are consistent with results for low temperature a-Si:H TFTs and previous pulsed PECVD TFTs. The channel layer was mostly amorphous and non-crystalline, possibly due to the amorphous substrate or insufficient hydrogen dilution in the plasma. The 300 nm films showed, however, that high crystallinity material deposited directly on glass can easily be obtained, and this material showed less degradation under light-soaking than the purely amorphous counterpart. Pulsed PECVD is a promising technique for the growth of nc-Si:H and with further materials development and process optimization for TFTs, it may prove to be useful for the growth of high-quality nc-Si:H TFT channel layers.
200

Organic Thin Film Transistor Integration

Li, Flora January 2008 (has links)
This thesis examines strategies to exploit existing materials and techniques to advance organic thin film transistor (OTFT) technology in device performance, device manufacture, and device integration. To enhance device performance, optimization of plasma enhanced chemical vapor deposited (PECVD) gate dielectric thin film and investigation of interface engineering methodologies are explored. To advance device manufacture, OTFT fabrication strategies are developed to enable organic circuit integration. Progress in device integration is achieved through demonstration of OTFT integration into functional circuits for applications such as active-matrix displays and radio frequency identification (RFID) tags. OTFT integration schemes featuring a tailored OTFT-compatible photolithography process and a hybrid photolithography-inkjet printing process are developed. They enable the fabrication of fully-patterned and fully-encapsulated OTFTs and circuits. Research on improving device performance of bottom-gate bottom-contact poly(3,3'''-dialkyl-quarter-thiophene) (PQT-12) OTFTs on PECVD silicon nitride (SiNx) gate dielectric leads to the following key conclusions: (a) increasing silicon content in SiNx gate dielectric leads to enhancement in field-effect mobility and on/off current ratio; (b) surface treatment of SiNx gate dielectric with a combination of O2 plasma and octyltrichlorosilane (OTS) self-assembled monolayer (SAM) delivers the best OTFT performance; (c) an optimal O2 plasma treatment duration exists for attaining highest field-effect mobility and is linked to a “turn-around” effect; and (d) surface treatment of the gold (Au) source/drain contacts by 1-octanethiol SAM limits mobility and should be omitted. There is a strong correlation between the electrical characteristics and the interfacial characteristics of OTFTs. In particular, the device mobility is influenced by the interplay of various interfacial mechanisms, including surface energy, surface roughness, and chemical composition. Finally, the collective knowledge from these investigations facilitates the integration of OTFTs into organic circuits, which is expected to contribute to the development of new generation of all-organic displays for communication devices and other pertinent applications. A major outcome of this work is that it provides an economical means for organic transistor and circuit integration, by enabling use of the well-established PECVD infrastructure, yet not compromising the performance of electronics.

Page generated in 0.0545 seconds